Spaces:
Build error
Build error
Create pipeline_hidream_image.py
Browse files- pipeline_hidream_image.py +526 -0
pipeline_hidream_image.py
ADDED
|
@@ -0,0 +1,526 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Any, Dict, Optional, Tuple, List
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import einops
|
| 6 |
+
from einops import repeat
|
| 7 |
+
|
| 8 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 9 |
+
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
|
| 10 |
+
from diffusers.models.modeling_utils import ModelMixin
|
| 11 |
+
from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
|
| 12 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
| 13 |
+
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
| 14 |
+
from models.embeddings import PatchEmbed, PooledEmbed, TimestepEmbed, EmbedND, OutEmbed
|
| 15 |
+
from models.attention import HiDreamAttention, FeedForwardSwiGLU
|
| 16 |
+
from models.attention_processor import HiDreamAttnProcessor_flashattn
|
| 17 |
+
from models.moe import MOEFeedForwardSwiGLU
|
| 18 |
+
|
| 19 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 20 |
+
|
| 21 |
+
class TextProjection(nn.Module):
|
| 22 |
+
def __init__(self, in_features, hidden_size):
|
| 23 |
+
super().__init__()
|
| 24 |
+
self.linear = nn.Linear(in_features=in_features, out_features=hidden_size, bias=False)
|
| 25 |
+
|
| 26 |
+
def forward(self, caption):
|
| 27 |
+
hidden_states = self.linear(caption)
|
| 28 |
+
return hidden_states
|
| 29 |
+
|
| 30 |
+
class BlockType:
|
| 31 |
+
TransformerBlock = 1
|
| 32 |
+
SingleTransformerBlock = 2
|
| 33 |
+
|
| 34 |
+
@maybe_allow_in_graph
|
| 35 |
+
class HiDreamImageSingleTransformerBlock(nn.Module):
|
| 36 |
+
def __init__(
|
| 37 |
+
self,
|
| 38 |
+
dim: int,
|
| 39 |
+
num_attention_heads: int,
|
| 40 |
+
attention_head_dim: int,
|
| 41 |
+
num_routed_experts: int = 4,
|
| 42 |
+
num_activated_experts: int = 2
|
| 43 |
+
):
|
| 44 |
+
super().__init__()
|
| 45 |
+
self.num_attention_heads = num_attention_heads
|
| 46 |
+
self.adaLN_modulation = nn.Sequential(
|
| 47 |
+
nn.SiLU(),
|
| 48 |
+
nn.Linear(dim, 6 * dim, bias=True)
|
| 49 |
+
)
|
| 50 |
+
nn.init.zeros_(self.adaLN_modulation[1].weight)
|
| 51 |
+
nn.init.zeros_(self.adaLN_modulation[1].bias)
|
| 52 |
+
|
| 53 |
+
# 1. Attention
|
| 54 |
+
self.norm1_i = nn.LayerNorm(dim, eps = 1e-06, elementwise_affine = False)
|
| 55 |
+
self.attn1 = HiDreamAttention(
|
| 56 |
+
query_dim=dim,
|
| 57 |
+
heads=num_attention_heads,
|
| 58 |
+
dim_head=attention_head_dim,
|
| 59 |
+
processor = HiDreamAttnProcessor_flashattn(),
|
| 60 |
+
single = True
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
# 3. Feed-forward
|
| 64 |
+
self.norm3_i = nn.LayerNorm(dim, eps = 1e-06, elementwise_affine = False)
|
| 65 |
+
if num_routed_experts > 0:
|
| 66 |
+
self.ff_i = MOEFeedForwardSwiGLU(
|
| 67 |
+
dim = dim,
|
| 68 |
+
hidden_dim = 4 * dim,
|
| 69 |
+
