Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Commit
ยท
fbd0e7d
1
Parent(s):
492c93e
Refactor search_leaderboard to use retrieval_df and update UI tab labels for clarity
Browse files
app.py
CHANGED
|
@@ -40,15 +40,15 @@ CITATION_BUTTON_TEXT = """
|
|
| 40 |
}
|
| 41 |
"""
|
| 42 |
|
| 43 |
-
|
| 44 |
original_columns_order = None
|
| 45 |
|
| 46 |
def search_leaderboard(model_name, columns_to_show):
|
| 47 |
if len(model_name.strip()) == 0:
|
| 48 |
-
return
|
| 49 |
|
| 50 |
threshold = 95 # You can adjust this value to make the search more or less strict
|
| 51 |
-
filtered_df =
|
| 52 |
|
| 53 |
def calculate_similarity(row):
|
| 54 |
similarity = fuzz.partial_ratio(model_name.lower(), row["Model"].lower())
|
|
@@ -70,20 +70,20 @@ def search_leaderboard(model_name, columns_to_show):
|
|
| 70 |
|
| 71 |
|
| 72 |
def main():
|
| 73 |
-
global
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
|
| 79 |
columns_to_show = ["Model", "Web Search Dataset (Overall Score)", "Model Size (in Millions)", "Embedding Dimension", "Max Tokens", "Num Likes"]
|
| 80 |
with gr.Blocks() as demo:
|
| 81 |
gr.HTML(HEADER)
|
| 82 |
|
| 83 |
with gr.Tabs():
|
| 84 |
-
with gr.Tab("Retrieval"):
|
| 85 |
with gr.Tabs():
|
| 86 |
-
with gr.Tab("Leaderboard"):
|
| 87 |
with gr.Row():
|
| 88 |
search_box_retrieval = gr.Textbox(
|
| 89 |
placeholder="Search for models...",
|
|
@@ -92,13 +92,13 @@ def main():
|
|
| 92 |
)
|
| 93 |
columns_to_show_input = gr.CheckboxGroup(
|
| 94 |
label="Columns to Show",
|
| 95 |
-
choices=
|
| 96 |
value=columns_to_show,
|
| 97 |
scale=4
|
| 98 |
)
|
| 99 |
|
| 100 |
retrieval_leaderboard = gr.Dataframe(
|
| 101 |
-
value=
|
| 102 |
datatype="markdown",
|
| 103 |
wrap=True,
|
| 104 |
show_fullscreen_button=True,
|
|
@@ -112,17 +112,20 @@ def main():
|
|
| 112 |
outputs=retrieval_leaderboard
|
| 113 |
)
|
| 114 |
columns_to_show_input.select(
|
| 115 |
-
lambda columns:
|
| 116 |
inputs=columns_to_show_input,
|
| 117 |
outputs=retrieval_leaderboard
|
| 118 |
)
|
| 119 |
|
| 120 |
-
with gr.Tab("Submit Retriever"):
|
| 121 |
submit_gradio_module("Retriever")
|
| 122 |
|
| 123 |
-
|
|
|
|
|
|
|
|
|
|
| 124 |
with gr.Tabs():
|
| 125 |
-
with gr.Tab("Leaderboard"):
|
| 126 |
search_box_reranker = gr.Textbox(
|
| 127 |
placeholder="Search for models...",
|
| 128 |
label="Search",
|
|
@@ -130,7 +133,7 @@ def main():
|
|
| 130 |
)
|
| 131 |
|
| 132 |
reranker_leaderboard = gr.Dataframe(
|
| 133 |
-
value=
|
| 134 |
datatype="markdown",
|
| 135 |
wrap=True,
|
| 136 |
show_fullscreen_button=True,
|
|
@@ -143,11 +146,13 @@ def main():
|
|
| 143 |
outputs=reranker_leaderboard
|
| 144 |
)
|
| 145 |
|
| 146 |
-
with gr.Tab("Submit Reranker"):
|
| 147 |
submit_gradio_module("Reranker")
|
| 148 |
|
|
|
|
|
|
|
| 149 |
|
| 150 |
-
# with gr.Tab("LLM Context Answering"):
|
| 151 |
# with gr.Tabs():
|
| 152 |
# with gr.Tab("Leaderboard"):
|
| 153 |
# pass
|
|
|
|
| 40 |
}
|
| 41 |
"""
|
| 42 |
|
| 43 |
+
retrieval_df = None
|
| 44 |
original_columns_order = None
|
| 45 |
|
| 46 |
def search_leaderboard(model_name, columns_to_show):
