Corrected major bug
Browse files- app.py +149 -64
- climateqa/chains.py +42 -5
app.py
CHANGED
|
@@ -20,7 +20,8 @@ from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
|
| 20 |
|
| 21 |
# ClimateQ&A imports
|
| 22 |
from climateqa.llm import get_llm
|
| 23 |
-
from climateqa.chains import
|
|
|
|
| 24 |
from climateqa.vectorstore import get_pinecone_vectorstore
|
| 25 |
from climateqa.retriever import ClimateQARetriever
|
| 26 |
from climateqa.prompts import audience_prompts
|
|
@@ -142,36 +143,49 @@ vectorstore = get_pinecone_vectorstore(embeddings_function)
|
|
| 142 |
|
| 143 |
from threading import Thread
|
| 144 |
|
|
|
|
| 145 |
|
| 146 |
-
def answer_user(
|
| 147 |
-
return
|
| 148 |
|
| 149 |
-
def
|
|
|
|
| 150 |
|
|
|
|
| 151 |
|
| 152 |
-
|
|
|
|
|
|
|
| 153 |
|
| 154 |
llm_reformulation = get_llm(max_tokens = 512,temperature = 0.0,verbose = True,streaming = False)
|
| 155 |
-
llm_streaming = get_llm(max_tokens = 1024,temperature = 0.0,verbose = True,streaming = True,
|
| 156 |
-
callbacks=[StreamingGradioCallbackHandler(Q),StreamingStdOutCallbackHandler()],
|
| 157 |
-
)
|
| 158 |
-
|
| 159 |
retriever = ClimateQARetriever(vectorstore=vectorstore,sources = sources,k_summary = 3,k_total = 10)
|
| 160 |
-
|
| 161 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
|
| 163 |
-
|
| 164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
|
| 166 |
-
# if len(message) <= 2:
|
| 167 |
-
# complete_response = "**⚠️ No relevant passages found in the climate science reports (IPCC and IPBES), you may want to ask a more specific question (specifying your question on climate and biodiversity issues).**"
|
| 168 |
-
# history[-1][1] += "\n\n" + complete_response
|
| 169 |
-
# return "", history, ""
|
| 170 |
|
| 171 |
-
|
| 172 |
-
response = chain({"query":query,"audience":audience})
|
| 173 |
-
Q.put(response)
|
| 174 |
-
Q.put(job_done)
|
| 175 |
|
| 176 |
if audience == "Children":
|
| 177 |
audience_prompt = audience_prompts["children"]
|
|
@@ -182,6 +196,57 @@ def answer_bot(message,history,audience,sources):
|
|
| 182 |
else:
|
| 183 |
audience_prompt = audience_prompts["experts"]
|
| 184 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
# history_langchain_format = []
|
| 186 |
# for human, ai in history:
|
| 187 |
# history_langchain_format.append(HumanMessage(content=human))
|
|
@@ -190,41 +255,42 @@ def answer_bot(message,history,audience,sources):
|
|
| 190 |
# for next_token, content in stream(message):
|
| 191 |
# yield(content)
|
| 192 |
|
| 193 |
-
thread = Thread(target=threaded_chain, kwargs={"query":message,"audience":audience_prompt})
|
| 194 |
-
thread.start()
|
| 195 |
-
|
| 196 |
-
history[-1][1] = ""
|
| 197 |
-
while True:
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
|
|
|
| 228 |
|
| 229 |
#---------------------------------------------------------------------------
|
| 230 |
# ClimateQ&A core functions
|
|
@@ -375,6 +441,8 @@ def log_on_azure(file, logs, share_client):
|
|
| 375 |
file_client.upload_file(str(logs))
|
| 376 |
|
| 377 |
|
|
|
|
|
|
|
| 378 |
|
| 379 |
|
| 380 |
|
|
@@ -419,7 +487,9 @@ with gr.Blocks(title="🌍 Climate Q&A", css="style.css", theme=theme) as demo:
|
|
| 419 |
show_copy_button=True,show_label = False,elem_id="chatbot",layout = "panel",avatar_images = ("assets/logo4.png",None))
|
| 420 |
|
| 421 |
# bot.like(vote,None,None)
|
| 422 |
-
|
|
|
|
|
|
|
| 423 |
with gr.Row(elem_id = "input-message"):
|
| 424 |
textbox=gr.Textbox(placeholder="Ask me anything here!",show_label=False,scale=1,lines = 1,interactive = True)
|
| 425 |
# submit_button = gr.Button(">",scale = 1,elem_id = "submit-button")
|
|
@@ -472,12 +542,14 @@ with gr.Blocks(title="🌍 Climate Q&A", css="style.css", theme=theme) as demo:
|
|
| 472 |
)
|
| 473 |
|
| 474 |
with gr.Tab("📚 Citations",elem_id = "tab-citations"):
|
| 475 |
-
sources_textbox = gr.
