Spaces:
Runtime error
Runtime error
File size: 14,596 Bytes
fc0ff8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
# Code adapted from https://github.com/chs20/RobustVLM/tree/main
import torch
import math
class APGD:
def __init__(self, model, norm, eps, mask_out='context', initial_stepsize=None, decrease_every=None, decrease_every_max=None, random_init=False):
# model returns loss sum over batch
# thus currently only works with batch size 1
# initial_stepsize: in terms of eps. called alpha in apgd
# decrease_every: potentially decrease stepsize every x fraction of total iterations. default: 0.22
self.model = model
self.norm = norm
self.eps = eps
self.initial_stepsize = initial_stepsize
self.decrease_every = decrease_every
self.decrease_every_max = decrease_every_max
self.random_init = random_init
if mask_out != 'none':
self.mask_out = mask_out
else:
self.mask_out = None
def perturb(self, data_clean, iterations, pert_init=None, verbose=False):
mask = self._set_mask(data_clean)
data_adv, _, _ = apgd(
self.model, data_clean, norm=self.norm, eps=self.eps, n_iter=iterations,
use_rs=self.random_init, mask=mask, alpha=self.initial_stepsize,
n_iter_2=self.decrease_every, n_iter_min=self.decrease_every_max, pert_init=pert_init,
verbose=verbose
)
return data_adv
def _set_mask(self, data):
mask = torch.ones_like(data)
if self.mask_out == 'context':
mask[:, :-1, ...] = 0
elif self.mask_out == 'query':
mask[:, -1, ...] = 0
elif isinstance(self.mask_out, int):
mask[:, self.mask_out, ...] = 0
elif self.mask_out is None:
pass
else:
raise NotImplementedError(f'Unknown mask_out: {self.mask_out}')
return mask
def __str__(self):
return 'APGD'
def L1_projection(x2, y2, eps1):
'''
x2: center of the L1 ball (bs x input_dim)
y2: current perturbation (x2 + y2 is the point to be projected)
eps1: radius of the L1 ball
output: delta s.th. ||y2 + delta||_1 = eps1
and 0 <= x2 + y2 + delta <= 1
'''
x = x2.clone().float().view(x2.shape[0], -1)
y = y2.clone().float().view(y2.shape[0], -1)
sigma = y.clone().sign()
u = torch.min(1 - x - y, x + y)
# u = torch.min(u, epsinf - torch.clone(y).abs())
u = torch.min(torch.zeros_like(y), u)
l = -torch.clone(y).abs()
d = u.clone()
bs, indbs = torch.sort(-torch.cat((u, l), 1), dim=1)
bs2 = torch.cat((bs[:, 1:], torch.zeros(bs.shape[0], 1).to(bs.device)), 1)
inu = 2 * (indbs < u.shape[1]).float() - 1
size1 = inu.cumsum(dim=1)
s1 = -u.sum(dim=1)
c = eps1 - y.clone().abs().sum(dim=1)
c5 = s1 + c < 0
c2 = c5.nonzero().squeeze(1)
s = s1.unsqueeze(-1) + torch.cumsum((bs2 - bs) * size1, dim=1)
# print(s[0])
# print(c5.shape, c2)
if c2.nelement != 0:
lb = torch.zeros_like(c2).float()
ub = torch.ones_like(lb) * (bs.shape[1] - 1)
# print(c2.shape, lb.shape)
nitermax = torch.ceil(torch.log2(torch.tensor(bs.shape[1]).float()))
counter2 = torch.zeros_like(lb).long()
counter = 0
while counter < nitermax:
counter4 = torch.floor((lb + ub) / 2.)
