Robust_MMFM / open_flamingo /eval /eval_datasets.py
KC123hello's picture
Upload Files
fc0ff8f verified
raw
history blame
8.8 kB
import json
import os
from collections import Counter
import torch
from PIL import Image
from torch.utils.data import Dataset
from torchvision.datasets import ImageFolder
from open_flamingo.eval.classification_utils import IMAGENET_1K_CLASS_ID_TO_LABEL
class CaptionDataset(Dataset):
def __init__(
self,
image_train_dir_path,
annotations_path,
is_train,
dataset_name,
image_val_dir_path=None,
which_gt=None,
best_gt_caption_path=None,
):
self.image_train_dir_path = image_train_dir_path
self.image_val_dir_path = image_val_dir_path
self.annotations = []
self.is_train = is_train
self.dataset_name = dataset_name
full_annotations = json.load(open(annotations_path))["images"]
for i in range(len(full_annotations)):
if self.is_train and full_annotations[i]["split"] != "train":
continue
elif not self.is_train and full_annotations[i]["split"] != "test":
continue
self.annotations.append(full_annotations[i])
if isinstance(which_gt, str):
self.which_gt = int(which_gt) if which_gt.isdigit() else which_gt
else:
self.which_gt = which_gt
if best_gt_caption_path is not None:
with open(best_gt_caption_path, 'r') as f:
self.best_gt_captions = json.load(f)
else:
self.best_gt_captions = None
def __len__(self):
return len(self.annotations)
def __getitem__(self, idx):
if self.dataset_name == "coco":
image = Image.open(
os.path.join(
self.image_train_dir_path, self.annotations[idx]["filename"]
)
if self.annotations[idx]["filepath"] == "train2014"
else os.path.join(
self.image_val_dir_path, self.annotations[idx]["filename"]
)
)
elif self.dataset_name == "flickr":
image = Image.open(
os.path.join(
self.image_train_dir_path, self.annotations[idx]["filename"]
)
)
image.load()
image_id = self.annotations[idx]["cocoid"] if self.dataset_name == "coco" else self.annotations[idx]["filename"].split(".")[0]
if isinstance(self.which_gt, int):
cpt_idx = self.which_gt
elif isinstance(self.which_gt, dict):
cpt_idx = self.which_gt[image_id]
elif self.which_gt == "best":
cpt_idx = self.best_gt_captions[str(image_id)]
else:
assert self.which_gt is None
cpt_idx = 0
caption = self.annotations[idx]["sentences"][cpt_idx]["raw"]
return {
"image": image,
"caption": caption,
"image_id": image_id,
}
class VQADataset(Dataset):
def __init__(
self, image_dir_path, question_path, annotations_path, is_train, dataset_name, which_gt='all', is_tensor=False
):
self.questions = json.load(open(question_path, "r"))["questions"]
if annotations_path is not None:
self.answers = json.load(open(annotations_path, "r"))["annotations"]
else:
self.answers = None
self.image_dir_path = image_dir_path
self.is_train = is_train
self.dataset_name = dataset_name
if self.dataset_name in {"vqav2", "ok_vqa"}:
self.img_coco_split = self.image_dir_path.strip("/").split("/")[-1]
assert self.img_coco_split in {"train2014", "val2014", "test2015"}
self.which_gt = which_gt
self.is_tensor = is_tensor
def __len__(self):
return len(self.questions)
def get_img_path(self, question):
if self.dataset_name in {"vqav2", "ok_vqa"}:
return os.path.join(
self.image_dir_path,
f"COCO_{self.img_coco_split}_{question['image_id']:012d}.jpg"
if self.is_train
else f"COCO_{self.img_coco_split}_{question['image_id']:012d}.jpg",
)
elif self.dataset_name == "vizwiz":
return os.path.join(self.image_dir_path, question["image_id"])
elif self.dataset_name == "textvqa":
return os.path.join(self.image_dir_path, f"{question['image_id']}.jpg")
else:
raise Exception(f"Unknown VQA dataset {self.dataset_name}")
def get_from_id(self, question_id):
assert not self.is_train
assert self.dataset_name == "textvqa"
prefix = ''
image_path = f"{self.image_dir_path}/{prefix}{str(question_id).zfill(12)}.pt"
image = torch.load(image_path)
return image
def __getitem__(self, idx):
question = self.questions[idx]
img_path = self.get_img_path(question)
if self.is_tensor:
image_path = img_path.replace("jpg", "pt")
image = torch.load(image_path)
else:
image = Image.open(img_path)
image.load()
results = {
"image": image,
"question": question["question"],
"question_id": question["question_id"],
}
if self.answers is not None:
answers = self.answers[idx]
answers = [a["answer"] for a in answers["answers"]]
if self.which_gt in ["all", None]:
results["answers"] = answers
elif isinstance(self.which_gt, int) or isinstance(self.which_gt, dict):
which_gt = self.which_gt[question["question_id"]] if isinstance(self.which_gt, dict) else self.which_gt
# return the nth most common answer
counter = Counter(answers)
most_common = counter.most_common()
if which_gt >= len(most_common):
results["answers"] = []
else:
results["answers"] = [most_common[which_gt][0]]
else:
raise ValueError(f"Unknown which_gt: {self.which_gt}")
return results
class ImageNetDataset(ImageFolder):
"""Class to represent the ImageNet1k dataset."""
def __init__(self, root, **kwargs):
super().__init__(root=root, **kwargs)
def __getitem__(self, idx):
sample, target = super().__getitem__(idx)
target_label = IMAGENET_1K_CLASS_ID_TO_LABEL[target]
return {
"id": idx,
"image": sample,
"class_id": target, # numeric ID of the ImageNet class
"class_name": target_label, # human-readable name of ImageNet class
}
class HatefulMemesDataset(Dataset):
def __init__(self, image_dir_path, annotations_path):
self.image_dir_path = image_dir_path
with open(annotations_path, "r") as f:
self.annotations = [json.loads(line) for line in f]
def __len__(self):
return len(self.annotations)
def __getitem__(self, idx):
annotation = self.annotations[idx]
img_path = os.path.join(self.image_dir_path, annotation["img"].split("/")[-1])
image = Image.open(img_path)
image.load()
return {
"id": annotation["id"],
"image": image,
"ocr": annotation["text"],
"class_name": "yes" if annotation["label"] == 1 else "no",
"class_id": annotation["label"],
}
class TensorCaptionDataset(CaptionDataset):
def get_from_id(self, image_id):
assert self.dataset_name == "coco"
assert not self.is_train
# prefix = 'COCO_val2014_'
prefix = ''
image_path = f"{self.image_val_dir_path}/{prefix}{str(image_id).zfill(12)}.pt"
image = torch.load(image_path)
return image
def __getitem__(self, idx):
if self.dataset_name == "coco":
image_path = os.path.join(
self.image_train_dir_path if self.annotations[idx]["filepath"] == "train2014" else self.image_val_dir_path,
self.annotations[idx]["filename"]
)
image_path = image_path.replace("jpg", "pt")
image = torch.load(image_path)
elif self.dataset_name == "flickr":
raise NotImplementedError
image = Image.open(
os.path.join(
self.image_train_dir_path, self.annotations[idx]["filename"]
)
)
caption = self.annotations[idx]["sentences"][0]["raw"]
return {
"image": image,
"caption": caption,
"image_id": self.annotations[idx]["cocoid"]
if self.dataset_name == "coco"
else self.annotations[idx]["filename"].split(".")[0],
}