Spaces:
Sleeping
Sleeping
Rania Mani
commited on
Commit
·
623d37e
1
Parent(s):
3e5413c
initial commit
Browse files- .gitignore +1 -0
- Dockerfile +34 -0
- README.md +193 -5
- app.py +43 -0
- recognizer_tunisian_vosk.py +28 -0
- requirements.txt +7 -0
- vosk-model-small-ar-tn-0.1-linto.zip +3 -0
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
.DS_Store
|
Dockerfile
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Use a minimal base image
|
| 2 |
+
FROM python:3.9-slim
|
| 3 |
+
|
| 4 |
+
# Install unzip
|
| 5 |
+
RUN apt-get update && apt-get install -y unzip ffmpeg && rm -rf /var/lib/apt/lists/*
|
| 6 |
+
|
| 7 |
+
# Create a non-root user for security
|
| 8 |
+
RUN useradd -m user
|
| 9 |
+
USER user
|
| 10 |
+
|
| 11 |
+
# Set environment variables
|
| 12 |
+
ENV HOME=/home/user \
|
| 13 |
+
PATH=/home/user/.local/bin:$PATH \
|
| 14 |
+
PORT=7860
|
| 15 |
+
|
| 16 |
+
# Set the working directory
|
| 17 |
+
WORKDIR $HOME/app
|
| 18 |
+
|
| 19 |
+
# Copy requirements and install dependencies
|
| 20 |
+
COPY --chown=user requirements.txt ./
|
| 21 |
+
RUN pip install --upgrade pip && \
|
| 22 |
+
pip install -r requirements.txt
|
| 23 |
+
|
| 24 |
+
# Copy application files and the model zip
|
| 25 |
+
COPY --chown=user ./ $HOME/app
|
| 26 |
+
|
| 27 |
+
# Unzip the model file
|
| 28 |
+
RUN unzip vosk-model-small-ar-tn-0.1-linto.zip -d model && rm vosk-model-small-ar-tn-0.1-linto.zip
|
| 29 |
+
|
| 30 |
+
# Expose the correct port for Hugging Face Spaces
|
| 31 |
+
EXPOSE 7860
|
| 32 |
+
|
| 33 |
+
# Run the FastAPI app with uvicorn directly
|
| 34 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
README.md
CHANGED
|
@@ -1,10 +1,198 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: docker
|
|
|
|
| 7 |
pinned: false
|
| 8 |
---
|
| 9 |
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Vosk Arabic Speech-to-Text API
|
| 3 |
+
emoji: 🗣️
|
| 4 |
+
colorFrom: gray
|
| 5 |
+
colorTo: green
|
| 6 |
sdk: docker
|
| 7 |
+
app_file: app.py
|
| 8 |
pinned: false
|
| 9 |
---
|
| 10 |
|
| 11 |
+
# 🧏♂️ Arabic Tunisian Speech-to-Text API
|
| 12 |
+
|
| 13 |
+
This Space hosts a lightweight speech recognition API using the `vosk-model-small-ar-tn-0.1-linto`, tailored for Tunisian dialect. Upload audio files or send audio input for transcription in real-time using FastAPI.
|
| 14 |
+
|
| 15 |
+
---
|
| 16 |
+
|
| 17 |
+
## 📦 Features
|
| 18 |
+
|
| 19 |
+
- 🗣️ Supports **Tunisian dialect** (not just MSA)
|
| 20 |
+
- ⚡ Fast, offline, and CPU-friendly
|
| 21 |
+
- 🧠 Uses `vosk-model-small-ar-tn-0.1-linto` (~40MB)
|
| 22 |
+
- 🔌 REST API endpoint for audio transcription
|
| 23 |
+
- 🧪 Easy to test locally or remotely
|
| 24 |
+
|
| 25 |
+
---
|
| 26 |
+
|
| 27 |
+
## 🧠 Model Details
|
| 28 |
+
|
| 29 |
+
| Model | Description |
|
| 30 |
+
|--------------------------|-----------------------------------------------|
|
| 31 |
+
| `vosk-model-small-ar-tn` | Lightweight Tunisian Arabic model by Linto |
|
| 32 |
+
| Size | ~40MB |
|
| 33 |
+
| Type | DeepSpeech-like, optimized for small CPUs |
|
| 34 |
+
| Accuracy | Good for clear speech in Tunisian dialect |
|
| 35 |
+
| Input | 16kHz mono `.wav` files |
|
| 36 |
+
| Output | Plain Arabic text (Tunisian dialect) |
|
| 37 |
+
|
| 38 |
+
> ✅ Ideal for offline applications and edge devices.
