johnbridges commited on
Commit
bf6d44e
·
1 Parent(s): 0e8e333
Files changed (1) hide show
  1. hf_backend.py +84 -38
hf_backend.py CHANGED
@@ -1,5 +1,5 @@
1
  # hf_backend.py
2
- import time, logging
3
  from contextlib import nullcontext
4
  from typing import Any, Dict, AsyncIterable, Tuple
5
 
@@ -10,15 +10,30 @@ from config import settings
10
 
11
  logger = logging.getLogger(__name__)
12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  try:
14
  import spaces
15
  from spaces.zero import client as zero_client
16
  except ImportError:
17
  spaces, zero_client = None, None
18
 
19
- # --- Model setup ---
20
  MODEL_ID = settings.LlmHFModelID or "Qwen/Qwen2.5-1.5B-Instruct"
21
- logger.info(f"Preloading tokenizer for {MODEL_ID} on CPU...")
22
 
23
  tokenizer, load_error = None, None
24
  try:
@@ -27,36 +42,39 @@ try:
27
  trust_remote_code=True,
28
  use_fast=False,
29
  )
 
 
30
  except Exception as e:
31
  load_error = f"Failed to load tokenizer: {e}"
32
  logger.exception(load_error)
33
 
34
 
35
- # ---------------- helpers ----------------
36
  def _pick_cpu_dtype() -> torch.dtype:
37
- if hasattr(torch, "cpu") and hasattr(torch.cpu, "is_bf16_supported"):
38
- try:
39
- if torch.cpu.is_bf16_supported():
40
- logger.info("CPU BF16 supported, will attempt torch.bfloat16")
41
- return torch.bfloat16
42
- except Exception:
43
- pass
44
- logger.info("Falling back to torch.float32 on CPU")
45
  return torch.float32
46
 
47
 
48
- # ---------------- global cache ----------------
49
  _MODEL_CACHE: Dict[tuple[str, torch.dtype], AutoModelForCausalLM] = {}
50
 
51
 
52
  def _get_model(device: str, dtype: torch.dtype) -> Tuple[AutoModelForCausalLM, torch.dtype]:
53
  key = (device, dtype)
54
  if key in _MODEL_CACHE:
 
55
  return _MODEL_CACHE[key], dtype
56
 
 
57
  cfg = AutoConfig.from_pretrained(MODEL_ID, trust_remote_code=True)
58
  if hasattr(cfg, "quantization_config"):
59
- logger.warning("Removing quantization_config from model config")
60
  delattr(cfg, "quantization_config")
61
 
62
  eff_dtype = dtype
@@ -71,7 +89,7 @@ def _get_model(device: str, dtype: torch.dtype) -> Tuple[AutoModelForCausalLM, t
71
  )
72
  except Exception as e:
73
  if device == "cpu" and dtype == torch.bfloat16:
74
- logger.warning(f"BF16 load failed on CPU: {e}. Retrying with FP32.")
75
  eff_dtype = torch.float32
76
  model = AutoModelForCausalLM.from_pretrained(
77
  MODEL_ID,
@@ -82,92 +100,120 @@ def _get_model(device: str, dtype: torch.dtype) -> Tuple[AutoModelForCausalLM, t
82
  low_cpu_mem_usage=False,
83
  )
84
  else:
 
85
  raise
86
 
87
  if device == "cpu":
 
88
  model = model.to(device=device, dtype=eff_dtype)
89
  else:
 
90
  model = model.to(device=device)
91
 
92
  model.eval()
 
 
 
 
 
 
93
  _MODEL_CACHE[(device, eff_dtype)] = model
94
  return model, eff_dtype
95
 
96
 
97
- # ---------------- Chat Backend ----------------
98
  class HFChatBackend(ChatBackend):
99
  async def stream(self, request: Dict[str, Any]) -> AsyncIterable[Dict[str, Any]]:
100
  if load_error:
101
  raise RuntimeError(load_error)
102
 
103
  messages = request.get("messages", [])
 
104
  temperature = float(request.get("temperature", settings.LlmTemp or 0.7))
105
  max_tokens = int(request.get("max_tokens", settings.LlmOpenAICtxSize or 512))
106
 
107
  rid = f"chatcmpl-hf-{int(time.time())}"
108
  now = int(time.time())
109
 
 
 
 
 
 
110
  x_ip_token = request.get("x_ip_token")
111
  if x_ip_token and zero_client:
112
  zero_client.HEADERS["X-IP-Token"] = x_ip_token
113
- logger.debug("Injected X-IP-Token into ZeroGPU headers")
114
 
