Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,15 +1,73 @@
|
|
| 1 |
-
import
|
| 2 |
import requests
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
from PIL import Image
|
| 4 |
|
| 5 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
st.set_page_config(page_title="Agentic RAG Legal Assistant", layout="wide")
|
| 7 |
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
sidebar_image = "https://source.unsplash.com/400x600/?law,justice" # Sidebar image
|
| 11 |
|
| 12 |
-
# Custom CSS for background styling
|
| 13 |
st.markdown(
|
| 14 |
f"""
|
| 15 |
<style>
|
|
@@ -26,23 +84,17 @@ st.markdown(
|
|
| 26 |
unsafe_allow_html=True,
|
| 27 |
)
|
| 28 |
|
| 29 |
-
# Sidebar Title
|
| 30 |
st.sidebar.title("βοΈ Legal AI Assistant")
|
| 31 |
st.sidebar.markdown("Your AI-powered legal research assistant.")
|
| 32 |
|
| 33 |
-
# Main Heading
|
| 34 |
st.markdown("# ποΈ Agentic RAG Legal Assistant")
|
| 35 |
st.markdown("### Your AI-powered assistant for legal research and case analysis.")
|
| 36 |
|
| 37 |
-
# Initialize conversation history
|
| 38 |
if "chat_history" not in st.session_state:
|
| 39 |
st.session_state.chat_history = []
|
| 40 |
|
| 41 |
-
# User input
|
| 42 |
user_query = st.text_input("π Enter your legal question:", "")
|
| 43 |
-
|
| 44 |
-
# FastAPI backend URL
|
| 45 |
-
API_URL = "http://127.0.0.1:8000/query/" # Change this to your deployed FastAPI URL
|
| 46 |
|
| 47 |
if st.button("Ask AI") and user_query:
|
| 48 |
with st.spinner("Fetching response..."):
|
|
@@ -53,10 +105,8 @@ if st.button("Ask AI") and user_query:
|
|
| 53 |
except Exception as e:
|
| 54 |
ai_response = f"Error: {e}"
|
| 55 |
|
| 56 |
-
# Update chat history
|
| 57 |
st.session_state.chat_history.append((user_query, ai_response))
|
| 58 |
|
| 59 |
-
# Display chat history
|
| 60 |
st.markdown("---")
|
| 61 |
st.markdown("### π Chat History")
|
| 62 |
for user_q, ai_r in st.session_state.chat_history:
|
|
@@ -64,6 +114,5 @@ for user_q, ai_r in st.session_state.chat_history:
|
|
| 64 |
st.markdown(f"**π€ AI:** {ai_r}")
|
| 65 |
st.markdown("---")
|
| 66 |
|
| 67 |
-
# Footer
|
| 68 |
st.markdown("---")
|
| 69 |
-
st.markdown("π Powered by
|
|
|
|
| 1 |
+
import os
|
| 2 |
import requests
|
| 3 |
+
import streamlit as st
|
| 4 |
+
from fastapi import FastAPI, HTTPException
|
| 5 |
+
from langchain.chains import ConversationalRetrievalChain
|
| 6 |
+
from langchain.chat_models import ChatAnthropic
|
| 7 |
+
from langchain.vectorstores import Pinecone
|
| 8 |
+
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
| 9 |
+
from langchain.memory import ConversationBufferMemory
|
| 10 |
+
from datasets import load_dataset
|
| 11 |
+
from dotenv import load_dotenv
|
| 12 |
+
from pinecone import Pinecone
|
| 13 |
from PIL import Image
|
| 14 |
|
| 15 |
+
# Load environment variables
|
| 16 |
+
load_dotenv()
|
| 17 |
+
|
| 18 |
+
# Initialize FastAPI
|
| 19 |
+
app = FastAPI()
|
| 20 |
+
|
| 21 |
+
# API Keys
|
| 22 |
+
PINECONE_API_KEY = os.getenv("pcsk_7QKLEa_RCEnZawP7NgzW9FhfbjX8szFb66WYpcturDk5EHpvHHH97REiXKcgyqrhuuYH1d")
|
| 23 |
+
PINECONE_ENV = os.getenv("us-east-1")
|
| 24 |
+
INDEX_NAME = "agenticrag"
|
| 25 |
+
|
| 26 |
+
if not PINECONE_API_KEY:
|
| 27 |
+
raise ValueError("Pinecone API Key is missing. Please set it in environment variables.")
