Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -26,34 +26,24 @@ class HumanLikeVariations:
|
|
| 26 |
"""Add human-like variations and intentional imperfections"""
|
| 27 |
|
| 28 |
def __init__(self):
|
| 29 |
-
# Common human writing patterns -
|
| 30 |
self.casual_transitions = [
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
"You know what? ", "Tell you what, ", "I'll be honest, ",
|
| 48 |
-
"Here's the deal: ", "Bottom line: ", "Long story short, ",
|
| 49 |
-
"Point is, ", "Fact is, ", "Reality is, ", "Thing is though, ",
|
| 50 |
-
"What's more, ", "Better yet, ", "Even better, ", "Even worse, ",
|
| 51 |
-
"Funny enough, ", "Weird thing is, ", "Strange but true: ",
|
| 52 |
-
"Believe me when I say, ", "Trust me on this, ", "I kid you not, ",
|
| 53 |
-
"No joke, ", "For real though, ", "I'm telling you, ",
|
| 54 |
-
"And get this - ", "But here's the kicker: ", "Plot twist: ",
|
| 55 |
-
"Spoiler alert: ", "News flash: ", "Reality check: ",
|
| 56 |
-
"Let me break it down: ", "Here's what happened: ", "So here's the thing: "
|
| 57 |
]
|
| 58 |
|
| 59 |
self.filler_phrases = [
|
|
@@ -78,12 +68,7 @@ class HumanLikeVariations:
|
|
| 78 |
"to the best of my knowledge", "if I'm not mistaken", "correct me if I'm wrong",
|
| 79 |
"you know what", "here's the deal", "bottom line", "at any rate",
|
| 80 |
"all in all", "when you think about it", "come to think of it",
|
| 81 |
-
"now that I think about it", "if we're being honest", "to be fair"
|
| 82 |
-
"like I said", "as I mentioned", "as we discussed", "going back to",
|
| 83 |
-
"on that note", "speaking of which", "which reminds me", "by the way",
|
| 84 |
-
"just a thought", "just my two cents", "if you ask me", "in my book",
|
| 85 |
-
"the way I see it", "from where I'm standing", "in my humble opinion",
|
| 86 |
-
"not to mention", "let alone", "much less", "aside from that"
|
| 87 |
]
|
| 88 |
|
| 89 |
self.human_connectors = [
|
|
@@ -111,46 +96,34 @@ class HumanLikeVariations:
|
|
| 111 |
". And honestly?", ". But seriously,", ". And you know what?",
|
| 112 |
", which brings me to", ". This reminds me of", ", speaking of which",
|
| 113 |
". Funny enough,", ". Weird thing is,", ". Strange but true:",
|
| 114 |
-
", and I mean", ". I'm not kidding when I say", ", and trust me on this"
|
| 115 |
-
". But here's where it gets interesting:", ". Now here's the crazy part:",
|
| 116 |
-
", and this is important", ", and this is key", ", and this matters because",
|
| 117 |
-
". I'll tell you why:", ". Here's my reasoning:", ". Let me put it this way:",
|
| 118 |
-
", which - by the way -", ", and - no joke -", ", but - and this is crucial -"
|
| 119 |
]
|
| 120 |
|
| 121 |
-
# NEW: Common human typos and variations
|
| 122 |
self.common_typos = {
|
| 123 |
-
"the": ["teh", "th", "hte"
|
| 124 |
-
"and": ["adn", "nad", "an"
|
| 125 |
-
"that": ["taht", "htat", "tha"
|
| 126 |
-
"with": ["wiht", "wtih", "iwth"
|
| 127 |
-
"have": ["ahve", "hvae", "hav"
|
| 128 |
-
"from": ["form", "fro", "frmo"
|
| 129 |
-
"they": ["tehy", "thye", "htey"
|
| 130 |
-
"which": ["whihc", "wich", "whcih"
|
| 131 |
-
"their": ["thier", "theri", "tehir"
|
| 132 |
-
"would": ["woudl", "wuold", "woul"
|
| 133 |
-
"there": ["tehre", "theer", "ther"
|
| 134 |
-
"could": ["coudl", "cuold", "coud"
|
| 135 |
-
"people": ["poeple", "peopel", "pepole"
|
| 136 |
-
"through": ["thorugh", "throught", "trhough"
|
| 137 |
-
"because": ["becuase", "becasue", "beacuse"
|
| 138 |
-
"before": ["beofre", "befroe", "befor"
|
| 139 |
-
"different": ["differnt", "differnet", "diferent"
|
| 140 |
-
"between": ["bewteen", "betwen", "betewen"
|
| 141 |
-
"important": ["improtant", "importnat", "importan"
|
| 142 |
-
"information": ["infromation", "informaiton", "informaton"