 
115
  if hasattr(tokenizer, "apply_chat_template") and getattr(tokenizer, "chat_template", None):
116
  try:
117
  prompt = tokenizer.apply_chat_template(
118
  messages,
 
119
  tokenize=False,
120
  add_generation_prompt=True,
121
  )
122
- logger.debug("Applied chat template for prompt")
123
  except Exception as e:
124
- logger.warning(f"Failed to apply chat template: {e}, using fallback")
125
  prompt = messages[-1]["content"] if messages else "(empty)"
 
126
  else:
127
  prompt = messages[-1]["content"] if messages else "(empty)"
 
128
 
129
  def _run_once(prompt: str, device: str, req_dtype: torch.dtype) -> str:
130
  model, eff_dtype = _get_model(device, req_dtype)
131
 
132
  inputs = tokenizer(prompt, return_tensors="pt")
 
 
 
133
  inputs = {k: v.to(device) if hasattr(v, "to") else v for k, v in inputs.items()}
134
 
135
  with torch.inference_mode():
136
  if device != "cpu":
137
  autocast_ctx = torch.autocast(device_type=device, dtype=eff_dtype)
138
  else:
139
- if eff_dtype == torch.bfloat16:
140
- autocast_ctx = torch.cpu.amp.autocast(dtype=torch.bfloat16)
141
- else:
142
- autocast_ctx = nullcontext()
 
 
 
 
 
143
 
144
  with autocast_ctx:
145
- outputs = model.generate(
146
- **inputs,
147
- max_new_tokens=max_tokens,
148
- temperature=temperature,
149
- do_sample=True,
150
- use_cache=True,
151
- )
152
-
153
- # Slice: keep only newly generated tokens
154
- input_len = inputs["input_ids"].shape[-1]
155
  generated_ids = outputs[0][input_len:]
 
156
  text = tokenizer.decode(generated_ids, skip_special_tokens=True).strip()
 
157
  return text
158
 
 
159
  if spaces:
160
  @spaces.GPU(duration=120)
161
  def run_once(prompt: str) -> str:
162
  if torch.cuda.is_available():
 
163
  return _run_once(prompt, device="cuda", req_dtype=torch.float16)
 
164
  return _run_once(prompt, device="cpu", req_dtype=_pick_cpu_dtype())
165
 
166
  text = run_once(prompt)
167
  else:
 
168
  text = _run_once(prompt, device="cpu", req_dtype=_pick_cpu_dtype())
169
 
170
- yield {
 
171
  "id": rid,
172
  "object": "chat.completion.chunk",
173
  "created": now,
@@ -176,12 +222,12 @@ class HFChatBackend(ChatBackend):
176
  {"index": 0, "delta": {"role": "assistant", "content": text}, "finish_reason": "stop"}
177
  ],
178
  }
 
 
179
 
180
 
181
- # ---------------- Stub Images Backend ----------------
182
  class StubImagesBackend(ImagesBackend):
183
  async def generate_b64(self, request: Dict[str, Any]) -> str:
184
  logger.warning("Image generation not supported in HF backend.")
185
- return (
186
- "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR4nGP4BwQACfsD/etCJH0AAAAASUVORK5CYII="
187
- )
 
1
  # hf_backend.py
2
+ import time, logging, json
3
  from contextlib import nullcontext
4
  from typing import Any, Dict, AsyncIterable, Tuple
5
 
 
10
 
11
  logger = logging.getLogger(__name__)
12
 
13
+ # ---------- logging helpers ----------
14
+ def _snippet(txt: str, n: int = 800) -> str:
15
+ if not isinstance(txt, str):
16
+ return f"<non-str:{type(txt)}>"
17
+ return txt if len(txt) <= n else txt[:n] + f"... <+{len(txt)-n} chars>"
18
+
19
+ def _json_snippet(obj: Any, n: int = 800) -> str:
20
+ try:
21
+ s = json.dumps(obj, ensure_ascii=False, indent=2)
22
+ except Exception:
23
+ s = str(obj)
24
+ return _snippet(s, n)
25
+
26
+
27
+ # ---------- HF Spaces imports ----------
28
  try:
29
  import spaces
30
  from spaces.zero import client as zero_client
31
  except ImportError:
32
  spaces, zero_client = None, None
33
 
34
+ # ---------- Model setup ----------
35
  MODEL_ID = settings.LlmHFModelID or "Qwen/Qwen2.5-1.5B-Instruct"
36
+ logger.info(f"[init] MODEL_ID={MODEL_ID}")
37
 
