Commit
·
7471f75
1
Parent(s):
7f43efb
- hf_backend.py +57 -65
hf_backend.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
-
# hf_backend.py
|
| 2 |
-
import time, logging, os
|
| 3 |
-
from typing import Any, Dict, AsyncIterable
|
| 4 |
|
| 5 |
import torch
|
| 6 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
@@ -9,23 +9,21 @@ from config import settings
|
|
| 9 |
|
| 10 |
try:
|
| 11 |
import spaces
|
|
|
|
| 12 |
except ImportError:
|
| 13 |
-
spaces = None
|
| 14 |
|
| 15 |
logger = logging.getLogger(__name__)
|
| 16 |
|
| 17 |
-
# --- Load model/tokenizer on CPU at import time (ZeroGPU safe) ---
|
| 18 |
MODEL_ID = settings.LlmHFModelID or "Qwen/Qwen2.5-1.5B-Instruct"
|
| 19 |
logger.info(f"Loading {MODEL_ID} on CPU at startup (ZeroGPU safe)...")
|
| 20 |
|
| 21 |
-
tokenizer = None
|
| 22 |
-
model = None
|
| 23 |
-
load_error = None
|
| 24 |
try:
|
| 25 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True, use_fast=False)
|
| 26 |
model = AutoModelForCausalLM.from_pretrained(
|
| 27 |
MODEL_ID,
|
| 28 |
-
torch_dtype=torch.float32,
|
| 29 |
trust_remote_code=True,
|
| 30 |
)
|
| 31 |
model.eval()
|
|
@@ -34,11 +32,7 @@ except Exception as e:
|
|
| 34 |
logger.exception(load_error)
|
| 35 |
|
| 36 |
|
| 37 |
-
# --- Device helpers ---
|
| 38 |
def pick_device() -> str:
|
| 39 |
-
forced = os.getenv("FORCE_DEVICE", "").lower().strip()
|
| 40 |
-
if forced in {"cpu", "cuda", "mps"}:
|
| 41 |
-
return forced
|
| 42 |
if torch.cuda.is_available():
|
| 43 |
return "cuda"
|
| 44 |
if getattr(torch.backends, "mps", None) and torch.backends.mps.is_available():
|
|
@@ -54,7 +48,6 @@ def pick_dtype(device: str) -> torch.dtype:
|
|
| 54 |
return torch.float32
|
| 55 |
|
| 56 |
|
| 57 |
-
# --- Backend class ---
|
| 58 |
class HFChatBackend(ChatBackend):
|
| 59 |
async def stream(self, request: Dict[str, Any]) -> AsyncIterable[Dict[str, Any]]:
|
| 60 |
if load_error:
|
|
@@ -68,55 +61,54 @@ class HFChatBackend(ChatBackend):
|
|
| 68 |
rid = f"chatcmpl-hf-{int(time.time())}"
|
| 69 |
now = int(time.time())
|
| 70 |
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
else:
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
"
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
],
|
| 111 |
-
}
|
| 112 |
-
except Exception:
|
| 113 |
-
logger.exception("HF inference failed")
|
| 114 |
-
raise
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
class StubImagesBackend(ImagesBackend):
|
| 118 |
-
async def generate_b64(self, request: Dict[str, Any]) -> str:
|
| 119 |
-
logger.warning("Image generation not supported in HF backend.")
|
| 120 |
-
return (
|
| 121 |
-
"iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR4nGP4BwQACfsD/etCJH0AAAAASUVORK5CYII="
|
| 122 |
-
)
|
|
|
|
| 1 |
+
# hf_backend.py (patched)
|
| 2 |
+
import time, logging, os
|
| 3 |
+
from typing import Any, Dict, AsyncIterable
|
| 4 |
|
| 5 |
import torch
|
| 6 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
| 9 |
|
| 10 |
try:
|
| 11 |
import spaces
|
| 12 |
+
from spaces.zero.client import SpaceZeroClient
|
| 13 |
except ImportError:
|
| 14 |
+
spaces, SpaceZeroClient = None, None
|
| 15 |
|
| 16 |
logger = logging.getLogger(__name__)
|
| 17 |
|
|
|
|
| 18 |
MODEL_ID = settings.LlmHFModelID or "Qwen/Qwen2.5-1.5B-Instruct"
|
| 19 |
logger.info(f"Loading {MODEL_ID} on CPU at startup (ZeroGPU safe)...")
