File size: 14,596 Bytes
fc0ff8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
# Code adapted from https://github.com/chs20/RobustVLM/tree/main

import torch
import math


class APGD:
    def __init__(self, model, norm, eps, mask_out='context', initial_stepsize=None, decrease_every=None, decrease_every_max=None, random_init=False):
        # model returns loss sum over batch
        # thus currently only works with batch size 1
        # initial_stepsize: in terms of eps. called alpha in apgd
        # decrease_every: potentially decrease stepsize every x fraction of total iterations. default: 0.22
        self.model = model
        self.norm = norm
        self.eps = eps
        self.initial_stepsize = initial_stepsize
        self.decrease_every = decrease_every
        self.decrease_every_max = decrease_every_max
        self.random_init = random_init
        if mask_out != 'none':
            self.mask_out = mask_out
        else:
            self.mask_out = None

    def perturb(self, data_clean, iterations, pert_init=None, verbose=False):
        mask = self._set_mask(data_clean)
        data_adv, _, _ = apgd(
            self.model, data_clean, norm=self.norm, eps=self.eps, n_iter=iterations,
            use_rs=self.random_init, mask=mask, alpha=self.initial_stepsize,
            n_iter_2=self.decrease_every, n_iter_min=self.decrease_every_max, pert_init=pert_init,
            verbose=verbose
            )

        return data_adv

    def _set_mask(self, data):
        mask = torch.ones_like(data)
        if self.mask_out == 'context':
            mask[:, :-1, ...] = 0
        elif self.mask_out == 'query':
            mask[:, -1, ...] = 0
        elif isinstance(self.mask_out, int):
            mask[:, self.mask_out, ...] = 0
        elif self.mask_out is None:
            pass
        else:
            raise NotImplementedError(f'Unknown mask_out: {self.mask_out}')
        return mask

    def __str__(self):
        return 'APGD'


def L1_projection(x2, y2, eps1):
    '''
    x2: center of the L1 ball (bs x input_dim)
    y2: current perturbation (x2 + y2 is the point to be projected)
    eps1: radius of the L1 ball

    output: delta s.th. ||y2 + delta||_1 = eps1
    and 0 <= x2 + y2 + delta <= 1
    '''

    x = x2.clone().float().view(x2.shape[0], -1)
    y = y2.clone().float().view(y2.shape[0], -1)
    sigma = y.clone().sign()
    u = torch.min(1 - x - y, x + y)
    # u = torch.min(u, epsinf - torch.clone(y).abs())
    u = torch.min(torch.zeros_like(y), u)
    l = -torch.clone(y).abs()
    d = u.clone()

    bs, indbs = torch.sort(-torch.cat((u, l), 1), dim=1)
    bs2 = torch.cat((bs[:, 1:], torch.zeros(bs.shape[0], 1).to(bs.device)), 1)

    inu = 2 * (indbs < u.shape[1]).float() - 1
    size1 = inu.cumsum(dim=1)

    s1 = -u.sum(dim=1)

    c = eps1 - y.clone().abs().sum(dim=1)
    c5 = s1 + c < 0
    c2 = c5.nonzero().squeeze(1)

    s = s1.unsqueeze(-1) + torch.cumsum((bs2 - bs) * size1, dim=1)
    # print(s[0])

    # print(c5.shape, c2)

    if c2.nelement != 0:

        lb = torch.zeros_like(c2).float()
        ub = torch.ones_like(lb) * (bs.shape[1] - 1)

        # print(c2.shape, lb.shape)

        nitermax = torch.ceil(torch.log2(torch.tensor(bs.shape[1]).float()))
        counter2 = torch.zeros_like(lb).long()
        counter = 0

        while counter < nitermax:
            counter4 = torch.floor((lb + ub) / 2.)
            counter2 = counter4.type(torch.LongTensor)

            c8 = s[c2, counter2] + c[c2] < 0
            ind3 = c8.nonzero().squeeze(1)
            ind32 = (~c8).nonzero().squeeze(1)
            # print(ind3.shape)
            if ind3.nelement != 0:
                lb[ind3] = counter4[ind3]
            if ind32.nelement != 0:
                ub[ind32] = counter4[ind32]