num_routed_experts = num_routed_experts,
|
| 70 |
+
num_activated_experts = num_activated_experts,
|
| 71 |
+
)
|
| 72 |
+
else:
|
| 73 |
+
self.ff_i = FeedForwardSwiGLU(dim = dim, hidden_dim = 4 * dim)
|
| 74 |
+
|
| 75 |
+
def forward(
|
| 76 |
+
self,
|
| 77 |
+
image_tokens: torch.FloatTensor,
|
| 78 |
+
image_tokens_masks: Optional[torch.FloatTensor] = None,
|
| 79 |
+
text_tokens: Optional[torch.FloatTensor] = None,
|
| 80 |
+
adaln_input: Optional[torch.FloatTensor] = None,
|
| 81 |
+
rope: torch.FloatTensor = None,
|
| 82 |
+
|
| 83 |
+
) -> torch.FloatTensor:
|
| 84 |
+
wtype = image_tokens.dtype
|
| 85 |
+
shift_msa_i, scale_msa_i, gate_msa_i, shift_mlp_i, scale_mlp_i, gate_mlp_i = \
|
| 86 |
+
self.adaLN_modulation(adaln_input)[:,None].chunk(6, dim=-1)
|
| 87 |
+
|
| 88 |
+
# 1. MM-Attention
|
| 89 |
+
norm_image_tokens = self.norm1_i(image_tokens).to(dtype=wtype)
|
| 90 |
+
norm_image_tokens = norm_image_tokens * (1 + scale_msa_i) + shift_msa_i
|
| 91 |
+
attn_output_i = self.attn1(
|
| 92 |
+
norm_image_tokens,
|
| 93 |
+
image_tokens_masks,
|
| 94 |
+
rope = rope,
|
| 95 |
+
)
|
| 96 |
+
image_tokens = gate_msa_i * attn_output_i + image_tokens
|
| 97 |
+
|
| 98 |
+
# 2. Feed-forward
|
| 99 |
+
norm_image_tokens = self.norm3_i(image_tokens).to(dtype=wtype)
|
| 100 |
+
norm_image_tokens = norm_image_tokens * (1 + scale_mlp_i) + shift_mlp_i
|
| 101 |
+
ff_output_i = gate_mlp_i * self.ff_i(norm_image_tokens.to(dtype=wtype))
|
| 102 |
+
image_tokens = ff_output_i + image_tokens
|
| 103 |
+
return image_tokens
|
| 104 |
+
|
| 105 |
+
@maybe_allow_in_graph
|
| 106 |
+
class HiDreamImageTransformerBlock(nn.Module):
|
| 107 |
+
def __init__(
|
| 108 |
+
self,
|
| 109 |
+
dim: int,
|
| 110 |
+
num_attention_heads: int,
|
| 111 |
+
attention_head_dim: int,
|
| 112 |
+
num_routed_experts: int = 4,
|
| 113 |
+
num_activated_experts: int = 2
|
| 114 |
+
):
|
| 115 |
+
super().__init__()
|
| 116 |
+
self.num_attention_heads = num_attention_heads
|
| 117 |
+
self.adaLN_modulation = nn.Sequential(
|
| 118 |
+
nn.SiLU(),
|
| 119 |
+
nn.Linear(dim, 12 * dim, bias=True)
|
| 120 |
+
)
|
| 121 |
+
nn.init.zeros_(self.adaLN_modulation[1].weight)
|
| 122 |
+
nn.init.zeros_(self.adaLN_modulation[1].bias)
|
| 123 |
+
|
| 124 |
+
# 1. Attention
|
| 125 |
+
self.norm1_i = nn.LayerNorm(dim, eps = 1e-06, elementwise_affine = False)
|
| 126 |
+
self.norm1_t = nn.LayerNorm(dim, eps = 1e-06, elementwise_affine = False)
|
| 127 |
+
self.attn1 = HiDreamAttention(
|
| 128 |
+
query_dim=dim,
|
| 129 |
+
heads=num_attention_heads,
|
| 130 |
+
dim_head=attention_head_dim,
|
| 131 |
+
processor = HiDreamAttnProcessor_flashattn(),
|
| 132 |
+
single = False
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
# 3. Feed-forward
|
| 136 |
+
self.norm3_i = nn.LayerNorm(dim, eps = 1e-06, elementwise_affine = False)
|
| 137 |
+
if num_routed_experts > 0:
|
| 138 |
+
self.ff_i = MOEFeedForwardSwiGLU(
|
| 139 |
+