|
| 39 |
+
|
| 40 |
+
---
|
| 41 |
+
|
| 42 |
+
## 🚀 Quick Start (API)
|
| 43 |
+
|
| 44 |
+
### 🔧 Endpoint: `POST /transcribe/tunisian`
|
| 45 |
+
|
| 46 |
+
Send a `.wav` audio file and receive a transcription in Arabic.
|
| 47 |
+
|
| 48 |
+
#### ✅ Example CURL:
|
| 49 |
+
|
| 50 |
+
```bash
|
| 51 |
+
curl -X POST http://localhost:7860/transcribe/tunisian \
|
| 52 |
+
-F "[email protected]"
|
| 53 |
+
````
|
| 54 |
+
|
| 55 |
+
#### 📤 Example Response:
|
| 56 |
+
|
| 57 |
+
```json
|
| 58 |
+
{
|
| 59 |
+
"transcript": "شني حوالك اليوم؟"
|
| 60 |
+
}
|
| 61 |
+
```
|
| 62 |
+
|
| 63 |
+
---
|
| 64 |
+
|
| 65 |
+
## 🧪 Local Testing
|
| 66 |
+
|
| 67 |
+
1. Clone this repository.
|
| 68 |
+
2. Install dependencies:
|
| 69 |
+
|
| 70 |
+
```bash
|
| 71 |
+
pip install -r requirements.txt
|
| 72 |
+
```
|
| 73 |
+
|
| 74 |
+
3. Make sure the model is extracted under `model/` like this:
|
| 75 |
+
|
| 76 |
+
```
|
| 77 |
+
model/
|
| 78 |
+
└── vosk-model-small-ar-tn-0.1-linto
|
| 79 |
+
├── am
|
| 80 |
+
├── conf
|
| 81 |
+
└── etc.
|
| 82 |
+
```
|
| 83 |
+
|
| 84 |
+
4. Run locally:
|
| 85 |
+
|
| 86 |
+
```bash
|
| 87 |
+
python app.py
|
| 88 |
+
```
|
| 89 |
+
|
| 90 |
+
5. Test the `/transcribe/tunisian` endpoint with a `.wav` file.
|
| 91 |
+
|
| 92 |
+
---
|
| 93 |
+
|
| 94 |
+
## 🐳 Docker for Hugging Face Spaces
|
| 95 |
+
|
| 96 |
+
If you use a Docker-based Space, here’s the sample Dockerfile:
|
| 97 |
+
|
| 98 |
+
```dockerfile
|
| 99 |
+
# Use a minimal base image
|
| 100 |
+
FROM python:3.9-slim
|
| 101 |
+
|
| 102 |
+
# Install unzip
|
| 103 |
+
RUN apt-get update && apt-get install -y unzip ffmpeg && rm -rf /var/lib/apt/lists/*
|
| 104 |
+
|
| 105 |
+
# Create a non-root user for security
|
| 106 |
+
RUN useradd -m user
|
| 107 |
+
USER user
|
| 108 |
+
|
| 109 |
+
# Set environment variables
|
| 110 |
+
ENV HOME=/home/user \
|
| 111 |
+
PATH=/home/user/.local/bin:$PATH \
|
| 112 |
+
PORT=7860
|
| 113 |
+
|
| 114 |
+
# Set the working directory
|
| 115 |
+
WORKDIR $HOME/app
|
| 116 |
+
|
| 117 |
+
# Copy requirements and install dependencies
|
| 118 |
+
COPY --chown=user requirements.txt ./
|
| 119 |
+
RUN pip install --upgrade pip && \
|
| 120 |
+
pip install -r requirements.txt
|
| 121 |
+
|
| 122 |
+
# Copy application files and the model zip
|
| 123 |
+
COPY --chown=user ./ $HOME/app
|
| 124 |
+
|
| 125 |
+
# Unzip the model file
|
| 126 |
+
RUN unzip vosk-model-small-ar-tn-0.1-linto.zip -d model && rm vosk-model-small-ar-tn-0.1-linto.zip
|
| 127 |
+
|
| 128 |
+
# Expose the correct port for Hugging Face Spaces
|
| 129 |
+
EXPOSE 7860
|
| 130 |
+
|
| 131 |
+
# Run the FastAPI app with uvicorn directly
|