            # print(lb, ub)
            counter += 1

        lb2 = lb.long()
        alpha = (-s[c2, lb2] - c[c2]) / size1[c2, lb2 + 1] + bs2[c2, lb2]
        d[c2] = -torch.min(torch.max(-u[c2], alpha.unsqueeze(-1)), -l[c2])

    return (sigma * d).view(x2.shape)

def L0_projection(x_adv, x, eps, step_size, lam=0.01):

    
    pert = x_adv - x
    
    pert_proj = torch.clamp(pert,-eps,eps)
    x_adv_temp = torch.clamp(x + pert_proj,0.,1.)
    pert_proj = x_adv_temp - x
    pert = torch.where(pert ** 2 - (pert_proj - pert) ** 2 > 2 * step_size * lam, pert_proj, 0)
    #pert = torch.where(pert > (2 * lam * step_size) ** 0.5, pert, 0)
    return torch.clamp(x+pert,0.0,1.0)



def L1_norm(x, keepdim=False):
    z = x.abs().view(x.shape[0], -1).sum(-1)
    if keepdim:
        z = z.view(-1, *[1] * (len(x.shape) - 1))
    return z


def L2_norm(x, keepdim=False):
    z = (x ** 2).view(x.shape[0], -1).sum(-1).sqrt()
    if keepdim:
        z = z.view(-1, *[1] * (len(x.shape) - 1))
    return z


def L0_norm(x):
    return (x != 0.).view(x.shape[0], -1).sum(-1)


def dlr_loss(x, y, reduction='none'):
    x_sorted, ind_sorted = x.sort(dim=1)
    ind = (ind_sorted[:, -1] == y).float()

    return -(x[torch.arange(x.shape[0]), y] - x_sorted[:, -2] * ind - \
             x_sorted[:, -1] * (1. - ind)) / (x_sorted[:, -1] - x_sorted[:, -3] + 1e-12)


def dlr_loss_targeted(x, y, y_target):
    x_sorted, ind_sorted = x.sort(dim=1)
    u = torch.arange(x.shape[0])

    return -(x[u, y] - x[u, y_target]) / (x_sorted[:, -1] - .5 * (
            x_sorted[:, -3] + x_sorted[:, -4]) + 1e-12)

def check_oscillation(x, j, k, y5, k3=0.75):
    t = torch.zeros(x.shape[1]).to(x.device)
    for counter5 in range(k):
        t += (x[j - counter5] > x[j - counter5 - 1]).float()

    return (t <= k * k3 * torch.ones_like(t)).float()


def apgd(model, x, norm, eps, n_iter=10, use_rs=False, mask=None, alpha=None, n_iter_2=None,
               n_iter_min=None, pert_init=None, verbose=False, is_train=True):
    # from https://github.com/fra31/robust-finetuning
    assert x.shape[0] == 1  # only support batch size 1 for now
    norm = norm.replace('l', 'L')
    device = x.device
    ndims = len(x.shape) - 1

    if not use_rs:
        x_adv = x.clone()
    else:
        if norm == 'Linf':
            t = torch.zeros_like(x).uniform_(-eps, eps).detach()
            x_adv = x + t
        elif norm == 'L2':
            t = torch.randn(x.shape).to(device).detach()
            x_adv = x + eps * torch.ones_like(x).detach() * t / (L2_norm(t, keepdim=True) + 1e-12)
    if pert_init is not None:
        assert not use_rs
        assert pert_init.shape == x.shape, f'pert_init.shape: {pert_init.shape}, x.shape: {x.shape}'
        x_adv = x + pert_init

    x_adv = x_adv.clamp(0., 1.)
    x_best = x_adv.clone()
    x_best_adv = x_adv.clone()
    loss_steps = torch.zeros([n_iter, x.shape[0]], device=device)
    loss_best_steps = torch.zeros([n_iter + 1, x.shape[0]], device=device)