dim = dim,
|
| 140 |
+
hidden_dim = 4 * dim,
|
| 141 |
+
num_routed_experts = num_routed_experts,
|
| 142 |
+
num_activated_experts = num_activated_experts,
|
| 143 |
+
)
|
| 144 |
+
else:
|
| 145 |
+
self.ff_i = FeedForwardSwiGLU(dim = dim, hidden_dim = 4 * dim)
|
| 146 |
+
self.norm3_t = nn.LayerNorm(dim, eps = 1e-06, elementwise_affine = False)
|
| 147 |
+
self.ff_t = FeedForwardSwiGLU(dim = dim, hidden_dim = 4 * dim)
|
| 148 |
+
|
| 149 |
+
def forward(
|
| 150 |
+
self,
|
| 151 |
+
image_tokens: torch.FloatTensor,
|
| 152 |
+
image_tokens_masks: Optional[torch.FloatTensor] = None,
|
| 153 |
+
text_tokens: Optional[torch.FloatTensor] = None,
|
| 154 |
+
adaln_input: Optional[torch.FloatTensor] = None,
|
| 155 |
+
rope: torch.FloatTensor = None,
|
| 156 |
+
) -> torch.FloatTensor:
|
| 157 |
+
wtype = image_tokens.dtype
|
| 158 |
+
shift_msa_i, scale_msa_i, gate_msa_i, shift_mlp_i, scale_mlp_i, gate_mlp_i, \
|
| 159 |
+
shift_msa_t, scale_msa_t, gate_msa_t, shift_mlp_t, scale_mlp_t, gate_mlp_t = \
|
| 160 |
+
self.adaLN_modulation(adaln_input)[:,None].chunk(12, dim=-1)
|
| 161 |
+
|
| 162 |
+
# 1. MM-Attention
|
| 163 |
+
norm_image_tokens = self.norm1_i(image_tokens).to(dtype=wtype)
|
| 164 |
+
norm_image_tokens = norm_image_tokens * (1 + scale_msa_i) + shift_msa_i
|
| 165 |
+
norm_text_tokens = self.norm1_t(text_tokens).to(dtype=wtype)
|
| 166 |
+
norm_text_tokens = norm_text_tokens * (1 + scale_msa_t) + shift_msa_t
|
| 167 |
+
|
| 168 |
+
attn_output_i, attn_output_t = self.attn1(
|
| 169 |
+
norm_image_tokens,
|
| 170 |
+
image_tokens_masks,
|
| 171 |
+
norm_text_tokens,
|
| 172 |
+
rope = rope,
|
| 173 |
+
)
|
| 174 |
+
|
| 175 |
+
image_tokens = gate_msa_i * attn_output_i + image_tokens
|
| 176 |
+
text_tokens = gate_msa_t * attn_output_t + text_tokens
|
| 177 |
+
|
| 178 |
+
# 2. Feed-forward
|
| 179 |
+
norm_image_tokens = self.norm3_i(image_tokens).to(dtype=wtype)
|
| 180 |
+
norm_image_tokens = norm_image_tokens * (1 + scale_mlp_i) + shift_mlp_i
|
| 181 |
+
norm_text_tokens = self.norm3_t(text_tokens).to(dtype=wtype)
|
| 182 |
+
norm_text_tokens = norm_text_tokens * (1 + scale_mlp_t) + shift_mlp_t
|
| 183 |
+
|
| 184 |
+
ff_output_i = gate_mlp_i * self.ff_i(norm_image_tokens)
|
| 185 |
+
ff_output_t = gate_mlp_t * self.ff_t(norm_text_tokens)
|
| 186 |
+
image_tokens = ff_output_i + image_tokens
|
| 187 |
+
text_tokens = ff_output_t + text_tokens
|
| 188 |
+
return image_tokens, text_tokens
|
| 189 |
+
|
| 190 |
+
@maybe_allow_in_graph
|
| 191 |
+
class HiDreamImageBlock(nn.Module):
|
| 192 |
+
def __init__(
|
| 193 |
+
self,
|
| 194 |
+
dim: int,
|
| 195 |
+
num_attention_heads: int,
|
| 196 |
+
attention_head_dim: int,
|
| 197 |
+
num_routed_experts: int = 4,
|
| 198 |
+
num_activated_experts: int = 2,
|
| 199 |
+
block_type: BlockType = BlockType.TransformerBlock,
|
| 200 |
+
):
|
| 201 |
+
super().__init__()
|
| 202 |
+
block_classes = {
|
| 203 |
+