| 132 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
| 133 |
+
```
|
| 134 |
+
|
| 135 |
+
---
|
| 136 |
+
|
| 137 |
+
## 🧾 Example Python Client
|
| 138 |
+
|
| 139 |
+
```python
|
| 140 |
+
import requests
|
| 141 |
+
|
| 142 |
+
with open("sample.wav", "rb") as audio_file:
|
| 143 |
+
response = requests.post(
|
| 144 |
+
"http://localhost:7860/transcribe/tunisian",
|
| 145 |
+
files={"audio": audio_file}
|
| 146 |
+
)
|
| 147 |
+
print(response.json())
|
| 148 |
+
```
|
| 149 |
+
|
| 150 |
+
---
|
| 151 |
+
|
| 152 |
+
## 📁 File Structure
|
| 153 |
+
|
| 154 |
+
```
|
| 155 |
+
.
|
| 156 |
+
├── app.py # FastAPI app with transcription endpoint
|
| 157 |
+
├── model/ # Contains the Vosk model
|
| 158 |
+
├── requirements.txt # Dependencies (FastAPI, Vosk, etc.)
|
| 159 |
+
├── sample.wav # Example audio file
|
| 160 |
+
└── Dockerfile # For deployment
|
| 161 |
+
```
|
| 162 |
+
|
| 163 |
+
---
|
| 164 |
+
|
| 165 |
+
## 🛠 Dependencies
|
| 166 |
+
|
| 167 |
+
```txt
|
| 168 |
+
fastapi
|
| 169 |
+
uvicorn
|
| 170 |
+
vosk
|
| 171 |
+
soundfile
|
| 172 |
+
numpy
|
| 173 |
+
```
|
| 174 |
+
|
| 175 |
+
---
|
| 176 |
+
|
| 177 |
+
## 👩💻 Maintainer
|
| 178 |
+
|
| 179 |
+
**Inherited Games Studio**
|
| 180 |
+
📧 [[email protected]](mailto:[email protected])
|
| 181 |
+
🔗 [github.com/inheritedgames](https://github.com/inheritedgames)
|
| 182 |
+
🔗 [github.com/RAMA012001](https://github.com/RAMA012001)
|
| 183 |
+
|
| 184 |
+
---
|
| 185 |
+
|
| 186 |
+
## 📄 License
|
| 187 |
+
|
| 188 |
+
MIT License
|
| 189 |
+
|
| 190 |
+
---
|
| 191 |
+
|
| 192 |
+
## 🧠 Credits
|
| 193 |
+
|
| 194 |
+
* Model: [`vosk-model-small-ar-tn-0.1-linto`](https://alphacephei.com/vosk/models)
|
| 195 |
+
* Framework: [FastAPI](https://fastapi.tiangolo.com/)
|
| 196 |
+
* Hosting: [Hugging Face Spaces](https://huggingface.co/spaces)
|
| 197 |
+
|
| 198 |
+
```
|
app.py
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, UploadFile, File, HTTPException
|
| 2 |
+
from fastapi.responses import PlainTextResponse
|
| 3 |
+
from fastapi.middleware.gzip import GZipMiddleware
|
| 4 |
+
from recognizer_tunisian_vosk import RecognizerTunisianVosk
|
| 5 |
+
from pydub import AudioSegment
|
| 6 |
+
import shutil
|
| 7 |
+
import os
|
| 8 |
+
|
| 9 |
+
app = FastAPI()
|
| 10 |
+
app.add_middleware(GZipMiddleware, minimum_size=1000)
|
| 11 |
+
|
| 12 |
+
vosk_recognizer = RecognizerTunisianVosk()
|
| 13 |
+
|
| 14 |
+
TEMP_RAW = "temp_input"
|
| 15 |
+
TEMP_WAV = "temp.wav"
|
| 16 |
+
|
| 17 |
+
@app.get("/")
|
| 18 |
+
def read_root():
|
| 19 |
+
return {"message": "Audio Transcription API is running."}
|
| 20 |
+
|
| 21 |
+