|
| 20 |
|
| 21 |
+
tokenizer, model, load_error = None, None, None
|
|
|
|
|
|
|
| 22 |
try:
|
| 23 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True, use_fast=False)
|
| 24 |
model = AutoModelForCausalLM.from_pretrained(
|
| 25 |
MODEL_ID,
|
| 26 |
+
torch_dtype=torch.float32,
|
| 27 |
trust_remote_code=True,
|
| 28 |
)
|
| 29 |
model.eval()
|
|
|
|
| 32 |
logger.exception(load_error)
|
| 33 |
|
| 34 |
|
|
|
|
| 35 |
def pick_device() -> str:
|
|
|
|
|
|
|
|
|
|
| 36 |
if torch.cuda.is_available():
|
| 37 |
return "cuda"
|
| 38 |
if getattr(torch.backends, "mps", None) and torch.backends.mps.is_available():
|
|
|
|
| 48 |
return torch.float32
|
| 49 |
|
| 50 |
|
|
|
|
| 51 |
class HFChatBackend(ChatBackend):
|
| 52 |
async def stream(self, request: Dict[str, Any]) -> AsyncIterable[Dict[str, Any]]:
|
| 53 |
if load_error:
|
|
|
|
| 61 |
rid = f"chatcmpl-hf-{int(time.time())}"
|
| 62 |
now = int(time.time())
|
| 63 |
|
| 64 |
+
# --- ✅ Extract X-IP-Token from RabbitMQ message
|
| 65 |
+
x_ip_token = request.get("x_ip_token")
|
| 66 |
+
headers = {}
|
| 67 |
+
if x_ip_token:
|
| 68 |
+
headers["X-IP-Token"] = x_ip_token
|
| 69 |
+
logger.info("Using X-IP-Token from request for ZeroGPU attribution")
|
| 70 |
+
|
| 71 |
+
def _gpu_inference_fn(prompt: str) -> str:
|
| 72 |
+
device = pick_device()
|
| 73 |
+
dtype = pick_dtype(device)
|
| 74 |
+
model.to(device=device, dtype=dtype).eval()
|
| 75 |
+
|
| 76 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
| 77 |
+
with torch.inference_mode(), torch.autocast(device_type=device, dtype=dtype):
|
| 78 |
+
outputs = model.generate(
|
| 79 |
+
**inputs,
|
| 80 |
+
max_new_tokens=max_tokens,
|
| 81 |
+
temperature=temperature,
|
| 82 |
+
do_sample=True,
|
| 83 |
+
)
|
| 84 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 85 |
+
|
| 86 |
+
if spaces and SpaceZeroClient:
|
| 87 |
+
# Use a custom SpaceZeroClient with headers
|
| 88 |
+
client = SpaceZeroClient(headers=headers or None)
|
| 89 |
+
try:
|
| 90 |
+
text = await client.run(_gpu_inference_fn, args=[prompt], duration=120)
|
| 91 |
+
except Exception:
|
| 92 |
+
logger.exception("HF inference (ZeroGPU) failed")
|
| 93 |
+
raise
|
| 94 |
else:
|
| 95 |
+
# CPU fallback
|
| 96 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 97 |
+
with torch.inference_mode():
|
| 98 |
+
outputs = model.generate(
|
| 99 |
+
**inputs,
|
| 100 |
+
max_new_tokens=max_tokens,
|
| 101 |
+
temperature=temperature,
|
| 102 |
+
do_sample=True,
|
| 103 |
+
)
|
| 104 |
+
text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 105 |
+
|
| 106 |
+
yield {
|
| 107 |
+
"id": rid,
|
| 108 |
+
"object": "chat.completion.chunk",
|
| 109 |
+
"created": now,
|
| 110 |
+
"model": MODEL_ID,
|
| 111 |
+
"choices": [
|
| 112 |
+
{"index": 0, "delta": {"content": text}, "finish_reason": "stop"}
|
| 113 |
+
],
|
| 114 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|