BlockType.TransformerBlock: HiDreamImageTransformerBlock,
|
| 204 |
+
BlockType.SingleTransformerBlock: HiDreamImageSingleTransformerBlock,
|
| 205 |
+
}
|
| 206 |
+
self.block = block_classes[block_type](
|
| 207 |
+
dim,
|
| 208 |
+
num_attention_heads,
|
| 209 |
+
attention_head_dim,
|
| 210 |
+
num_routed_experts,
|
| 211 |
+
num_activated_experts
|
| 212 |
+
)
|
| 213 |
+
|
| 214 |
+
def forward(
|
| 215 |
+
self,
|
| 216 |
+
image_tokens: torch.FloatTensor,
|
| 217 |
+
image_tokens_masks: Optional[torch.FloatTensor] = None,
|
| 218 |
+
text_tokens: Optional[torch.FloatTensor] = None,
|
| 219 |
+
adaln_input: torch.FloatTensor = None,
|
| 220 |
+
rope: torch.FloatTensor = None,
|
| 221 |
+
) -> torch.FloatTensor:
|
| 222 |
+
return self.block(
|
| 223 |
+
image_tokens,
|
| 224 |
+
image_tokens_masks,
|
| 225 |
+
text_tokens,
|
| 226 |
+
adaln_input,
|
| 227 |
+
rope,
|
| 228 |
+
)
|
| 229 |
+
|
| 230 |
+
class HiDreamImageTransformer2DModel(
|
| 231 |
+
ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin
|
| 232 |
+
):
|
| 233 |
+
_supports_gradient_checkpointing = True
|
| 234 |
+
_no_split_modules = ["HiDreamImageBlock"]
|
| 235 |
+
|
| 236 |
+
@register_to_config
|
| 237 |
+
def __init__(
|
| 238 |
+
self,
|
| 239 |
+
patch_size: Optional[int] = None,
|
| 240 |
+
in_channels: int = 64,
|
| 241 |
+
out_channels: Optional[int] = None,
|
| 242 |
+
num_layers: int = 16,
|
| 243 |
+
num_single_layers: int = 32,
|
| 244 |
+
attention_head_dim: int = 128,
|
| 245 |
+
num_attention_heads: int = 20,
|
| 246 |
+
caption_channels: List[int] = None,
|
| 247 |
+
text_emb_dim: int = 2048,
|
| 248 |
+
num_routed_experts: int = 4,
|
| 249 |
+
num_activated_experts: int = 2,
|
| 250 |
+
axes_dims_rope: Tuple[int, int] = (32, 32),
|
| 251 |
+
max_resolution: Tuple[int, int] = (128, 128),
|
| 252 |
+
llama_layers: List[int] = None,
|
| 253 |
+
):
|
| 254 |
+
super().__init__()
|
| 255 |
+
self.out_channels = out_channels or in_channels
|
| 256 |
+
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
|
| 257 |
+
self.llama_layers = llama_layers
|
| 258 |
+
|
| 259 |
+
self.t_embedder = TimestepEmbed(self.inner_dim)
|
| 260 |
+
self.p_embedder = PooledEmbed(text_emb_dim, self.inner_dim)
|
| 261 |
+
self.x_embedder = PatchEmbed(
|
| 262 |
+
patch_size = patch_size,
|
| 263 |
+
in_channels = in_channels,
|
| 264 |
+
out_channels = self.inner_dim,
|
| 265 |
+
)
|
| 266 |
+
self.pe_embedder = EmbedND(theta=10000, axes_dim=axes_dims_rope)
|
| 267 |
+
|
| 268 |
+
self.double_stream_blocks = nn.ModuleList(
|
| 269 |
+
[
|
| 270 |
+
HiDreamImageBlock(
|
| 271 |
+
dim = self.inner_dim,
|
| 272 |
+
num_attention_heads = self.config.num_attention_heads,
|
| 273 |
+
attention_head_dim = self.config.attention_head_dim,
|
| 274 |
+
num_routed_experts = num_routed_experts,
|
| 275 |
+
num_activated_experts = num_activated_experts,
|
| 276 |
+
block_type = BlockType.TransformerBlock
|
| 277 |
+
)
|
| 278 |
+
