Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,246 Bytes
15d3291 bab5770 15d3291 bab5770 15d3291 bab5770 15d3291 bab5770 dad57b3 bab5770 15d3291 bab5770 dda662d bab5770 dad57b3 bab5770 dda662d bab5770 15d3291 bab5770 15d3291 bab5770 15d3291 bab5770 15d3291 bab5770 15d3291 bab5770 15d3291 bab5770 15d3291 bab5770 15d3291 bab5770 15d3291 bab5770 15d3291 bab5770 15d3291 bab5770 dda662d bab5770 15d3291 bab5770 15d3291 bab5770 15d3291 bab5770 15d3291 bab5770 15d3291 bab5770 15d3291 bab5770 15d3291 bab5770 15d3291 bab5770 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import gradio as gr
import numpy as np
import random
import os
from huggingface_hub import login, hf_hub_download
import torch
import spaces
from diffusers import FluxPipeline
import logging
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler("app.log"),
logging.StreamHandler()
]
)
logger = logging.getLogger("moroccan-ghibli-flux-compare")
# Constants
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
DEFAULT_SEED = 42
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Global pipelines
pipeline_base = None
pipeline_lora = None
def load_base_pipeline():
api_key = os.getenv("HF_TOKEN")
if not api_key:
raise ValueError("HF_TOKEN environment variable not set.")
login(token=api_key)
logger.info("Loading base Flux model (no LoRA)")
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.bfloat16,
)
return pipe
def load_lora_pipeline(revision: str):
api_key = os.getenv("HF_TOKEN")
if not api_key:
raise ValueError("HF_TOKEN environment variable not set.")
login(token=api_key)
logger.info(f"Loading Flux model with LoRA revision: {revision}")
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.bfloat16,
)
# Extract step number from revision name (e.g., "step_1500" -> "1500")
step_num = revision.split('_')[-1]
if len(step_num) < 4:
step_num = '0' + step_num
filename = f"moroccan_ghibli_flux_lora_00000{step_num}.safetensors"
logger.info(f"Downloading LoRA weights: {filename}")
lora_path = hf_hub_download(
repo_id="atlasia/moroccan-ghibli-flux-lora",
filename=filename,
revision=revision,
token=api_key
)
logger.info("Loading LoRA weights into the pipeline")
pipe.load_lora_weights(lora_path)
return pipe
def init_pipelines(style_intensity: str = "low"):
global pipeline_base, pipeline_lora
revision_map = {
"low": "step_750",
"medium": "step_1500",
"high": "step_2500"
}
revision = revision_map[style_intensity]
if pipeline_base is None:
pipeline_base = load_base_pipeline()
logger.info("Base pipeline loaded")
logger.info(f"Initializing LoRA pipeline with style: {style_intensity} ({revision})")
pipeline_lora = load_lora_pipeline(revision)
logger.info("LoRA pipeline loaded")
# Initial pipelines
init_pipelines("low")
def update_lora_pipeline(style_intensity):
logger.info(f"Updating LoRA pipeline to style: {style_intensity}")
init_pipelines(style_intensity)
def _run_pipeline(pipe: FluxPipeline, prompt: str, seed: int, width: int, height: int, guidance_scale: float):
pipe.to(device)
generator = torch.Generator(device=device).manual_seed(seed)
max_sequence_length = 512
output = pipe(
prompt=[prompt],
guidance_scale=guidance_scale,
num_inference_steps=50,
height=height,
width=width,
max_sequence_length=max_sequence_length,
generator=generator,
)
return output.images[0]
@spaces.GPU(duration=120)
def infer(prompt, seed, width, height, guidance_scale, progress=gr.Progress()):
logger.info(f"Generating comparison for prompt: '{prompt[:50]}...'")
logger.info(f"Parameters: seed={seed}, width={width}, height={height}, guidance={guidance_scale}")
progress(0.1, desc="Preparing base model")
base_image = _run_pipeline(pipeline_base, prompt, seed, width, height, guidance_scale)
progress(0.55, desc="Preparing LoRA model")
lora_image = _run_pipeline(pipeline_lora, prompt, seed, width, height, guidance_scale)
progress(0.95, desc="Processing results")
logger.info("Comparison generation completed successfully")
# Return both images and the used seed
return base_image, lora_image, seed
def randomize_seed():
return random.randint(0, MAX_SEED)
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("# Flux: Base vs Moroccan-Ghibli LoRA")
gr.Markdown("Generate side-by-side images with identical settings to compare the base model and the Moroccan Ghibli LoRA.")
style_intensity = gr.Dropdown(
label="LoRA Style Intensity",
choices=["low", "medium", "high"],
value="low",
interactive=True
)
prompt = gr.Textbox(
label="Prompt",
placeholder="Enter your prompt (e.g., 'Moroccan Ghibli studio style portrait')",
)
with gr.Row():
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=DEFAULT_SEED, interactive=True)
randomize_button = gr.Button("Randomize Seed")
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=3.5)
run_button = gr.Button("Generate", variant="primary")
with gr.Column(scale=2):
gr.Markdown("## Generated Images")
with gr.Row():
base_image = gr.Image(label="Base Model", height=512)
lora_image = gr.Image(label="Moroccan Ghibli LoRA", height=512)
output_seed = gr.Number(label="Used Seed", precision=0)
gr.Markdown("## Example Prompts")
examples = [
["Moroccan Ghibli studio style portrait of a character in a riad courtyard", DEFAULT_SEED, 1024, 1024, 3.5],
["Moroccan Ghibli studio style image of a bustling souk with flying carpets", DEFAULT_SEED, 1024, 1024, 3.5],
["Moroccan Ghibli studio style landscape of a desert oasis under starry skies", DEFAULT_SEED, 1024, 1024, 3.5],
["Moroccan Ghibli studio style depiction of a magical lantern festival", DEFAULT_SEED, 1024, 1024, 3.5],
["Moroccan Ghibli studio style portrait of a medina at sunset", DEFAULT_SEED, 1024, 1024, 3.5]
]
gr.Examples(
examples=examples,
inputs=[prompt, seed, width, height, guidance_scale],
outputs=[base_image, lora_image, output_seed],
fn=infer,
cache_examples=True
)
style_intensity.change(
fn=update_lora_pipeline,
inputs=[style_intensity],
outputs=[]
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[prompt, seed, width, height, guidance_scale],
outputs=[base_image, lora_image, output_seed]
)
randomize_button.click(
fn=randomize_seed,
inputs=[],
outputs=[seed]
)
if __name__ == "__main__":
logger.info("Starting application")
demo.launch()
logger.info("Application closed") |