NuMessiah's picture
Remove source="upload"
e9565b7
raw
history blame
1.41 kB
import gradio as gr
import torch
from transformers import pipeline
import torchaudio
# Check for CUDA availability and set device
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
# Load the Whisper pipeline
whisper_pipeline = pipeline("automatic-speech-recognition", model="openai/whisper-large-v3", device=device)
def transcribe_audio(audio_file):
if audio_file is None:
return "Please upload or record an audio file."
try:
# Load audio using torchaudio to handle various formats and long files
audio, sample_rate = torchaudio.load(audio_file)
# Resample if necessary (Whisper often expects 16kHz)
if sample_rate != 16000:
resampler = torchaudio.transforms.Resample(sample_rate, 16000)
audio = resampler(audio)
# Transcribe the audio
transcription = whisper_pipeline(audio.squeeze().numpy())["text"] # .squeeze() removes extra dimensions
return transcription
except Exception as e:
return f"An error occurred: {e}"
with gr.Blocks() as demo:
with gr.Row():
audio_input = gr.Audio(type="filepath", label="Upload or Record Audio")
transcribe_button = gr.Button("Transcribe")
transcription_output = gr.Textbox(label="Transcription")
transcribe_button.click(transcribe_audio, inputs=audio_input, outputs=transcription_output)
demo.launch()