|
|
|
|
| 476 |
|
| 477 |
with gr.Tab("⚙️ Configuration",elem_id = "tab-config"):
|
| 478 |
|
| 479 |
gr.Markdown("Reminder: You can talk in any language, ClimateQ&A is multi-lingual!")
|
| 480 |
|
|
|
|
| 481 |
dropdown_sources = gr.CheckboxGroup(
|
| 482 |
["IPCC", "IPBES"],
|
| 483 |
label="Select reports",
|
|
@@ -492,14 +564,27 @@ with gr.Blocks(title="🌍 Climate Q&A", css="style.css", theme=theme) as demo:
|
|
| 492 |
interactive=True,
|
| 493 |
)
|
| 494 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 495 |
|
| 496 |
# textbox.submit(predict_climateqa,[textbox,bot],[None,bot,sources_textbox])
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
)
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 503 |
# submit_button.click(answer_user, [textbox, bot], [textbox, bot], queue=True).then(
|
| 504 |
# answer_bot, [textbox,bot,dropdown_audience,dropdown_sources], [textbox,bot,sources_textbox]
|
| 505 |
# )
|
|
@@ -688,6 +773,6 @@ Or around 2 to 4 times more than a typical Google search.
|
|
| 688 |
"""
|
| 689 |
)
|
| 690 |
|
| 691 |
-
demo.queue(concurrency_count=
|
| 692 |
|
| 693 |
demo.launch()
|
|
|
|
| 20 |
|
| 21 |
# ClimateQ&A imports
|
| 22 |
from climateqa.llm import get_llm
|
| 23 |
+
from climateqa.chains import load_qa_chain_with_docs,load_qa_chain_with_text
|
| 24 |
+
from climateqa.chains import load_reformulation_chain
|
| 25 |
from climateqa.vectorstore import get_pinecone_vectorstore
|
| 26 |
from climateqa.retriever import ClimateQARetriever
|
| 27 |
from climateqa.prompts import audience_prompts
|
|
|
|
| 143 |
|
| 144 |
from threading import Thread
|
| 145 |
|
| 146 |
+
import json
|
| 147 |
|
| 148 |
+
def answer_user(query,query_example,history):
|
| 149 |
+
return query, history + [[query, ". . ."]]
|
| 150 |
|
| 151 |
+
def answer_user_example(query,query_example,history):
|
| 152 |
+
return query_example, history + [[query_example, ". . ."]]