|
| 28 |
+
|
| 29 |
+
# Initialize Hugging Face Embeddings & Pinecone
|
| 30 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
| 31 |
+
pc = Pinecone(api_key=PINECONE_API_KEY)
|
| 32 |
+
vector_store = Pinecone.from_existing_index(index_name=INDEX_NAME, embedding=embeddings)
|
| 33 |
+
|
| 34 |
+
# Load LLM & Memory
|
| 35 |
+
llm = ChatAnthropic(model="claude-2", temperature=0)
|
| 36 |
+
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
| 37 |
+
|
| 38 |
+
# Build RAG Chain
|
| 39 |
+
qa_chain = ConversationalRetrievalChain.from_llm(
|
| 40 |
+
llm=llm,
|
| 41 |
+
retriever=vector_store.as_retriever(),
|
| 42 |
+
memory=memory,
|
| 43 |
+
return_source_documents=True
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
@app.post("/query/")
|
| 47 |
+
async def query_agent(query: str):
|
| 48 |
+
try:
|
| 49 |
+
response = qa_chain.run(query)
|
| 50 |
+
return {"response": response}
|
| 51 |
+
except Exception as e:
|
| 52 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 53 |
+
|
| 54 |
+
@app.get("/")
|
| 55 |
+
def read_root():
|
| 56 |
+
return {"message": "Welcome to the Agentic RAG Legal Assistant!"}
|
| 57 |
+
|
| 58 |
+
# Load dataset
|
| 59 |
+
dataset = load_dataset("c4lliope/us-congress")
|
| 60 |
+
chunks = [str(text) for text in dataset['train']['text']]
|
| 61 |
+
embedding_vectors = embeddings.embed_documents(chunks)
|
| 62 |
+
pinecone_data = [(str(i), embedding_vectors[i], {"text": chunks[i]}) for i in range(len(chunks))]
|
| 63 |
+
vector_store.upsert(vectors=pinecone_data)
|
| 64 |
+
|
| 65 |
+
# Streamlit UI
|
| 66 |
st.set_page_config(page_title="Agentic RAG Legal Assistant", layout="wide")
|
| 67 |
|
| 68 |
+
bg_image = "https://source.unsplash.com/1600x900/?law,court"
|
| 69 |
+
sidebar_image = "https://source.unsplash.com/400x600/?law,justice"
|
|
|
|
| 70 |
|
|
|
|
| 71 |
st.markdown(
|
| 72 |
f"""
|
| 73 |
<style>
|
|
|
|
| 84 |
unsafe_allow_html=True,
|
| 85 |
)
|
| 86 |
|
|
|
|
| 87 |
st.sidebar.title("βοΈ Legal AI Assistant")
|
| 88 |
st.sidebar.markdown("Your AI-powered legal research assistant.")
|
| 89 |
|
|
|
|
| 90 |
st.markdown("# ποΈ Agentic RAG Legal Assistant")
|
| 91 |
st.markdown("### Your AI-powered assistant for legal research and case analysis.")
|
| 92 |
|
|
|
|
| 93 |
if "chat_history" not in st.session_state:
|
| 94 |
st.session_state.chat_history = []
|
| 95 |
|
|
|
|
| 96 |
user_query = st.text_input("π Enter your legal question:", "")
|
| 97 |
+
API_URL = "http://127.0.0.1:8000/query/"
|
|
|
|
|
|
|
| 98 |
|
| 99 |
if st.button("Ask AI") and user_query:
|
| 100 |
with st.spinner("Fetching response..."):
|
|
|
|
| 105 |
except Exception as e:
|
| 106 |
ai_response = f"Error: {e}"
|
| 107 |
|
|
|
|
| 108 |
st.session_state.chat_history.append((user_query, ai_response))
|
| 109 |
|
|
|
|
| 110 |
st.markdown("---")
|
| 111 |
st.markdown("### π Chat History")
|
| 112 |
for user_q, ai_r in st.session_state.chat_history:
|
|
|
|
| 114 |
st.markdown(f"**π€ AI:** {ai_r}")
|
| 115 |
st.markdown("---")
|
| 116 |
|
|
|
|
| 117 |
st.markdown("---")
|
| 118 |
+
st.markdown("π Powered by Anthropic Claude, Pinecone, and LangChain.")
|