for i in range(self.config.num_layers)
|
| 279 |
+
]
|
| 280 |
+
)
|
| 281 |
+
|
| 282 |
+
self.single_stream_blocks = nn.ModuleList(
|
| 283 |
+
[
|
| 284 |
+
HiDreamImageBlock(
|
| 285 |
+
dim = self.inner_dim,
|
| 286 |
+
num_attention_heads = self.config.num_attention_heads,
|
| 287 |
+
attention_head_dim = self.config.attention_head_dim,
|
| 288 |
+
num_routed_experts = num_routed_experts,
|
| 289 |
+
num_activated_experts = num_activated_experts,
|
| 290 |
+
block_type = BlockType.SingleTransformerBlock
|
| 291 |
+
)
|
| 292 |
+
for i in range(self.config.num_single_layers)
|
| 293 |
+
]
|
| 294 |
+
)
|
| 295 |
+
|
| 296 |
+
self.final_layer = OutEmbed(self.inner_dim, patch_size, self.out_channels)
|
| 297 |
+
|
| 298 |
+
caption_channels = [caption_channels[1], ] * (num_layers + num_single_layers) + [caption_channels[0], ]
|
| 299 |
+
caption_projection = []
|
| 300 |
+
for caption_channel in caption_channels:
|
| 301 |
+
caption_projection.append(TextProjection(in_features = caption_channel, hidden_size = self.inner_dim))
|
| 302 |
+
self.caption_projection = nn.ModuleList(caption_projection)
|
| 303 |
+
self.max_seq = max_resolution[0] * max_resolution[1] // (patch_size * patch_size)
|
| 304 |
+
|
| 305 |
+
self.gradient_checkpointing = False
|
| 306 |
+
|
| 307 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 308 |
+
if hasattr(module, "gradient_checkpointing"):
|
| 309 |
+
module.gradient_checkpointing = value
|
| 310 |
+
|
| 311 |
+
def expand_timesteps(self, timesteps, batch_size, device):
|
| 312 |
+
if not torch.is_tensor(timesteps):
|
| 313 |
+
is_mps = device.type == "mps"
|
| 314 |
+
if isinstance(timesteps, float):
|
| 315 |
+
dtype = torch.float32 if is_mps else torch.float64
|
| 316 |
+
else:
|
| 317 |
+
dtype = torch.int32 if is_mps else torch.int64
|
| 318 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=device)
|
| 319 |
+
elif len(timesteps.shape) == 0:
|
| 320 |
+
timesteps = timesteps[None].to(device)
|
| 321 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
| 322 |
+
timesteps = timesteps.expand(batch_size)
|
| 323 |
+
return timesteps
|
| 324 |
+
|
| 325 |
+
def unpatchify(self, x: torch.Tensor, img_sizes: List[Tuple[int, int]], is_training: bool) -> List[torch.Tensor]:
|
| 326 |
+
if is_training:
|
| 327 |
+
x = einops.rearrange(x, 'B S (p1 p2 C) -> B C S (p1 p2)', p1=self.config.patch_size, p2=self.config.patch_size)
|
| 328 |
+
else:
|
| 329 |
+
x_arr = []
|
| 330 |
+
for i, img_size in enumerate(img_sizes):
|
| 331 |
+
pH, pW = img_size
|
| 332 |
+
x_arr.append(
|
| 333 |
+
einops.rearrange(x[i, :pH*pW].reshape(1, pH, pW, -1), 'B H W (p1 p2 C) -> B C (H p1) (W p2)',
|
| 334 |
+
p1=self.config.patch_size, p2=self.config.patch_size)
|
| 335 |
+
)
|
| 336 |
+
x = torch.cat(x_arr, dim=0)
|
| 337 |
+
return x
|
| 338 |
+
|
| 339 |
+
def patchify(self, x, max_seq, img_sizes=None):
|
| 340 |
+
pz2 = self.config.patch_size * self.config.patch_size
|