38
  tokenizer, load_error = None, None
39
  try:
 
42
  trust_remote_code=True,
43
  use_fast=False,
44
  )
45
+ has_template = hasattr(tokenizer, "apply_chat_template") and getattr(tokenizer, "chat_template", None)
46
+ logger.info(f"[init] tokenizer loaded. chat_template={'yes' if has_template else 'no'}")
47
  except Exception as e:
48
  load_error = f"Failed to load tokenizer: {e}"
49
  logger.exception(load_error)
50
 
51
 
52
+ # ---------- helpers ----------
53
  def _pick_cpu_dtype() -> torch.dtype:
54
+ try:
55
+ if hasattr(torch, "cpu") and hasattr(torch.cpu, "is_bf16_supported") and torch.cpu.is_bf16_supported():
56
+ logger.info("[dtype] CPU BF16 supported -> torch.bfloat16")
57
+ return torch.bfloat16
58
+ except Exception as e:
59
+ logger.warning(f"[dtype] BF16 probe failed: {e}")
60
+ logger.info("[dtype] fallback -> torch.float32")
 
61
  return torch.float32
62
 
63
 
64
+ # ---------- global cache ----------
65
  _MODEL_CACHE: Dict[tuple[str, torch.dtype], AutoModelForCausalLM] = {}
66
 
67
 
68
  def _get_model(device: str, dtype: torch.dtype) -> Tuple[AutoModelForCausalLM, torch.dtype]:
69
  key = (device, dtype)
70
  if key in _MODEL_CACHE:
71
+ logger.info(f"[cache] hit model for device={device} dtype={dtype}")
72
  return _MODEL_CACHE[key], dtype
73
 
74
+ logger.info(f"[load] begin from_pretrained device={device} dtype={dtype}")
75
  cfg = AutoConfig.from_pretrained(MODEL_ID, trust_remote_code=True)
76
  if hasattr(cfg, "quantization_config"):
77
+ logger.warning("[load] removing quantization_config from config to avoid FP8 path")
78
  delattr(cfg, "quantization_config")
79
 
80
  eff_dtype = dtype
 
89
  )
90
  except Exception as e:
91
  if device == "cpu" and dtype == torch.bfloat16:
92
+ logger.warning(f"[load] BF16 load failed on CPU ({e}). retry FP32.")
93
  eff_dtype = torch.float32
94
  model = AutoModelForCausalLM.from_pretrained(
95
  MODEL_ID,
 
100
  low_cpu_mem_usage=False,
101
  )
102
  else:
103
+ logger.exception("[load] from_pretrained failed")
104
  raise
105
 
106
  if device == "cpu":
107
+ logger.info(f"[load] casting all weights to CPU dtype={eff_dtype}")
108
  model = model.to(device=device, dtype=eff_dtype)
109
  else:
110
+ logger.info(f"[load] moving model to device={device} (no recast)")
111
  model = model.to(device=device)
112
 
113
  model.eval()
114
+ try:
115
+ first_dtype = next(model.parameters()).dtype
116
+ logger.info(f"[load] ready. effective_dtype={eff_dtype} first_param_dtype={first_dtype}")
117
+ except Exception:
118
+ logger.info(f"[load] ready. effective_dtype={eff_dtype} (param dtype probe failed)")
119
+
120
  _MODEL_CACHE[(device, eff_dtype)] = model
121
  return model, eff_dtype
122
 
123
 
124
+ # ---------- Chat Backend ----------
125
  class HFChatBackend(ChatBackend):
126
  async def stream(self, request: Dict[str, Any]) -> AsyncIterable[Dict[str, Any]]:
127
  if load_error:
128
  raise RuntimeError(load_error)
129
 
130
  messages = request.get("messages", [])
131
+ tools = request.get("tools")
132
  temperature = float(request.get("temperature", settings.LlmTemp or 0.7))
133
  max_tokens = int(request.get("max_tokens", settings.LlmOpenAICtxSize or 512))
134
 
135
  rid = f"chatcmpl-hf-{int(time.time())}"
136
  now = int(time.time())
137
 
138
+ logger.info(f"[req] rid={rid} temp={temperature} max_tokens={max_tokens} "
139
+ f"msgs={len(messages)} tools={'yes' if tools else 'no'} "
140
+ f"spaces={'yes' if spaces else 'no'} cuda={'yes' if torch.cuda.is_available() else 'no'}")
141
+
142
+ # X-IP-Token for ZeroGPU
143
  x_ip_token = request.get("x_ip_token")
144
  if x_ip_token and zero_client:
145
  zero_client.HEADERS["X-IP-Token"] = x_ip_token
146
+ logger.info("[req] injected X-IP-Token into ZeroGPU headers")
147
 
