|
|
import time |
|
|
import json |
|
|
import logging |
|
|
import os |
|
|
from typing import Any, Dict, List, Optional, Tuple, Sequence |
|
|
|
|
|
import numpy as np |
|
|
import torch |
|
|
|
|
|
from backends_base import ChatBackend, ImagesBackend |
|
|
from config import settings |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
|
|
|
def _parse_series(series: Any) -> np.ndarray: |
|
|
""" |
|
|
Accepts: list[float|int], list[dict{'y'|'value'}], or dict with 'values'/'y'. |
|
|
Returns: 1D float32 numpy array. |
|
|
""" |
|
|
if series is None: |
|
|
raise ValueError("series is required") |
|
|
|
|
|
if isinstance(series, dict): |
|
|
series = series.get("values") or series.get("y") |
|
|
|
|
|
vals: List[float] = [] |
|
|
if isinstance(series, (list, tuple)): |
|
|
if series and isinstance(series[0], dict): |
|
|
for item in series: |
|
|
if "y" in item: |
|
|
vals.append(float(item["y"])) |
|
|
elif "value" in item: |
|
|
vals.append(float(item["value"])) |
|
|
else: |
|
|
vals = [float(x) for x in series] |
|
|
else: |
|
|
raise ValueError("series must be a list/tuple or dict with 'values'/'y'") |
|
|
|
|
|
if not vals: |
|
|
raise ValueError("series is empty") |
|
|
return np.asarray(vals, dtype=np.float32) |
|
|
|
|
|
def _extract_json_from_text(s: str) -> Optional[Dict[str, Any]]: |
|
|
s = s.strip() |
|
|
if (s.startswith("{") and s.endswith("}")) or (s.startswith("[") and s.endswith("]")): |
|
|
try: |
|
|
obj = json.loads(s) |
|
|
return obj if isinstance(obj, dict) else None |
|
|
except Exception: |
|
|
pass |
|
|
if "```" in s: |
|
|
parts = s.split("```") |
|
|
for i in range(1, len(parts), 2): |
|
|
block = parts[i] |
|
|
if block.lstrip().lower().startswith("json"): |
|
|
block = block.split("\n", 1)[-1] |
|
|
try: |
|
|
obj = json.loads(block.strip()) |
|
|
return obj if isinstance(obj, dict) else None |
|
|
except Exception: |
|
|
continue |
|
|
return None |
|
|
|
|
|
def _merge_openai_message_json(payload: Dict[str, Any]) -> Dict[str, Any]: |
|
|
msgs = payload.get("messages") |
|
|
if not isinstance(msgs, list): |
|
|
return payload |
|
|
for m in reversed(msgs): |
|
|
if not isinstance(m, dict) or m.get("role") != "user": |
|
|
continue |
|
|
content = m.get("content") |
|
|
texts: List[str] = [] |
|
|
if isinstance(content, list): |
|
|
texts = [ |
|
|
p.get("text") |
|
|
for p in content |
|
|
if isinstance(p, dict) and p.get("type") == "text" and isinstance(p.get("text"), str) |
|
|
] |
|
|
elif isinstance(content, str): |
|
|
texts = [content] |
|
|
for t in reversed(texts): |
|
|
obj = _extract_json_from_text(t) |
|
|
if isinstance(obj, dict): |
|
|
return {**payload, **obj} |
|
|
break |
|
|
return payload |
|
|
|
|
|
|
|
|
class TimesFMBackend(ChatBackend): |
|
|
""" |
|
|
TimesFM 2.5 backend. |
|
|
Input JSON can be in top-level keys, in CloudEvents .data, or embedded in last user message. |
|
|
Keys: |
|
|
series: list[float|int|{y|value}] OR list of such lists for batch |
|
|
horizon: int (>0) |
|
|
Optional: |
|
|
quantiles: bool (default True) -> include quantile forecasts |
|
|
max_context, max_horizon: ints to override defaults |
|
|
""" |
|
|
|
|
|
def __init__(self, model_id: Optional[str] = None, device: Optional[str] = None): |
|
|
|
|
|
self.model_id = model_id or "google/timesfm-2.5-200m-pytorch" |
|
|
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu") |
|
|
self._model = None |
|
|
|
|
|
def _ensure_model(self) -> None: |
|
|
if self._model is not None: |
|
|
return |
|
|
try: |
|
|
import os |
|
|
import timesfm |
|
|
|
|
|
hf_token = getattr(settings, "HF_TOKEN", None) or os.environ.get("HF_TOKEN") |
|
|
cache_dir = getattr(settings, "TIMESFM_CACHE_DIR", None) |
|
|
|
|
|
model = timesfm.TimesFM_2p5_200M_torch.from_pretrained( |
|
|
self.model_id, |
|
|
token=hf_token, |
|
|
cache_dir=cache_dir, |
|
|
local_files_only=False, |
|
|
) |
|
|
|
|
|
try: |
|
|
|
|
|
target = getattr(model, "model", model) |
|
|
target.to(self.device) |
|
|
except Exception: |
|
|
pass |
|
|
|
|
|
cfg = timesfm.ForecastConfig( |