|
| 153 |
|
| 154 |
+
def fetch_sources(query,sources):
|
| 155 |
|
| 156 |
+
# Prepare default values
|
| 157 |
+
if len(sources) == 0:
|
| 158 |
+
sources = ["IPCC"]
|
| 159 |
|
| 160 |
llm_reformulation = get_llm(max_tokens = 512,temperature = 0.0,verbose = True,streaming = False)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
retriever = ClimateQARetriever(vectorstore=vectorstore,sources = sources,k_summary = 3,k_total = 10)
|
| 162 |
+
reformulation_chain = load_reformulation_chain(llm_reformulation)
|
| 163 |
|
| 164 |
+
# Calculate language
|
| 165 |
+
output_reformulation = reformulation_chain({"query":query})
|
| 166 |
+
question = output_reformulation["question"]
|
| 167 |
+
language = output_reformulation["language"]
|
| 168 |
|
| 169 |
+
# Retrieve docs
|
| 170 |
+
docs = retriever.get_relevant_documents(question)
|
| 171 |
+
|
| 172 |
+
if len(docs) > 0:
|
| 173 |
+
|
| 174 |
+
# Already display the sources
|
| 175 |
+
sources_text = []
|
| 176 |
+
for i, d in enumerate(docs, 1):
|
| 177 |
+
sources_text.append(make_html_source(d, i))
|
| 178 |
+
citations_text = "".join(sources_text)
|
| 179 |
+
docs_text = "\n\n".join([d.page_content for d in docs])
|
| 180 |
+
return "",citations_text,docs_text,question,language
|
| 181 |
+
else:
|
| 182 |
+
sources_text = "⚠️ No relevant passages found in the scientific reports (IPCC and IPBES)"
|
| 183 |
+
citations_text = "**⚠️ No relevant passages found in the climate science reports (IPCC and IPBES), you may want to ask a more specific question (specifying your question on climate and biodiversity issues).**"
|
| 184 |
+
docs_text = ""
|
| 185 |
+
return "",citations_text,docs_text,question,language
|
| 186 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
|
| 188 |
+
def answer_bot(query,history,docs,question,language,audience):
|
|
|
|
|
|
|
|
|
|
| 189 |
|
| 190 |
if audience == "Children":
|
| 191 |
audience_prompt = audience_prompts["children"]
|
|
|
|
| 196 |
else:
|
| 197 |
audience_prompt = audience_prompts["experts"]
|
| 198 |
|
| 199 |
+
# Prepare Queue for streaming LLMs
|
| 200 |
+
Q = SimpleQueue()
|
| 201 |
+
|
| 202 |
+
llm_streaming = get_llm(max_tokens = 1024,temperature = 0.0,verbose = True,streaming = True,
|
| 203 |
+
callbacks=[StreamingGradioCallbackHandler(Q),StreamingStdOutCallbackHandler()],
|
| 204 |
+
)
|
| 205 |
+
|
| 206 |
+
qa_chain = load_qa_chain_with_text(llm_streaming)
|
| 207 |
+
|
| 208 |
+
def threaded_chain(question,audience,language,docs):
|
| 209 |
+
try:
|
| 210 |
+
response = qa_chain({"question":question,"audience":audience,"language":language,"summaries":docs})
|
| 211 |
+
Q.put(response)
|
| 212 |
+
Q.put(job_done)
|
| 213 |
+
except Exception as e:
|
| 214 |
+
print(e)
|
| 215 |
+
|
| 216 |
+
history[-1][1] = ""
|
| 217 |
+
|
| 218 |
+
textbox=gr.Textbox(placeholder=". . .",show_label=False,scale=1,lines = 1,interactive = False)
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
if len(docs) > 0:
|
| 222 |
+
|
| 223 |
+
# Start thread for streaming
|
| 224 |
+
thread = Thread(
|
| 225 |
+
target=threaded_chain,
|
| 226 |
+
kwargs={"question":question,"audience":audience_prompt,"language":language,"docs":docs}
|
| 227 |
+
)
|
| 228 |
+
thread.start()
|
| 229 |
+
|
| 230 |
+
while True:
|
| 231 |
+
next_item = Q.get(block=True) # Blocks until an input is available
|
| 232 |
+
|
| 233 |
+
if next_item is job_done:
|
| 234 |
+
break
|
| 235 |
+
elif isinstance(next_item, str):
|
| 236 |
+
new_paragraph = history[-1][1] + next_item
|
| 237 |
+
new_paragraph = parse_output_llm_with_sources(new_paragraph)
|
| 238 |
+
history[-1][1] = new_paragraph
|
| 239 |
+
yield textbox,history
|
| 240 |
+
else:
|
| 241 |
