RFTSystems commited on
Commit
07c8ec7
·
verified ·
1 Parent(s): a13a736

Update TECHNICAL_NOTES.md

Browse files
Files changed (1) hide show
  1. TECHNICAL_NOTES.md +62 -53
TECHNICAL_NOTES.md CHANGED
@@ -1,67 +1,76 @@
1
- # RFT-Ω Harmonic Validation Interface v3
2
 
3
- Interactive demonstrator for **Rendered Frame Theory (RFT)** harmonic stability under controlled synthetic noise.
4
- This Space provides a **reproducible test harness** for anticipatory stability (QΩ) and synchronization coherence (ζ_sync) with:
5
- - **Domain profiles** (AI/Neural, SpaceX/Aerospace, Energy/RHES, Extreme)
6
- - **Adjustable noise slider (σ)** to probe robustness
7
- - **Adaptive baselines** (light “memory”) and **range validation** (no false 1.0 spikes)
 
 
8
 
9
- ---
10
 
11
- ## How to Use
12
- 1) Open the Space → **https://rftsystems-rft-omega-api.hf.space**
13
- 2) Select a **System Profile** (AI/Neural, SpaceX/Aerospace, Energy/RHES, Extreme Perturbation).
14
- 3) Adjust **Synthetic Noise Level (σ)** with the slider (0.00–0.30).
15
- 4) Click **Submit** → JSON output appears with live values for QΩ, ζ_sync, status.
16
 
17
- **Example output**
18
- ```json
19
- {
20
- "System": "AI / Neural",
21
- "Noise Scale": 0.050,
22
- "QΩ": 0.922,
23
- "ζ_sync": 0.798,
24
- "status": "perturbed"
25
- }
26
- ```
27
-
28
- ---
29
 
30
- ## What to Expect
 
 
 
 
 
 
 
 
 
 
 
31
 
32
- **Typical stable ranges (nominal conditions)**
33
- | Metric | Range | Meaning |
34
- |---|---|---|
35
- | **QΩ** | 0.82–0.89 | Harmonic stability factor (amplitude) |
36
- | **ζ_sync** | 0.75–0.88 | Synchronization coherence (phase) |
 
 
 
 
 
 
 
 
 
37
 
38
- **Status classification (qualitative)**
39
- - `nominal` low variance; coherent equilibrium
40
- - `perturbed` moderate variance; coherent but stressed
41
- - `critical` high variance; edge-of-failure regime
 
42
 
43
- **Noise guidance by profile (rough starting points)**
44
- - **AI / Neural:** σ 0.01–0.10 (training drift / GPU jitter)
45
- - **SpaceX / Aerospace:** σ ≈ 0.03–0.12 (vibration / telemetry lag)
46
- - **Energy / RHES:** σ 0.02–0.10 (grid oscillations / load steps)
47
- - **Extreme Perturbation:** σ up to 0.30 (stress testing / failure modes)
48
 
49
- **Notes**
50
- - The kernel applies **domain-specific weighting** (QΩ vs ζ_sync importance) and a **soft adaptive baseline** so repeated runs can show mild learning/self-stabilization.
51
- - Outputs are **clamped to [0, 0.99]** to avoid saturation artifacts and to reflect realistic bounded metrics.
52
- - Repeated runs at fixed σ typically show **< 0.05 variance** in stable regimes.
53
 
54
- ---
 
 
 
55
 
56
- ## Validation Purpose
57
- - **Benchmark harmonic resilience** under controlled perturbations (σ sweeps).
58
- - **Study predictive drift signals**: observe how QΩ and ζ_sync diverge/converge as σ increases.
59
- - **Profile-specific tuning**: compare AI vs Aerospace vs Energy domains with the same σ to see weighting effects.
60
 
61
- For collaboration (e.g., xAI/RobustBench/GLUE-style testing), this interface can be extended with dataset hooks and logging while keeping internal parameters sealed.
62
 
63
- ---
64
 
65
- ## Rights & Contact
66
- All Rights Reserved under **RFT-IPURL v1.0** and the **Berne Convention (UK Copyright Law)**.
67
- **Author / Contact:** Liam Grinstead — [email protected]
 