|
| 47 |
if len(model_name.strip()) == 0:
|
| 48 |
+
return retrieval_df.loc[:, columns_to_show]
|
| 49 |
|
| 50 |
threshold = 95 # You can adjust this value to make the search more or less strict
|
| 51 |
+
filtered_df = retrieval_df.copy()
|
| 52 |
|
| 53 |
def calculate_similarity(row):
|
| 54 |
similarity = fuzz.partial_ratio(model_name.lower(), row["Model"].lower())
|
|
|
|
| 70 |
|
| 71 |
|
| 72 |
def main():
|
| 73 |
+
global retrieval_df, original_columns_order
|
| 74 |
+
retrieval_df = load_retrieval_results()
|
| 75 |
+
retrieval_df[["Model"]] = retrieval_df[["Model"]].map(lambda x: f'<a href="https://huggingface.co/{x}" target="_blank">{x}</a>')
|
| 76 |
+
retrieval_df.drop(columns=["Revision", "Precision", "Task"], inplace=True)
|
| 77 |
+
retrieval_df.sort_values("Web Search Dataset (Overall Score)", ascending=False, inplace=True)
|
| 78 |
|
| 79 |
columns_to_show = ["Model", "Web Search Dataset (Overall Score)", "Model Size (in Millions)", "Embedding Dimension", "Max Tokens", "Num Likes"]
|
| 80 |
with gr.Blocks() as demo:
|
| 81 |
gr.HTML(HEADER)
|
| 82 |
|
| 83 |
with gr.Tabs():
|
| 84 |
+
with gr.Tab("๐ต๏ธโโ๏ธ Retrieval"):
|
| 85 |
with gr.Tabs():
|
| 86 |
+
with gr.Tab("๐ Leaderboard"):
|
| 87 |
with gr.Row():
|
| 88 |
search_box_retrieval = gr.Textbox(
|
| 89 |
placeholder="Search for models...",
|
|
|
|
| 92 |
)
|
| 93 |
columns_to_show_input = gr.CheckboxGroup(
|
| 94 |
label="Columns to Show",
|
| 95 |
+
choices=retrieval_df.columns.tolist(),
|
| 96 |
value=columns_to_show,
|
| 97 |
scale=4
|
| 98 |
)
|
| 99 |
|
| 100 |
retrieval_leaderboard = gr.Dataframe(
|
| 101 |
+
value=retrieval_df[columns_to_show],
|
| 102 |
datatype="markdown",
|
| 103 |
wrap=True,
|
| 104 |
show_fullscreen_button=True,
|
|
|
|
| 112 |
outputs=retrieval_leaderboard
|
| 113 |
)
|
| 114 |
columns_to_show_input.select(
|
| 115 |
+
lambda columns: retrieval_df.loc[:, columns],
|
| 116 |
inputs=columns_to_show_input,
|
| 117 |
outputs=retrieval_leaderboard
|
| 118 |
)
|
| 119 |
|
| 120 |
+
with gr.Tab("๐ต๏ธ Submit Retriever"):
|
| 121 |
submit_gradio_module("Retriever")
|
| 122 |
|
| 123 |
+
with gr.Tab("โน๏ธ About"):
|
| 124 |
+
gr.Markdown(ABOUT_SECTION)
|
| 125 |
+
|
| 126 |
+
with gr.Tab("๐ Reranking"):
|
| 127 |
with gr.Tabs():
|
| 128 |
+
with gr.Tab("๐ Leaderboard"):
|
| 129 |
search_box_reranker = gr.Textbox(
|
| 130 |
placeholder="Search for models...",
|
| 131 |
label="Search",
|
|
|
|
| 133 |
)
|
| 134 |
|
| 135 |
reranker_leaderboard = gr.Dataframe(
|
| 136 |
+
value=retrieval_df[columns_to_show],
|
| 137 |
datatype="markdown",
|
| 138 |
wrap=True,
|
| 139 |
show_fullscreen_button=True,
|
|
|
|
| 146 |
outputs=reranker_leaderboard
|
| 147 |
)
|
| 148 |
|
| 149 |
+
with gr.Tab("๐ต๏ธ Submit Reranker"):
|
| 150 |
submit_gradio_module("Reranker")
|
| 151 |
|
| 152 |
+
with gr.Tab("โน๏ธ About"):
|
| 153 |
+
gr.Markdown(ABOUT_SECTION)
|
| 154 |
|
| 155 |
+
# with gr.Tab("๐ง LLM Context Answering"):
|
| 156 |
# with gr.Tabs():
|
| 157 |
# with gr.Tab("Leaderboard"):
|
| 158 |
# pass
|