# hf_backend.py import time, logging from typing import Any, Dict, AsyncIterable import torch from transformers import AutoTokenizer, AutoModelForCausalLM from backends_base import ChatBackend, ImagesBackend from config import settings logger = logging.getLogger(__name__) try: import spaces from spaces.zero import client as zero_client except ImportError: spaces, zero_client = None, None # --- Model setup --- MODEL_ID = settings.LlmHFModelID or "Qwen/Qwen2.5-1.5B-Instruct" logger.info(f"Preloading tokenizer for {MODEL_ID} on CPU...") tokenizer, load_error = None, None try: tokenizer = AutoTokenizer.from_pretrained( MODEL_ID, trust_remote_code=True, use_fast=False ) except Exception as e: load_error = f"Failed to load tokenizer: {e}" logger.exception(load_error) # ---------------- Chat Backend ---------------- class HFChatBackend(ChatBackend): async def stream(self, request: Dict[str, Any]) -> AsyncIterable[Dict[str, Any]]: if load_error: raise RuntimeError(load_error) messages = request.get("messages", []) prompt = messages[-1]["content"] if messages else "(empty)" temperature = float(request.get("temperature", settings.LlmTemp or 0.7)) max_tokens = int(request.get("max_tokens", settings.LlmOpenAICtxSize or 512)) rid = f"chatcmpl-hf-{int(time.time())}" now = int(time.time()) # --- Inject X-IP-Token into global headers if ZeroGPU is used --- x_ip_token = request.get("x_ip_token") if x_ip_token and zero_client: zero_client.HEADERS["X-IP-Token"] = x_ip_token logger.debug("Injected X-IP-Token into ZeroGPU headers") def _run_once(prompt: str, device: str, dtype: torch.dtype) -> str: model = AutoModelForCausalLM.from_pretrained( MODEL_ID, torch_dtype=dtype, trust_remote_code=True, device_map="auto" if device != "cpu" else {"": "cpu"}, ) model.eval() inputs = tokenizer(prompt, return_tensors="pt").to(device) with torch.inference_mode(): if device != "cpu": autocast_ctx = torch.autocast(device_type=device, dtype=dtype) else: autocast_ctx = torch.cpu.amp.autocast(dtype=dtype) with autocast_ctx: outputs = model.generate( **inputs, max_new_tokens=max_tokens, temperature=temperature, do_sample=True, ) return tokenizer.decode(outputs[0], skip_special_tokens=True) if spaces: # --- GPU path with ZeroGPU --- @spaces.GPU(duration=120) def run_once(prompt: str) -> str: return _run_once(prompt, device="cuda", dtype=torch.float16) text = run_once(prompt) else: # --- CPU-only fallback --- text = _run_once(prompt, device="cpu", dtype=torch.float32) yield { "id": rid, "object": "chat.completion.chunk", "created": now, "model": MODEL_ID, "choices": [ {"index": 0, "delta": {"content": text}, "finish_reason": "stop"} ], } # ---------------- Stub Images Backend ---------------- class StubImagesBackend(ImagesBackend): """ Stub backend for images since HFChatBackend is text-only. Returns a transparent 1x1 PNG placeholder. """ async def generate_b64(self, request: Dict[str, Any]) -> str: logger.warning("Image generation not supported in HF backend.") return ( "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR4nGP4BwQACfsD/etCJH0AAAAASUVORK5CYII=" )