+
pass
|
| 242 |
+
thread.join()
|
| 243 |
+
else:
|
| 244 |
+
complete_response = "**⚠️ No relevant passages found in the climate science reports (IPCC and IPBES), you may want to ask a more specific question (specifying your question on climate and biodiversity issues).**"
|
| 245 |
+
history[-1][1] += complete_response
|
| 246 |
+
yield "",history
|
| 247 |
+
|
| 248 |
+
|
| 249 |
+
|
| 250 |
# history_langchain_format = []
|
| 251 |
# for human, ai in history:
|
| 252 |
# history_langchain_format.append(HumanMessage(content=human))
|
|
|
|
| 255 |
# for next_token, content in stream(message):
|
| 256 |
# yield(content)
|
| 257 |
|
| 258 |
+
# thread = Thread(target=threaded_chain, kwargs={"query":message,"audience":audience_prompt})
|
| 259 |
+
# thread.start()
|
| 260 |
+
|
| 261 |
+
# history[-1][1] = ""
|
| 262 |
+
# while True:
|
| 263 |
+
# next_item = Q.get(block=True) # Blocks until an input is available
|
| 264 |
+
|
| 265 |
+
# print(type(next_item))
|
| 266 |
+
# if next_item is job_done:
|
| 267 |
+
# continue
|
| 268 |
+
|
| 269 |
+
# elif isinstance(next_item, dict): # assuming LLMResult is a dictionary
|
| 270 |
+
# response = next_item
|
| 271 |
+
# if "source_documents" in response and len(response["source_documents"]) > 0:
|
| 272 |
+
# sources_text = []
|
| 273 |
+
# for i, d in enumerate(response["source_documents"], 1):
|
| 274 |
+
# sources_text.append(make_html_source(d, i))
|
| 275 |
+
# sources_text = "\n\n".join([f"Query used for retrieval:\n{response['question']}"] + sources_text)
|
| 276 |
+
# # history[-1][1] += next_item["answer"]
|
| 277 |
+
# # history[-1][1] += "\n\n" + sources_text
|
| 278 |
+
# yield "", history, sources_text
|
| 279 |
+
|
| 280 |
+
# else:
|
| 281 |
+
# sources_text = "⚠️ No relevant passages found in the scientific reports (IPCC and IPBES)"
|
| 282 |
+
# complete_response = "**⚠️ No relevant passages found in the climate science reports (IPCC and IPBES), you may want to ask a more specific question (specifying your question on climate and biodiversity issues).**"
|
| 283 |
+
# history[-1][1] += "\n\n" + complete_response
|
| 284 |
+
# yield "", history, sources_text
|
| 285 |
+
# break
|
| 286 |
+
|
| 287 |
+
# elif isinstance(next_item, str):
|
| 288 |
+
# new_paragraph = history[-1][1] + next_item
|
| 289 |
+
# new_paragraph = parse_output_llm_with_sources(new_paragraph)
|
| 290 |
+
# history[-1][1] = new_paragraph
|
| 291 |
+
# yield "", history, ""
|
| 292 |
+
|
| 293 |
+
# thread.join()
|
| 294 |
|
| 295 |
#---------------------------------------------------------------------------
|
| 296 |
# ClimateQ&A core functions
|
|
|
|
| 441 |
file_client.upload_file(str(logs))
|
| 442 |
|
| 443 |
|
| 444 |
+
def disable_component():
|
| 445 |
+
return gr.update(interactive = False)
|
| 446 |
|
| 447 |
|
| 448 |
|
|
|
|
| 487 |
show_copy_button=True,show_label = False,elem_id="chatbot",layout = "panel",avatar_images = ("assets/logo4.png",None))
|
| 488 |
|
| 489 |
# bot.like(vote,None,None)
|
| 490 |
+
|
| 491 |
+
|
| 492 |
+
|
| 493 |
with gr.Row(elem_id = "input-message"):
|
| 494 |
textbox=gr.Textbox(placeholder="Ask me anything here!",show_label=False,scale=1,lines = 1,interactive = True)
|
| 495 |
# submit_button = gr.Button(">",scale = 1,elem_id = "submit-button")
|
|
|
|
| 542 |
)
|
| 543 |
|
| 544 |
with gr.Tab("📚 Citations",elem_id = "tab-citations"):
|
| 545 |
+
sources_textbox = gr.HTML(show_label=False, elem_id="sources-textbox")
|
| 546 |
+
docs_textbox = gr.State("")
|
| 547 |
|
| 548 |
with gr.Tab("⚙️ Configuration",elem_id = "tab-config"):
|
| 549 |
|
| 550 |
gr.Markdown("Reminder: You can talk in any language, ClimateQ&A is multi-lingual!")