148
+ # Build prompt
149
  if hasattr(tokenizer, "apply_chat_template") and getattr(tokenizer, "chat_template", None):
150
  try:
151
  prompt = tokenizer.apply_chat_template(
152
  messages,
153
+ tools=tools,
154
  tokenize=False,
155
  add_generation_prompt=True,
156
  )
157
+ logger.info(f"[prompt] built via chat_template. len={len(prompt)}\n{_snippet(prompt, 1200)}")
158
  except Exception as e:
159
+ logger.warning(f"[prompt] chat_template failed -> fallback. err={e}")
160
  prompt = messages[-1]["content"] if messages else "(empty)"
161
+ logger.info(f"[prompt] fallback content len={len(prompt)}\n{_snippet(prompt, 800)}")
162
  else:
163
  prompt = messages[-1]["content"] if messages else "(empty)"
164
+ logger.info(f"[prompt] no template. using last user text len={len(prompt)}\n{_snippet(prompt, 800)}")
165
 
166
  def _run_once(prompt: str, device: str, req_dtype: torch.dtype) -> str:
167
  model, eff_dtype = _get_model(device, req_dtype)
168
 
169
  inputs = tokenizer(prompt, return_tensors="pt")
170
+ input_ids = inputs["input_ids"]
171
+ logger.info(f"[gen] device={device} dtype={eff_dtype} input_tokens={input_ids.shape[-1]}")
172
+
173
  inputs = {k: v.to(device) if hasattr(v, "to") else v for k, v in inputs.items()}
174
 
175
  with torch.inference_mode():
176
  if device != "cpu":
177
  autocast_ctx = torch.autocast(device_type=device, dtype=eff_dtype)
178
  else:
179
+ autocast_ctx = torch.cpu.amp.autocast(dtype=torch.bfloat16) if eff_dtype == torch.bfloat16 else nullcontext()
180
+
181
+ gen_kwargs = dict(
182
+ max_new_tokens=max_tokens,
183
+ temperature=temperature,
184
+ do_sample=True,
185
+ use_cache=True,
186
+ )
187
+ logger.info(f"[gen] kwargs={gen_kwargs}")
188
 
189
  with autocast_ctx:
190
+ outputs = model.generate(**inputs, **gen_kwargs)
191
+
192
+ # Only decode newly generated tokens
193
+ input_len = input_ids.shape[-1]
 
 
 
 
 
 
194
  generated_ids = outputs[0][input_len:]
195
+ logger.info(f"[gen] new_tokens={generated_ids.shape[-1]}")
196
  text = tokenizer.decode(generated_ids, skip_special_tokens=True).strip()
197
+ logger.info(f"[gen] text len={len(text)}\n{_snippet(text, 1200)}")
198
  return text
199
 
200
+ # Dispatch with or without ZeroGPU
201
  if spaces:
202
  @spaces.GPU(duration=120)
203
  def run_once(prompt: str) -> str:
204
  if torch.cuda.is_available():
205
+ logger.info("[path] ZeroGPU + CUDA")
206
  return _run_once(prompt, device="cuda", req_dtype=torch.float16)
207
+ logger.info("[path] ZeroGPU but no CUDA -> CPU fallback")
208
  return _run_once(prompt, device="cpu", req_dtype=_pick_cpu_dtype())
209
 
210
  text = run_once(prompt)
211
  else:
212
+ logger.info("[path] CPU-only runtime")
213
  text = _run_once(prompt, device="cpu", req_dtype=_pick_cpu_dtype())
214
 
215
+ # Emit single OpenAI-style chunk
216
+ chunk = {
217
  "id": rid,
218
  "object": "chat.completion.chunk",
219
  "created": now,
 
222
  {"index": 0, "delta": {"role": "assistant", "content": text}, "finish_reason": "stop"}
223
  ],
224
  }
225
+ logger.info(f"[out] chunk summary -> id={rid} content_len={len(text)}")
226
+ yield chunk
227
 
228
 
229
+ # ---------- Stub Images Backend ----------
230
  class StubImagesBackend(ImagesBackend):
231
  async def generate_b64(self, request: Dict[str, Any]) -> str:
232
  logger.warning("Image generation not supported in HF backend.")
233
+ return "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR4nGP4BwQACfsD/etCJH0AAAAASUVORK5CYII="