| 341 |
+
if isinstance(x, torch.Tensor):
|
| 342 |
+
B, C = x.shape[0], x.shape[1]
|
| 343 |
+
device = x.device
|
| 344 |
+
dtype = x.dtype
|
| 345 |
+
else:
|
| 346 |
+
B, C = len(x), x[0].shape[0]
|
| 347 |
+
device = x[0].device
|
| 348 |
+
dtype = x[0].dtype
|
| 349 |
+
x_masks = torch.zeros((B, max_seq), dtype=dtype, device=device)
|
| 350 |
+
|
| 351 |
+
if img_sizes is not None:
|
| 352 |
+
for i, img_size in enumerate(img_sizes):
|
| 353 |
+
x_masks[i, 0:img_size[0] * img_size[1]] = 1
|
| 354 |
+
x = einops.rearrange(x, 'B C S p -> B S (p C)', p=pz2)
|
| 355 |
+
elif isinstance(x, torch.Tensor):
|
| 356 |
+
pH, pW = x.shape[-2] // self.config.patch_size, x.shape[-1] // self.config.patch_size
|
| 357 |
+
x = einops.rearrange(x, 'B C (H p1) (W p2) -> B (H W) (p1 p2 C)', p1=self.config.patch_size, p2=self.config.patch_size)
|
| 358 |
+
img_sizes = [[pH, pW]] * B
|
| 359 |
+
x_masks = None
|
| 360 |
+
else:
|
| 361 |
+
raise NotImplementedError
|
| 362 |
+
return x, x_masks, img_sizes
|
| 363 |
+
|
| 364 |
+
def forward(
|
| 365 |
+
self,
|
| 366 |
+
hidden_states: torch.Tensor,
|
| 367 |
+
timesteps: torch.LongTensor = None,
|
| 368 |
+
encoder_hidden_states: torch.Tensor = None,
|
| 369 |
+
pooled_embeds: torch.Tensor = None,
|
| 370 |
+
img_sizes: Optional[List[Tuple[int, int]]] = None,
|
| 371 |
+
img_ids: Optional[torch.Tensor] = None,
|
| 372 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 373 |
+
return_dict: bool = True,
|
| 374 |
+
):
|
| 375 |
+
if joint_attention_kwargs is not None:
|
| 376 |
+
joint_attention_kwargs = joint_attention_kwargs.copy()
|
| 377 |
+
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
| 378 |
+
else:
|
| 379 |
+
lora_scale = 1.0
|
| 380 |
+
|
| 381 |
+
if USE_PEFT_BACKEND:
|
| 382 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
| 383 |
+
scale_lora_layers(self, lora_scale)
|
| 384 |
+
else:
|
| 385 |
+
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
|
| 386 |
+
logger.warning(
|
| 387 |
+
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
| 388 |
+
)
|
| 389 |
+
|
| 390 |
+
# spatial forward
|
| 391 |
+
batch_size = hidden_states.shape[0]
|
| 392 |
+
hidden_states_type = hidden_states.dtype
|
| 393 |
+
|
| 394 |
+
# 0. time
|
| 395 |
+
timesteps = self.expand_timesteps(timesteps, batch_size, hidden_states.device)
|
| 396 |
+
timesteps = self.t_embedder(timesteps, hidden_states_type)
|
| 397 |
+
p_embedder = self.p_embedder(pooled_embeds)
|
| 398 |
+
adaln_input = timesteps + p_embedder
|
| 399 |
+
|
| 400 |
+
hidden_states, image_tokens_masks, img_sizes = self.patchify(hidden_states, self.max_seq, img_sizes)
|
| 401 |
+
if image_tokens_masks is None:
|
| 402 |
+
pH, pW = img_sizes[0]
|
| 403 |
+
img_ids = torch.zeros(pH, pW, 3, device=hidden_states.device)
|
| 404 |
+
img_ids[..., 1] = img_ids[..., 1] + torch.arange(pH, device=hidden_states.device)[:, None]
|
| 405 |
+
img_ids[..., 2] = img_ids[..., 2] + torch.arange(pW, device=hidden_states.device)[None, :]