1
+ Rendered Frame Theory Stabilising System Verification Panel
2
 
3
+ Interactive verification panel for Rendered Frame Theory (RFT) harmonic stability under controlled synthetic noise.
4
+ This Space is a reproducible test harness for anticipatory stability (QΩ) and synchronisation coherence (ζ_sync) across multiple domains.
5
+ • Domains: AI/Neural, SpaceX/Aerospace, Energy/RHES, Extreme Perturbation
6
+ • Noise control: slider for σ (0.00–0.30) to probe robustness
7
+ • Outputs: JSON with mean / ζ_sync, status classification, and timestamp
8
+ • Logging: Save Run Log downloads a timestamped .json record for audit trails
9
+ • Reference DOI: https://doi.org/10.5281/zenodo.17466722
10
 
11
+ Live panel: https://rftsystems-rft-omega-api.hf.space
12
 
13
+
 
 
 
 
14
 
15
+ How to Use
16
+ 1. Open the panel → https://rftsystems-rft-omega-api.hf.space
17
+ 2. Select a System Profile (AI/Neural, SpaceX/Aerospace, Energy/RHES, Extreme Perturbation).
18
+ 3. Choose Noise Distribution (gauss or uniform).
19
+ 4. Adjust Synthetic Noise (σ) with the slider (0.00–0.30).
20
+ 5. Click Run Simulation → JSON output appears with live QΩ/ζ_sync and status.
21
+ 6. Click 💾 Save Run Log to download the result as a .json (timestamped).
 
 
 
 
 
22
 
23
+ Example output
24
+ {
25
+ "profile": "AI / Neural",
26
+ "noise_scale": 0.080,
27
+ "distribution": "gauss",
28
+ "QΩ_mean": 0.834,
29
+ "ζ_sync_mean": 0.799,
30
+ "status_majority": "perturbed",
31
+ "timestamp_utc": "2025-10-29T14:04:05.114382Z",
32
+ "rft_notice": "All Rights Reserved — RFT-IPURL v1.0 (UK / Berne). Research validation use only. No reverse-engineering without written consent."
33
+ }
34
+ What to Expect
35
 
36
+ Typical stable ranges (nominal conditions)
37
+ Metric
38
+ Range
39
+ Meaning
40
+
41
+ 0.82–0.89
42
+ Harmonic stability factor (amplitude)
43
+ ζ_sync
44
+ 0.75–0.88
45
+ Synchronisation coherence (phase)
46
+ Status classification (qualitative)
47
+ • nominal — low variance; coherent equilibrium
48
+ • perturbed — moderate variance; coherent but stressed
49
+ • critical — high variance; edge-of-instability
50
 
51
+ Noise guidance by profile (starting points)
52
+ • AI / Neural: σ 0.01–0.10 (training drift / GPU jitter)
53
+ • SpaceX / Aerospace: σ 0.03–0.12 (vibration / telemetry lag)
54
+ • Energy / RHES: σ 0.02–0.10 (grid oscillations / load steps)
55
+ • Extreme Perturbation: σ up to 0.30 (stress testing / failure modes)
56
 
57
+ Notes
58
+ • The panel applies domain-specific weighting (relative importance of vs ζ_sync).
59
+ • Outputs are bounded to [0.00, 0.99] to prevent saturation artifacts and maintain comparability.
60
+ • Repeated runs at fixed σ typically show < 0.05 variance in stable regimes.
 
61
 
62
+
 
 
 
63
 
64
+ Validation Purpose
65
+ • Benchmark harmonic resilience under controlled perturbations (σ sweeps).
66
+ • Study predictive drift signals: observe divergence/convergence of QΩ and ζ_sync as σ increases.
67
+ • Profile-specific tuning: compare AI vs Aerospace vs Energy with identical σ to see weighting effects.
68
 
69
+ For deeper collaboration (e.g., xAI / RobustBench / GLUE-style testing), this panel can be extended with dataset hooks and richer logging while keeping internal parameters sealed under RFT-IPURL.
 
 
 
70
 
71
+
72
 
73
+ Rights & Contact
74
 
75
+ All Rights Reserved under RFT-IPURL v1.0 and the Berne Convention (UK Copyright Law).
76
+ Author / Contact: Liam Grinstead — liamgrinstead2@gmail.com