    # set params
    n_fts = math.prod(x.shape[1:])
    if norm in ['Linf', 'L2']:
        n_iter_2_frac = 0.22 if n_iter_2 is None else n_iter_2
        n_iter_min_frac = 0.06 if n_iter_min is None else n_iter_min
        n_iter_2 = max(int(n_iter_2_frac * n_iter), 1)
        n_iter_min = max(int(n_iter_min_frac * n_iter), 1)
        size_decr = max(int(0.03 * n_iter), 1)
        k = n_iter_2 + 0
        thr_decr = .75
        alpha = 2. if alpha is None else alpha
    elif norm in ['L1','L0']:
        k = max(int(.04 * n_iter), 1)
        init_topk = .05 if is_train else .2
        topk = init_topk * torch.ones([x.shape[0]], device=device)
        sp_old = n_fts * torch.ones_like(topk)
        adasp_redstep = 1.5
        adasp_minstep = 10.
        alpha = 1. if alpha is None else alpha

    step_size = alpha * eps * torch.ones([x.shape[0], *[1] * ndims],
                                         device=device)
    counter3 = 0

    x_adv.requires_grad_()
    # grad = torch.zeros_like(x)
    # for _ in range(self.eot_iter)
    with torch.enable_grad():
        loss_indiv = model(x_adv)#.unsqueeze(0)
        loss = loss_indiv.sum()
    # grad += torch.autograd.grad(loss, [x_adv])[0].detach()
    grad = torch.autograd.grad(loss, [x_adv])[0].detach()
    if mask is not None:
        grad *= mask
    # grad /= float(self.eot_iter)
    grad_best = grad.clone()
    x_adv.detach_()
    loss_indiv = loss_indiv.detach()
    loss = loss.detach()

    loss_best = loss_indiv.detach().clone()
    loss_best_last_check = loss_best.clone()
    reduced_last_check = torch.ones_like(loss_best)
    n_reduced = 0

    u = torch.arange(x.shape[0], device=device)
    x_adv_old = x_adv.clone().detach()

    for i in range(n_iter):
        ### gradient step
        if True:  # with torch.no_grad()
            x_adv = x_adv.detach()
            grad2 = x_adv - x_adv_old
            x_adv_old = x_adv.clone()
            loss_curr = loss.detach().mean()

            a = 0.75 if i > 0 else 1.0

            if norm == 'Linf':
                x_adv_1 = x_adv + step_size * torch.sign(grad)
                x_adv_1 = torch.clamp(torch.min(torch.max(x_adv_1,
                                                          x - eps), x + eps), 0.0, 1.0)
                x_adv_1 = torch.clamp(torch.min(torch.max(
                    x_adv + (x_adv_1 - x_adv) * a + grad2 * (1 - a),
                    x - eps), x + eps), 0.0, 1.0)

            elif norm == 'L2':
                x_adv_1 = x_adv + step_size * grad / (L2_norm(grad,
                                                              keepdim=True) + 1e-12)
                x_adv_1 = torch.clamp(x + (x_adv_1 - x) / (L2_norm(x_adv_1 - x,
                                                                   keepdim=True) + 1e-12) * torch.min(eps * torch.ones_like(x),
                                                                                                      L2_norm(x_adv_1 - x, keepdim=True)), 0.0, 1.0)
                x_adv_1 = x_adv + (x_adv_1 - x_adv) * a + grad2 * (1 - a)
                x_adv_1 = torch.clamp(x + (x_adv_1 - x) / (L2_norm(x_adv_1 - x,
                                                                   keepdim=True) + 1e-12) * torch.min(eps * torch.ones_like(x),
                                                                                                      L2_norm(x_adv_1 - x, keepdim=True)), 0.0, 1.0)

            elif norm == 'L1':
                grad_topk = grad.abs().view(x.shape[0], -1).sort(-1)[0]
                topk_curr = torch.clamp((1. - topk) * n_fts, min=0, max=n_fts - 1).long()
                grad_topk = grad_topk[u, topk_curr].view(-1, *[1] * (len(x.shape) - 1))
                sparsegrad = grad * (grad.abs() >= grad_topk).float()
                x_adv_1 = x_adv + step_size * sparsegrad.sign() / (
                        sparsegrad.sign().abs().view(x.shape[0], -1).sum(dim=-1).view(
                            -1, 1, 1, 1) + 1e-10)