|
| 406 |
+
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=batch_size)
|
| 407 |
+
hidden_states = self.x_embedder(hidden_states)
|
| 408 |
+
|
| 409 |
+
T5_encoder_hidden_states = encoder_hidden_states[0]
|
| 410 |
+
encoder_hidden_states = encoder_hidden_states[-1]
|
| 411 |
+
encoder_hidden_states = [encoder_hidden_states[k] for k in self.llama_layers]
|
| 412 |
+
|
| 413 |
+
if self.caption_projection is not None:
|
| 414 |
+
new_encoder_hidden_states = []
|
| 415 |
+
for i, enc_hidden_state in enumerate(encoder_hidden_states):
|
| 416 |
+
enc_hidden_state = self.caption_projection[i](enc_hidden_state)
|
| 417 |
+
enc_hidden_state = enc_hidden_state.view(batch_size, -1, hidden_states.shape[-1])
|
| 418 |
+
new_encoder_hidden_states.append(enc_hidden_state)
|
| 419 |
+
encoder_hidden_states = new_encoder_hidden_states
|
| 420 |
+
T5_encoder_hidden_states = self.caption_projection[-1](T5_encoder_hidden_states)
|
| 421 |
+
T5_encoder_hidden_states = T5_encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
|
| 422 |
+
encoder_hidden_states.append(T5_encoder_hidden_states)
|
| 423 |
+
|
| 424 |
+
txt_ids = torch.zeros(
|
| 425 |
+
batch_size,
|
| 426 |
+
encoder_hidden_states[-1].shape[1] + encoder_hidden_states[-2].shape[1] + encoder_hidden_states[0].shape[1],
|
| 427 |
+
3,
|
| 428 |
+
device=img_ids.device, dtype=img_ids.dtype
|
| 429 |
+
)
|
| 430 |
+
ids = torch.cat((img_ids, txt_ids), dim=1)
|
| 431 |
+
rope = self.pe_embedder(ids)
|
| 432 |
+
|
| 433 |
+
# 2. Blocks
|
| 434 |
+
block_id = 0
|
| 435 |
+
initial_encoder_hidden_states = torch.cat([encoder_hidden_states[-1], encoder_hidden_states[-2]], dim=1)
|
| 436 |
+
initial_encoder_hidden_states_seq_len = initial_encoder_hidden_states.shape[1]
|
| 437 |
+
for bid, block in enumerate(self.double_stream_blocks):
|
| 438 |
+
cur_llama31_encoder_hidden_states = encoder_hidden_states[block_id]
|
| 439 |
+
cur_encoder_hidden_states = torch.cat([initial_encoder_hidden_states, cur_llama31_encoder_hidden_states], dim=1)
|
| 440 |
+
if self.training and self.gradient_checkpointing:
|
| 441 |
+
def create_custom_forward(module, return_dict=None):
|
| 442 |
+
def custom_forward(*inputs):
|
| 443 |
+
if return_dict is not None:
|
| 444 |
+
return module(*inputs, return_dict=return_dict)
|
| 445 |
+
else:
|
| 446 |
+
return module(*inputs)
|
| 447 |
+
return custom_forward
|
| 448 |
+
|
| 449 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
| 450 |
+
hidden_states, initial_encoder_hidden_states = torch.utils.checkpoint.checkpoint(
|
| 451 |
+
create_custom_forward(block),
|
| 452 |
+
hidden_states,
|
| 453 |
+
image_tokens_masks,
|
| 454 |
+
cur_encoder_hidden_states,
|
| 455 |
+
adaln_input,
|
| 456 |
+
rope,
|
| 457 |
+
**ckpt_kwargs,
|
| 458 |
+
)
|
| 459 |
+
else:
|
| 460 |
+
hidden_states, initial_encoder_hidden_states = block(
|
| 461 |
+
image_tokens = hidden_states,
|