counter2 = counter4.type(torch.LongTensor)
c8 = s[c2, counter2] + c[c2] < 0
ind3 = c8.nonzero().squeeze(1)
ind32 = (~c8).nonzero().squeeze(1)
# print(ind3.shape)
if ind3.nelement != 0:
lb[ind3] = counter4[ind3]
if ind32.nelement != 0:
ub[ind32] = counter4[ind32]
# print(lb, ub)
counter += 1
lb2 = lb.long()
alpha = (-s[c2, lb2] - c[c2]) / size1[c2, lb2 + 1] + bs2[c2, lb2]
d[c2] = -torch.min(torch.max(-u[c2], alpha.unsqueeze(-1)), -l[c2])
return (sigma * d).view(x2.shape)
def L0_projection(x_adv, x, eps, step_size, lam=0.01):
pert = x_adv - x
pert_proj = torch.clamp(pert,-eps,eps)
x_adv_temp = torch.clamp(x + pert_proj,0.,1.)
pert_proj = x_adv_temp - x
pert = torch.where(pert ** 2 - (pert_proj - pert) ** 2 > 2 * step_size * lam, pert_proj, 0)
#pert = torch.where(pert > (2 * lam * step_size) ** 0.5, pert, 0)
return torch.clamp(x+pert,0.0,1.0)
def L1_norm(x, keepdim=False):
z = x.abs().view(x.shape[0], -1).sum(-1)
if keepdim:
z = z.view(-1, *[1] * (len(x.shape) - 1))
return z
def L2_norm(x, keepdim=False):
z = (x ** 2).view(x.shape[0], -1).sum(-1).sqrt()
if keepdim:
z = z.view(-1, *[1] * (len(x.shape) - 1))
return z
def L0_norm(x):
return (x != 0.).view(x.shape[0], -1).sum(-1)
def dlr_loss(x, y, reduction='none'):
x_sorted, ind_sorted = x.sort(dim=1)
ind = (ind_sorted[:, -1] == y).float()
return -(x[torch.arange(x.shape[0]), y] - x_sorted[:, -2] * ind - \
x_sorted[:, -1] * (1. - ind)) / (x_sorted[:, -1] - x_sorted[:, -3] + 1e-12)
def dlr_loss_targeted(x, y, y_target):
x_sorted, ind_sorted = x.sort(dim=1)
u = torch.arange(x.shape[0])
return -(x[u, y] - x[u, y_target]) / (x_sorted[:, -1] - .5 * (
x_sorted[:, -3] + x_sorted[:, -4]) + 1e-12)
def check_oscillation(x, j, k, y5, k3=0.75):
t = torch.zeros(x.shape[1]).to(x.device)
for counter5 in range(k):
t += (x[j - counter5] > x[j - counter5 - 1]).float()
return (t <= k * k3 * torch.ones_like(t)).float()
def apgd(model, x, norm, eps, n_iter=10, use_rs=False, mask=None, alpha=None, n_iter_2=None,
n_iter_min=None, pert_init=None, verbose=False, is_train=True):
# from https://github.com/fra31/robust-finetuning
assert x.shape[0] == 1 # only support batch size 1 for now
norm = norm.replace('l', 'L')
device = x.device
ndims = len(x.shape) - 1
if not use_rs:
x_adv = x.clone()
else:
if norm == 'Linf':
t = torch.zeros_like(x).uniform_(-eps, eps).detach()
x_adv = x + t
elif norm == 'L2':
t = torch.randn(x.shape).to(device).detach()
x_adv = x + eps * torch.ones_like(x).detach() * t / (L2_norm(t, keepdim=True) + 1e-12)
if pert_init is not None:
assert not use_rs
assert pert_init.shape == x.shape, f'pert_init.shape: {pert_init.shape}, x.shape: {x.shape}'
x_adv = x + pert_init
x_adv = x_adv.clamp(0., 1.)
