Spaces:
Sleeping
Sleeping
Alan Liu
commited on
Commit
·
6aa1c8b
1
Parent(s):
5f0df3a
add arithmetic intensity
Browse files- app.py +6 -2
- render_util.py +1 -1
app.py
CHANGED
|
@@ -57,7 +57,7 @@ subtotal_operations = [
|
|
| 57 |
|
| 58 |
|
| 59 |
|
| 60 |
-
col1, col2, col3, col4, col5 = st.columns([1,1.5,2,2,
|
| 61 |
|
| 62 |
inference_config = {}
|
| 63 |
parameter_count = {}
|
|
@@ -144,15 +144,19 @@ with col3: # Prefilling
|
|
| 144 |
|
| 145 |
operation_items = {key: "{:,}".format(int(prefilling_operation_count[key])) for key in prefilling_operation_count if key not in subtotal_operations}
|
| 146 |
subtotal_operation_items = {key: "{:,}".format(int(prefilling_operation_count[key])) for key in prefilling_operation_count if key in subtotal_operations}
|
|
|
|
| 147 |
prefilling_activation_memory_count = {key: "{:,}".format(int(value)) for key, value in prefilling_activation_memory_count.items()}
|
| 148 |
|
|
|
|
| 149 |
## Convert dictionaries to pandas dataframes for table display
|
| 150 |
df_operation_count = pd.DataFrame(list(operation_items.items()), columns=["Operation", "FLOPS"])
|
| 151 |
df_subtotal_operation_count = pd.DataFrame(list(subtotal_operation_items.items()), columns=["Operation", "FLOPS"])
|
| 152 |
|
| 153 |
df_operation_count["Activation (Byte)"] = df_operation_count["Operation"].map(prefilling_activation_memory_count)
|
|
|
|
| 154 |
df_subtotal_operation_count["Activation (Byte)"] = df_subtotal_operation_count["Operation"].map(prefilling_activation_memory_count)
|
| 155 |
-
|
|
|
|
| 156 |
header4("Inference Ops: Prefilling")
|
| 157 |
st.markdown(create_table(df_operation_count))
|
| 158 |
|
|
|
|
| 57 |
|
| 58 |
|
| 59 |
|
| 60 |
+
col1, col2, col3, col4, col5 = st.columns([1,1.5,2.3,2.3,0.1])
|
| 61 |
|
| 62 |
inference_config = {}
|
| 63 |
parameter_count = {}
|
|
|
|
| 144 |
|
| 145 |
operation_items = {key: "{:,}".format(int(prefilling_operation_count[key])) for key in prefilling_operation_count if key not in subtotal_operations}
|
| 146 |
subtotal_operation_items = {key: "{:,}".format(int(prefilling_operation_count[key])) for key in prefilling_operation_count if key in subtotal_operations}
|
| 147 |
+
prefilling_arithmetic_intensity = {key: "{:.3f}".format(prefilling_operation_count[key]/prefilling_activation_memory_count[key]) for key in prefilling_activation_memory_count}
|
| 148 |
prefilling_activation_memory_count = {key: "{:,}".format(int(value)) for key, value in prefilling_activation_memory_count.items()}
|
| 149 |
|
| 150 |
+
|
| 151 |
## Convert dictionaries to pandas dataframes for table display
|
| 152 |
df_operation_count = pd.DataFrame(list(operation_items.items()), columns=["Operation", "FLOPS"])
|
| 153 |
df_subtotal_operation_count = pd.DataFrame(list(subtotal_operation_items.items()), columns=["Operation", "FLOPS"])
|
| 154 |
|
| 155 |
df_operation_count["Activation (Byte)"] = df_operation_count["Operation"].map(prefilling_activation_memory_count)
|
| 156 |
+
df_operation_count["Arithmetic Intensity"] = df_operation_count["Operation"].map(prefilling_arithmetic_intensity)
|
| 157 |
df_subtotal_operation_count["Activation (Byte)"] = df_subtotal_operation_count["Operation"].map(prefilling_activation_memory_count)
|
| 158 |
+
df_subtotal_operation_count["Arithmetic Intensity"] = df_subtotal_operation_count["Operation"].map(prefilling_arithmetic_intensity)
|
| 159 |
+
|
| 160 |
header4("Inference Ops: Prefilling")
|
| 161 |
st.markdown(create_table(df_operation_count))
|
| 162 |
|
render_util.py
CHANGED
|
@@ -4,7 +4,7 @@ def create_table(df):
|
|
| 4 |
# Table header based on df columns
|
| 5 |
header = "| " + " | ".join(df.columns) + " |"
|
| 6 |
# Number of columns in df to set table divider accordingly
|
| 7 |
-
divider = "
|
| 8 |
rows = [header, divider]
|
| 9 |
|
| 10 |
for _, row in df.iterrows():
|
|
|
|
| 4 |
# Table header based on df columns
|
| 5 |
header = "| " + " | ".join(df.columns) + " |"
|
| 6 |
# Number of columns in df to set table divider accordingly
|
| 7 |
+
divider = "|:---|" + "|-----:|" * len(df.columns[:-1])
|
| 8 |
rows = [header, divider]
|
| 9 |
|
| 10 |
for _, row in df.iterrows():
|