|
|
max_context=1024, |
|
|
max_horizon=256, |
|
|
normalize_inputs=True, |
|
|
use_continuous_quantile_head=True, |
|
|
force_flip_invariance=True, |
|
|
infer_is_positive=True, |
|
|
fix_quantile_crossing=True, |
|
|
) |
|
|
model.compile(cfg) |
|
|
self._model = model |
|
|
logger.info("TimesFM 2.5 model loaded on %s", self.device) |
|
|
except Exception as e: |
|
|
logger.exception("TimesFM 2.5 init failed") |
|
|
raise RuntimeError(f"timesfm 2.5 init failed: {e}") from e |
|
|
|
|
|
def _prepare_inputs(self, payload: Dict[str, Any]) -> Tuple[List[np.ndarray], int, bool, Dict[str, int]]: |
|
|
|
|
|
if isinstance(payload.get("data"), dict): |
|
|
payload = {**payload, **payload["data"]} |
|
|
if isinstance(payload.get("timeseries"), dict): |
|
|
payload = {**payload, **payload["timeseries"]} |
|
|
|
|
|
payload = _merge_openai_message_json(payload) |
|
|
|
|
|
horizon = int(payload.get("horizon", 0)) |
|
|
if horizon <= 0: |
|
|
raise ValueError("horizon must be a positive integer") |
|
|
|
|
|
quantiles = bool(payload.get("quantiles", True)) |
|
|
mc = int(payload.get("max_context", 1024)) |
|
|
mh = int(payload.get("max_horizon", 256)) |
|
|
|
|
|
series = payload.get("series") |
|
|
inputs: List[np.ndarray] |
|
|
if isinstance(series, list) and series and isinstance(series[0], (list, tuple, dict)): |
|
|
|
|
|
inputs = [_parse_series(s) for s in series] |
|
|
else: |
|
|
|
|
|
inputs = [_parse_series(series)] |
|
|
|
|
|
return inputs, horizon, quantiles, {"max_context": mc, "max_horizon": mh} |
|
|
|
|
|
async def forecast(self, payload: Dict[str, Any]) -> Dict[str, Any]: |
|
|
inputs, horizon, want_quantiles, cfg_overrides = self._prepare_inputs(payload) |
|
|
self._ensure_model() |
|
|
|
|
|
|
|
|
try: |
|
|
import timesfm |
|
|
if cfg_overrides["max_context"] != 1024 or cfg_overrides["max_horizon"] != 256: |
|
|
cfg = timesfm.ForecastConfig( |
|
|
max_context=cfg_overrides["max_context"], |
|
|
max_horizon=cfg_overrides["max_horizon"], |
|
|
normalize_inputs=True, |
|
|
use_continuous_quantile_head=want_quantiles, |
|
|
force_flip_invariance=True, |
|
|
infer_is_positive=True, |
|
|
fix_quantile_crossing=True, |
|
|
) |
|
|
self._model.compile(cfg) |
|
|
except Exception: |
|
|
pass |
|
|
|
|
|
try: |
|
|
point, quant = self._model.forecast(horizon=horizon, inputs=inputs) |
|
|
point_list = [row.astype(float).tolist() for row in point] |
|
|
quant_list = None |
|
|
if want_quantiles and quant is not None: |
|
|
|
|
|
quant_list = [[row[h].astype(float).tolist() for h in range(row.shape[0])] for row in quant] |
|
|
except Exception as e: |
|
|
logger.exception("TimesFM 2.5 forecast failed") |
|
|
raise RuntimeError(f"forecast failed: {e}") from e |
|
|
|
|
|
|
|
|
single = len(inputs) == 1 |
|
|
return { |
|
|
"model": self.model_id, |
|
|
"horizon": horizon, |
|
|
"forecast": point_list[0] if single else point_list, |
|
|
"quantiles": (quant_list[0] if single else quant_list) if want_quantiles else None, |
|
|
"backend": "timesfm-2.5", |
|
|
} |
|
|
|
|
|
async def stream(self, request: Dict[str, Any]): |
|
|
rid = f"chatcmpl-timesfm-{int(time.time())}" |
|
|
now = int(time.time()) |
|
|
try: |
|
|
result = await self.forecast(dict(request) if isinstance(request, dict) else {}) |
|
|
content = json.dumps(result, separators=(",", ":"), ensure_ascii=False) |
|
|
except Exception as e: |
|
|
content = json.dumps({"error": str(e)}, separators=(",", ":"), ensure_ascii=False) |
|
|
|
|
|
yield { |
|
|
"id": rid, |
|
|
"object": "chat.completion.chunk", |
|
|
"created": now, |
|
|
"model": self.model_id, |
|
|
"choices": [ |
|
|
{"index": 0, "delta": {"role": "assistant", "content": content}, "finish_reason": "stop"} |
|
|
], |
|
|
} |
|
|
|
|
|
class StubImagesBackend(ImagesBackend): |
|
|
async def generate_b64(self, request: Dict[str, Any]) -> str: |
|
|
logger.warning("Image generation not supported in TimesFM backend.") |
|
|
return "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR4nGP4BwQACfsD/etCJH0AAAAASUVORK5CYII=" |
|
|
|