x_best = x_adv.clone()
x_best_adv = x_adv.clone()
loss_steps = torch.zeros([n_iter, x.shape[0]], device=device)
loss_best_steps = torch.zeros([n_iter + 1, x.shape[0]], device=device)
# set params
n_fts = math.prod(x.shape[1:])
if norm in ['Linf', 'L2']:
n_iter_2_frac = 0.22 if n_iter_2 is None else n_iter_2
n_iter_min_frac = 0.06 if n_iter_min is None else n_iter_min
n_iter_2 = max(int(n_iter_2_frac * n_iter), 1)
n_iter_min = max(int(n_iter_min_frac * n_iter), 1)
size_decr = max(int(0.03 * n_iter), 1)
k = n_iter_2 + 0
thr_decr = .75
alpha = 2. if alpha is None else alpha
elif norm in ['L1','L0']:
k = max(int(.04 * n_iter), 1)
init_topk = .05 if is_train else .2
topk = init_topk * torch.ones([x.shape[0]], device=device)
sp_old = n_fts * torch.ones_like(topk)
adasp_redstep = 1.5
adasp_minstep = 10.
alpha = 1. if alpha is None else alpha
step_size = alpha * eps * torch.ones([x.shape[0], *[1] * ndims],
device=device)
counter3 = 0
x_adv.requires_grad_()
# grad = torch.zeros_like(x)
# for _ in range(self.eot_iter)
with torch.enable_grad():
loss_indiv = model(x_adv)#.unsqueeze(0)
loss = loss_indiv.sum()
# grad += torch.autograd.grad(loss, [x_adv])[0].detach()
grad = torch.autograd.grad(loss, [x_adv])[0].detach()
if mask is not None:
grad *= mask
# grad /= float(self.eot_iter)
grad_best = grad.clone()
x_adv.detach_()
loss_indiv = loss_indiv.detach()
loss = loss.detach()
loss_best = loss_indiv.detach().clone()
loss_best_last_check = loss_best.clone()
reduced_last_check = torch.ones_like(loss_best)
n_reduced = 0
u = torch.arange(x.shape[0], device=device)
x_adv_old = x_adv.clone().detach()
for i in range(n_iter):
### gradient step
if True: # with torch.no_grad()
x_adv = x_adv.detach()
grad2 = x_adv - x_adv_old
x_adv_old = x_adv.clone()
loss_curr = loss.detach().mean()
a = 0.75 if i > 0 else 1.0
if norm == 'Linf':
x_adv_1 = x_adv + step_size * torch.sign(grad)
x_adv_1 = torch.clamp(torch.min(torch.max(x_adv_1,
x - eps), x + eps), 0.0, 1.0)
x_adv_1 = torch.clamp(torch.min(torch.max(
x_adv + (x_adv_1 - x_adv) * a + grad2 * (1 - a),
x - eps), x + eps), 0.0, 1.0)
elif norm == 'L2':
x_adv_1 = x_adv + step_size * grad / (L2_norm(grad,
keepdim=True) + 1e-12)
x_adv_1 = torch.clamp(x + (x_adv_1 - x) / (L2_norm(x_adv_1 - x,
keepdim=True) + 1e-12) * torch.min(eps * torch.ones_like(x),
L2_norm(x_adv_1 - x, keepdim=True)), 0.0, 1.0)
x_adv_1 = x_adv + (x_adv_1 - x_adv) * a + grad2 * (1 - a)
x_adv_1 = torch.clamp(x + (x_adv_1 - x) / (L2_norm(x_adv_1 - x,
keepdim=True) + 1e-12) * torch.min(eps * torch.ones_like(x),
L2_norm(x_adv_1 - x, keepdim=True)), 0.0, 1.0)
elif norm == 'L1':
grad_topk = grad.abs().view(x.shape[0], -1).sort(-1)[0]
topk_curr = torch.clamp((1. - topk) * n_fts, min=0, max=n_fts - 1).long()
grad_topk = grad_topk[u, topk_curr].view(-1, *[1] * (len(x.shape) - 1))
sparsegrad = grad * (grad.abs() >= grad_topk).float()
x_adv_1 = x_adv + step_size * sparsegrad.sign() / (
sparsegrad.sign().abs().view(x.shape[0], -1).sum(dim=-1).view(
-1, 1, 1, 1) + 1e-10)
delta_u = x_adv_1 - x
delta_p = L1_projection(x, delta_u, eps)
x_adv_1 = x + delta_u + delta_p
elif norm == 'L0':
L1normgrad = grad / (grad.abs().view(grad.shape[0], -1).sum(
dim=-1, keepdim=True) + 1e-12).view(grad.shape[0], *[1] * (
len(grad.shape) - 1))
x_adv_1 = x_adv + step_size * L1normgrad * n_fts
# TODO: add momentum
x_adv = x_adv_1.to(dtype=x_adv.dtype) + 0.