                delta_u = x_adv_1 - x
                delta_p = L1_projection(x, delta_u, eps)
                x_adv_1 = x + delta_u + delta_p

            elif norm == 'L0':
                L1normgrad = grad / (grad.abs().view(grad.shape[0], -1).sum(
                    dim=-1, keepdim=True) + 1e-12).view(grad.shape[0], *[1] * (
                        len(grad.shape) - 1))
                x_adv_1 = x_adv + step_size * L1normgrad * n_fts
                # TODO: add momentum

            x_adv = x_adv_1.to(dtype=x_adv.dtype) + 0.

        ### get gradient
        x_adv.requires_grad_()
        # grad = torch.zeros_like(x)
        # for _ in range(self.eot_iter)
        with torch.enable_grad():
            loss_indiv = model(x_adv)#.unsqueeze(0)
            loss = loss_indiv.sum()

        # grad += torch.autograd.grad(loss, [x_adv])[0].detach()
        if i < n_iter - 1:
            # save one backward pass
            grad = torch.autograd.grad(loss, [x_adv])[0].detach()
            if mask is not None:
                grad *= mask
        # grad /= float(self.eot_iter)
        x_adv.detach_()
        loss_indiv = loss_indiv.detach()
        loss = loss.detach()

        x_best_adv = x_adv + 0.
        if verbose and (i % max(n_iter // 10, 1) == 0 or i == n_iter - 1):
            str_stats = ' - step size: {:.5f} - topk: {:.2f}'.format(
                step_size.mean(), topk.mean() * n_fts) if norm in ['L1'] else ' - step size: {:.5f}'.format(
                step_size.mean())
            print('iteration: {} - best loss: {:.6f} curr loss {:.6f} {}'.format(
                i, loss_best.sum(), loss_curr, str_stats))
            # print('pert {}'.format((x - x_best_adv).abs().view(x.shape[0], -1).sum(-1).max()))

        ### check step size
        if True:  # with torch.no_grad()
            y1 = loss_indiv.detach().clone()
            loss_steps[i] = y1 + 0
            ind = (y1 > loss_best).nonzero().squeeze()
            x_best[ind] = x_adv[ind].clone()
            grad_best[ind] = grad[ind].clone()
            loss_best[ind] = y1[ind] + 0
            loss_best_steps[i + 1] = loss_best + 0

            counter3 += 1

            if counter3 == k:
                if norm in ['Linf', 'L2']:
                    fl_oscillation = check_oscillation(loss_steps, i, k,
                                                       loss_best, k3=thr_decr)
                    fl_reduce_no_impr = (1. - reduced_last_check) * (
                            loss_best_last_check >= loss_best).float()
                    fl_oscillation = torch.max(fl_oscillation,
                                               fl_reduce_no_impr)
                    reduced_last_check = fl_oscillation.clone()
                    loss_best_last_check = loss_best.clone()

                    if fl_oscillation.sum() > 0:
                        ind_fl_osc = (fl_oscillation > 0).nonzero().squeeze()
                        step_size[ind_fl_osc] /= 2.0
                        n_reduced = fl_oscillation.sum()

                        x_adv[ind_fl_osc] = x_best[ind_fl_osc].clone()
                        grad[ind_fl_osc] = grad_best[ind_fl_osc].clone()

                    counter3 = 0
                    k = max(k - size_decr, n_iter_min)

                elif norm in ['L1']:
                    # adjust sparsity
                    sp_curr = L0_norm(x_best - x)
                    fl_redtopk = (sp_curr / sp_old) < .95
                    topk = sp_curr / n_fts / 1.5
                    step_size[fl_redtopk] = alpha * eps
                    step_size[~fl_redtopk] /= adasp_redstep
                    step_size.clamp_(alpha * eps / adasp_minstep, alpha * eps)
                    sp_old = sp_curr.clone()

                    x_adv[fl_redtopk] = x_best[fl_redtopk].clone()
                    grad[fl_redtopk] = grad_best[fl_redtopk].clone()

                    counter3 = 0
    
    return x_best, loss_best, x_best_adv