|
| 551 |
|
| 552 |
+
|
| 553 |
dropdown_sources = gr.CheckboxGroup(
|
| 554 |
["IPCC", "IPBES"],
|
| 555 |
label="Select reports",
|
|
|
|
| 564 |
interactive=True,
|
| 565 |
)
|
| 566 |
|
| 567 |
+
output_query = gr.Textbox(label="Query used for retrieval",show_label = True,elem_id = "reformulated-query",lines = 2,interactive = False)
|
| 568 |
+
output_language = gr.Textbox(label="Language",show_label = True,elem_id = "language",lines = 1,interactive = False)
|
| 569 |
+
|
| 570 |
+
|
| 571 |
|
| 572 |
# textbox.submit(predict_climateqa,[textbox,bot],[None,bot,sources_textbox])
|
| 573 |
+
(textbox
|
| 574 |
+
.submit(answer_user, [textbox,examples_hidden, bot], [textbox, bot],queue = False)
|
| 575 |
+
.then(disable_component, [examples_questions], [examples_questions],queue = False)
|
| 576 |
+
.success(fetch_sources,[textbox,dropdown_sources], [textbox,sources_textbox,docs_textbox,output_query,output_language])
|
| 577 |
+
.success(answer_bot, [textbox,bot,docs_textbox,output_query,output_language,dropdown_audience], [textbox,bot],queue = True)
|
| 578 |
+
.success(lambda x : textbox,[textbox],[textbox])
|
| 579 |
+
)
|
| 580 |
+
|
| 581 |
+
(examples_hidden
|
| 582 |
+
.change(answer_user_example, [textbox,examples_hidden, bot], [textbox, bot],queue = False)
|
| 583 |
+
.then(disable_component, [examples_questions], [examples_questions],queue = False)
|
| 584 |
+
.success(fetch_sources,[textbox,dropdown_sources], [textbox,sources_textbox,docs_textbox,output_query,output_language])
|
| 585 |
+
.success(answer_bot, [textbox,bot,docs_textbox,output_query,output_language,dropdown_audience], [textbox,bot],queue=True)
|
| 586 |
+
.success(lambda x : textbox,[textbox],[textbox])
|
| 587 |
+
)
|
| 588 |
# submit_button.click(answer_user, [textbox, bot], [textbox, bot], queue=True).then(
|
| 589 |
# answer_bot, [textbox,bot,dropdown_audience,dropdown_sources], [textbox,bot,sources_textbox]
|
| 590 |
# )
|
|
|
|
| 773 |
"""
|
| 774 |
)
|
| 775 |
|
| 776 |
+
demo.queue(concurrency_count=16)
|
| 777 |
|
| 778 |
demo.launch()
|
climateqa/chains.py
CHANGED
|
@@ -3,7 +3,7 @@
|
|
| 3 |
import json
|
| 4 |
|
| 5 |
from langchain import PromptTemplate, LLMChain
|
| 6 |
-
from langchain.chains import RetrievalQAWithSourcesChain
|
| 7 |
from langchain.chains import TransformChain, SequentialChain
|
| 8 |
from langchain.chains.qa_with_sources import load_qa_with_sources_chain
|
| 9 |
|
|
@@ -37,11 +37,48 @@ def load_reformulation_chain(llm):
|
|
| 37 |
return reformulation_chain
|
| 38 |
|
| 39 |
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
def load_answer_chain(retriever,llm):
|
| 43 |
prompt = PromptTemplate(template=answer_prompt, input_variables=["summaries", "question","audience","language"])
|
| 44 |
qa_chain = load_qa_with_sources_chain(llm, chain_type="stuff",prompt = prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
