Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -13,22 +13,21 @@ from transformers import (
|
|
| 13 |
)
|
| 14 |
from diffusers import VQModel
|
| 15 |
import gradio as gr
|
|
|
|
| 16 |
|
| 17 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
def generate_image(prompt, negative_prompt, resolution, steps, cfg):
|
| 32 |
image = pipe(
|
| 33 |
prompt=prompt,
|
| 34 |
negative_prompt=negative_prompt,
|
|
|
|
| 13 |
)
|
| 14 |
from diffusers import VQModel
|
| 15 |
import gradio as gr
|
| 16 |
+
import spaces
|
| 17 |
|
| 18 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 19 |
|
| 20 |
+
model_path = "MeissonFlow/Meissonic"
|
| 21 |
+
model = Transformer2DModel.from_pretrained(model_path, subfolder="transformer")
|
| 22 |
+
vq_model = VQModel.from_pretrained(model_path, subfolder="vqvae")
|
| 23 |
+
text_encoder = CLIPTextModelWithProjection.from_pretrained(model_path, subfolder="text_encoder")
|
| 24 |
+
tokenizer = CLIPTokenizer.from_pretrained(model_path, subfolder="tokenizer")
|
| 25 |
+
scheduler = Scheduler.from_pretrained(model_path, subfolder="scheduler")
|
| 26 |
+
pipe = Pipeline(vq_model, tokenizer=tokenizer, text_encoder=text_encoder, transformer=model, scheduler=scheduler)
|
| 27 |
+
pipe.to(device)
|
| 28 |
+
|
| 29 |
+
@spaces.GPU
|
| 30 |
+
def generate_image(prompt, negative_prompt, resolution, steps, cfg, progress=gr.Progress(track_tqdm=True)):
|
|
|
|
|
|
|
| 31 |
image = pipe(
|
| 32 |
prompt=prompt,
|
| 33 |
negative_prompt=negative_prompt,
|