### get gradient
x_adv.requires_grad_()
# grad = torch.zeros_like(x)
# for _ in range(self.eot_iter)
with torch.enable_grad():
loss_indiv = model(x_adv)#.unsqueeze(0)
loss = loss_indiv.sum()
# grad += torch.autograd.grad(loss, [x_adv])[0].detach()
if i < n_iter - 1:
# save one backward pass
grad = torch.autograd.grad(loss, [x_adv])[0].detach()
if mask is not None:
grad *= mask
# grad /= float(self.eot_iter)
x_adv.detach_()
loss_indiv = loss_indiv.detach()
loss = loss.detach()
x_best_adv = x_adv + 0.
if verbose and (i % max(n_iter // 10, 1) == 0 or i == n_iter - 1):
str_stats = ' - step size: {:.5f} - topk: {:.2f}'.format(
step_size.mean(), topk.mean() * n_fts) if norm in ['L1'] else ' - step size: {:.5f}'.format(
step_size.mean())
print('iteration: {} - best loss: {:.6f} curr loss {:.6f} {}'.format(
i, loss_best.sum(), loss_curr, str_stats))
# print('pert {}'.format((x - x_best_adv).abs().view(x.shape[0], -1).sum(-1).max()))
### check step size
if True: # with torch.no_grad()
y1 = loss_indiv.detach().clone()
loss_steps[i] = y1 + 0
ind = (y1 > loss_best).nonzero().squeeze()
x_best[ind] = x_adv[ind].clone()
grad_best[ind] = grad[ind].clone()
loss_best[ind] = y1[ind] + 0
loss_best_steps[i + 1] = loss_best + 0
counter3 += 1
if counter3 == k:
if norm in ['Linf', 'L2']:
fl_oscillation = check_oscillation(loss_steps, i, k,
loss_best, k3=thr_decr)
fl_reduce_no_impr = (1. - reduced_last_check) * (
loss_best_last_check >= loss_best).float()
fl_oscillation = torch.max(fl_oscillation,
fl_reduce_no_impr)
reduced_last_check = fl_oscillation.clone()
loss_best_last_check = loss_best.clone()
if fl_oscillation.sum() > 0:
ind_fl_osc = (fl_oscillation > 0).nonzero().squeeze()
step_size[ind_fl_osc] /= 2.0
n_reduced = fl_oscillation.sum()
x_adv[ind_fl_osc] = x_best[ind_fl_osc].clone()
grad[ind_fl_osc] = grad_best[ind_fl_osc].clone()
counter3 = 0
k = max(k - size_decr, n_iter_min)
elif norm in ['L1']:
# adjust sparsity
sp_curr = L0_norm(x_best - x)
fl_redtopk = (sp_curr / sp_old) < .95
topk = sp_curr / n_fts / 1.5
step_size[fl_redtopk] = alpha * eps
step_size[~fl_redtopk] /= adasp_redstep
step_size.clamp_(alpha * eps / adasp_minstep, alpha * eps)
sp_old = sp_curr.clone()
x_adv[fl_redtopk] = x_best[fl_redtopk].clone()
grad[fl_redtopk] = grad_best[fl_redtopk].clone()
counter3 = 0
return x_best, loss_best, x_best_adv
|