# This could be improved by providing a document prompt to avoid modifying page_content in the docs
|
| 47 |
# See here https://github.com/langchain-ai/langchain/issues/3523
|
|
@@ -59,7 +96,7 @@ def load_answer_chain(retriever,llm):
|
|
| 59 |
def load_climateqa_chain(retriever,llm_reformulation,llm_answer):
|
| 60 |
|
| 61 |
reformulation_chain = load_reformulation_chain(llm_reformulation)
|
| 62 |
-
answer_chain =
|
| 63 |
|
| 64 |
climateqa_chain = SequentialChain(
|
| 65 |
chains = [reformulation_chain,answer_chain],
|
|
|
|
| 3 |
import json
|
| 4 |
|
| 5 |
from langchain import PromptTemplate, LLMChain
|
| 6 |
+
from langchain.chains import RetrievalQAWithSourcesChain,QAWithSourcesChain
|
| 7 |
from langchain.chains import TransformChain, SequentialChain
|
| 8 |
from langchain.chains.qa_with_sources import load_qa_with_sources_chain
|
| 9 |
|
|
|
|
| 37 |
return reformulation_chain
|
| 38 |
|
| 39 |
|
| 40 |
+
def load_combine_documents_chain(llm):
|
|
|
|
|
|
|
| 41 |
prompt = PromptTemplate(template=answer_prompt, input_variables=["summaries", "question","audience","language"])
|
| 42 |
qa_chain = load_qa_with_sources_chain(llm, chain_type="stuff",prompt = prompt)
|
| 43 |
+
return qa_chain
|
| 44 |
+
|
| 45 |
+
def load_qa_chain_with_docs(llm):
|
| 46 |
+
"""Load a QA chain with documents.
|
| 47 |
+
Useful when you already have retrieved docs
|
| 48 |
+
|
| 49 |
+
To be called with this input
|
| 50 |
+
|
| 51 |
+
```
|
| 52 |
+
output = chain({
|
| 53 |
+
"question":query,
|
| 54 |
+
"audience":"experts climate scientists",
|
| 55 |
+
"docs":docs,
|
| 56 |
+
"language":"English",
|
| 57 |
+
})
|
| 58 |
+
```
|
| 59 |
+
"""
|
| 60 |
+
|
| 61 |
+
qa_chain = load_combine_documents_chain(llm)
|
| 62 |
+
chain = QAWithSourcesChain(
|
| 63 |
+
input_docs_key = "docs",
|
| 64 |
+
combine_documents_chain = qa_chain,
|
| 65 |
+
return_source_documents = True,
|
| 66 |
+
)
|
| 67 |
+
return chain
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def load_qa_chain_with_text(llm):
|
| 71 |
+
|
| 72 |
+
prompt = PromptTemplate(
|
| 73 |
+
template = answer_prompt,
|
| 74 |
+
input_variables=["question","audience","language","summaries"],
|
| 75 |
+
)
|
| 76 |
+
qa_chain = LLMChain(llm = llm,prompt = prompt)
|
| 77 |
+
return qa_chain
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def load_qa_chain_with_retriever(retriever,llm):
|
| 81 |
+
qa_chain = load_combine_documents_chain(llm)
|
| 82 |
|
| 83 |
# This could be improved by providing a document prompt to avoid modifying page_content in the docs
|
| 84 |
# See here https://github.com/langchain-ai/langchain/issues/3523
|
|
|
|
| 96 |
def load_climateqa_chain(retriever,llm_reformulation,llm_answer):
|
| 97 |
|
| 98 |
reformulation_chain = load_reformulation_chain(llm_reformulation)
|
| 99 |
+
answer_chain = load_qa_chain_with_retriever(retriever,llm_answer)
|
| 100 |
|
| 101 |
climateqa_chain = SequentialChain(
|
| 102 |
chains = [reformulation_chain,answer_chain],
|