@app.post("/transcribe/tunisian", response_class=PlainTextResponse)
|
| 22 |
+
async def transcribe_tunisian(file: UploadFile = File(...)):
|
| 23 |
+
try:
|
| 24 |
+
# Save uploaded file
|
| 25 |
+
with open(TEMP_RAW, "wb") as buffer:
|
| 26 |
+
shutil.copyfileobj(file.file, buffer)
|
| 27 |
+
|
| 28 |
+
# Convert to correct format using pydub
|
| 29 |
+
audio = AudioSegment.from_file(TEMP_RAW)
|
| 30 |
+
audio = audio.set_channels(1).set_frame_rate(16000)
|
| 31 |
+
audio.export(TEMP_WAV, format="wav")
|
| 32 |
+
|
| 33 |
+
# Transcribe
|
| 34 |
+
text = vosk_recognizer.transcribe(TEMP_WAV)
|
| 35 |
+
return text
|
| 36 |
+
|
| 37 |
+
except Exception as e:
|
| 38 |
+
raise HTTPException(status_code=400, detail=f"Audio processing error: {str(e)}")
|
| 39 |
+
|
| 40 |
+
finally:
|
| 41 |
+
for path in [TEMP_RAW, TEMP_WAV]:
|
| 42 |
+
if os.path.exists(path):
|
| 43 |
+
os.remove(path)
|
recognizer_tunisian_vosk.py
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import wave
|
| 2 |
+
import json
|
| 3 |
+
from vosk import Model as VoskModel, KaldiRecognizer as VoskRecognizer
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
class RecognizerTunisianVosk:
|
| 7 |
+
def __init__(self, recognizer_name: str = "vosk", vosk_model_dir: str = "model/vosk-model-small-ar-tn-0.1-linto"):
|
| 8 |
+
self.recognizer_name = recognizer_name
|
| 9 |
+
self.vosk_model_dir = vosk_model_dir
|
| 10 |
+
if not os.path.exists(self.vosk_model_dir):
|
| 11 |
+
raise ValueError(f"Vosk model directory '{self.vosk_model_dir}' does not exist.")
|
| 12 |
+
self.vosk_model = VoskModel(self.vosk_model_dir)
|
| 13 |
+
|
| 14 |
+
def transcribe(self, audio_path: str) -> str:
|
| 15 |
+
"""
|
| 16 |
+
Transcribe speech from an audio file.
|
| 17 |
+
|
| 18 |
+
:param audio_path: Path to the WAV file.
|
| 19 |
+
:return: Transcribed text.
|
| 20 |
+
"""
|
| 21 |
+
with wave.open(audio_path, "rb") as wf:
|
| 22 |
+
if wf.getnchannels() != 1 or wf.getsampwidth() != 2 or wf.getcomptype() != "NONE":
|
| 23 |
+
raise ValueError("Audio file must be WAV format mono PCM (16-bit, mono, uncompressed).")
|
| 24 |
+
|
| 25 |
+
recognizer = VoskRecognizer(self.vosk_model, wf.getframerate())
|
| 26 |
+
recognizer.AcceptWaveform(wf.readframes(wf.getnframes()))
|
| 27 |
+
result = recognizer.FinalResult()
|
| 28 |
+
return json.loads(result)["text"]
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi
|
| 2 |
+
uvicorn
|
| 3 |
+
# torch
|
| 4 |
+
# torchaudio
|
| 5 |
+
pydub
|
| 6 |
+
python-multipart
|
| 7 |
+
vosk
|
vosk-model-small-ar-tn-0.1-linto.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e8213c0a2d281b3075108ad3ad98786263ba8ce6f5fd9552f7372de9431b071f
|
| 3 |
+
size 165683177
|