| 462 |
+
image_tokens_masks = image_tokens_masks,
|
| 463 |
+
text_tokens = cur_encoder_hidden_states,
|
| 464 |
+
adaln_input = adaln_input,
|
| 465 |
+
rope = rope,
|
| 466 |
+
)
|
| 467 |
+
initial_encoder_hidden_states = initial_encoder_hidden_states[:, :initial_encoder_hidden_states_seq_len]
|
| 468 |
+
block_id += 1
|
| 469 |
+
|
| 470 |
+
image_tokens_seq_len = hidden_states.shape[1]
|
| 471 |
+
hidden_states = torch.cat([hidden_states, initial_encoder_hidden_states], dim=1)
|
| 472 |
+
hidden_states_seq_len = hidden_states.shape[1]
|
| 473 |
+
if image_tokens_masks is not None:
|
| 474 |
+
encoder_attention_mask_ones = torch.ones(
|
| 475 |
+
(batch_size, initial_encoder_hidden_states.shape[1] + cur_llama31_encoder_hidden_states.shape[1]),
|
| 476 |
+
device=image_tokens_masks.device, dtype=image_tokens_masks.dtype
|
| 477 |
+
)
|
| 478 |
+
image_tokens_masks = torch.cat([image_tokens_masks, encoder_attention_mask_ones], dim=1)
|
| 479 |
+
|
| 480 |
+
for bid, block in enumerate(self.single_stream_blocks):
|
| 481 |
+
cur_llama31_encoder_hidden_states = encoder_hidden_states[block_id]
|
| 482 |
+
hidden_states = torch.cat([hidden_states, cur_llama31_encoder_hidden_states], dim=1)
|
| 483 |
+
if self.training and self.gradient_checkpointing:
|
| 484 |
+
def create_custom_forward(module, return_dict=None):
|
| 485 |
+
def custom_forward(*inputs):
|
| 486 |
+
if return_dict is not None:
|
| 487 |
+
return module(*inputs, return_dict=return_dict)
|
| 488 |
+
else:
|
| 489 |
+
return module(*inputs)
|
| 490 |
+
return custom_forward
|
| 491 |
+
|
| 492 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
| 493 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 494 |
+
create_custom_forward(block),
|
| 495 |
+
hidden_states,
|
| 496 |
+
image_tokens_masks,
|
| 497 |
+
None,
|
| 498 |
+
adaln_input,
|
| 499 |
+
rope,
|
| 500 |
+
**ckpt_kwargs,
|
| 501 |
+
)
|
| 502 |
+
else:
|
| 503 |
+
hidden_states = block(
|
| 504 |
+
image_tokens = hidden_states,
|
| 505 |
+
image_tokens_masks = image_tokens_masks,
|
| 506 |
+
text_tokens = None,
|
| 507 |
+
adaln_input = adaln_input,
|
| 508 |
+
rope = rope,
|
| 509 |
+
)
|
| 510 |
+
hidden_states = hidden_states[:, :hidden_states_seq_len]
|
| 511 |
+
block_id += 1
|
| 512 |
+
|
| 513 |
+
hidden_states = hidden_states[:, :image_tokens_seq_len, ...]
|
| 514 |
+
output = self.final_layer(hidden_states, adaln_input)
|
| 515 |
+
output = self.unpatchify(output, img_sizes, self.training)
|
| 516 |
+
if image_tokens_masks is not None:
|
| 517 |
+
image_tokens_masks = image_tokens_masks[:, :image_tokens_seq_len]
|
| 518 |
+
|
| 519 |
+
if USE_PEFT_BACKEND:
|
| 520 |
+
# remove `lora_scale` from each PEFT layer
|
| 521 |
+
unscale_lora_layers(self, lora_scale)
|
| 522 |
+
|
| 523 |
+
if not return_dict:
|
| 524 |
+
return (output, image_tokens_masks)
|
| 525 |
+
return Transformer2DModelOutput(sample=output, mask=image_tokens_masks)
|
| 526 |
+
|