|
| 143 |
-
"really": ["realy", "raelly", "realyl", "reallyy"],
|
| 144 |
-
"something": ["someting", "somethign", "sometihng", "somethhing"],
|
| 145 |
-
"actually": ["actualy", "acutally", "atcually", "actuallyy"],
|
| 146 |
-
"probably": ["probaly", "probalby", "probabily", "probablyy"],
|
| 147 |
-
"definitely": ["definately", "definitly", "definatly", "defintely"],
|
| 148 |
-
"necessary": ["neccessary", "neccesary", "necessery", "nesessary"],
|
| 149 |
-
"government": ["goverment", "governmnet", "govermnet", "govenrment"],
|
| 150 |
-
"business": ["buisness", "busines", "businness", "bussiness"]
|
| 151 |
}
|
| 152 |
|
| 153 |
-
# NEW: Human-like sentence starters for variety
|
| 154 |
self.varied_starters = [
|
| 155 |
"When it comes to", "As for", "Regarding", "In terms of",
|
| 156 |
"With respect to", "Concerning", "Speaking of", "About",
|
|
@@ -167,81 +140,16 @@ class HumanLikeVariations:
|
|
| 167 |
"You might wonder", "You might ask", "You may think",
|
| 168 |
"Some people say", "Many believe", "It's often said",
|
| 169 |
"Research shows", "Studies indicate", "Evidence suggests",
|
| 170 |
-
"Experience tells us", "History shows", "Time has shown"
|
| 171 |
-
"I've noticed that", "I've found that", "I've seen that",
|
| 172 |
-
"In my experience,", "From what I understand,", "As I see it,",
|
| 173 |
-
"Let me be clear:", "Let me clarify:", "To be specific:",
|
| 174 |
-
"Here's my thought:", "Here's my view:", "My take is:",
|
| 175 |
-
"Can we just acknowledge", "Let's be real about", "Time to admit",
|
| 176 |
-
"Nobody talks about how", "Everyone forgets that", "People overlook",
|
| 177 |
-
"It's funny how", "It's weird that", "It's strange how",
|
| 178 |
-
"Ever notice how", "Ever wonder why", "Ever think about",
|
| 179 |
-
"You gotta admit", "You have to agree", "You can't deny",
|
| 180 |
-
"I used to think", "I always thought", "I never realized",
|
| 181 |
-
"Turns out,", "As it happens,", "Funny story:",
|
| 182 |
-
"Real quick -", "Side note -", "Random thought -",
|
| 183 |
-
"Not to be that person, but", "Call me crazy, but", "Maybe it's just me, but",
|
| 184 |
-
"This might sound weird, but", "This might be controversial, but",
|
| 185 |
-
"Hot take:", "Unpopular opinion:", "Controversial thought:",
|
| 186 |
-
"Life hack:", "Pro tip:", "Word of advice:",
|
| 187 |
-
"Question for you:", "Riddle me this:", "Tell me this:",
|
| 188 |
-
"PSA:", "Reminder:", "Don't forget:",
|
| 189 |
-
"Breaking news:", "Update:", "FYI:",
|
| 190 |
-
"Confession time:", "True story:", "No lie:"
|
| 191 |
-
]
|
| 192 |
-
|
| 193 |
-
# NEW: Personal opinions and reactions
|
| 194 |
-
self.personal_reactions = [
|
| 195 |
-
"And honestly? I'm here for it.",
|
| 196 |
-
"Which, like, blew my mind.",
|
| 197 |
-
"And I was like, wait, what?",
|
| 198 |
-
"Not gonna lie, this surprised me.",
|
| 199 |
-
"I mean, who would've thought?",
|
| 200 |
-
"This literally changed everything for me.",
|
| 201 |
-
"And that's when it hit me.",
|
| 202 |
-
"I had to do a double-take on this one.",
|
| 203 |
-
"This is where things get wild.",
|
| 204 |
-
"Okay, but here's where it gets good.",
|
| 205 |
-
"And this is the part that gets me every time.",
|
| 206 |
-
"I'm still processing this, to be honest.",
|
| 207 |
-
"This keeps me up at night, not gonna lie.",
|
| 208 |
-
"Every time I think about this, I'm amazed.",
|
| 209 |
-
"This is the kind of thing that makes you go 'hmm'.",
|
| 210 |
-
"And yes, I'm totally serious about this.",
|
| 211 |
-
"I know, I know, it sounds crazy, but hear me out.",
|
| 212 |
-
"This might be my favorite part, actually.",
|
| 213 |
-
"And this - this is why I love this topic.",
|
| 214 |
-
"Hold up, because this next part is crucial.",
|
| 215 |
-
"Brace yourself for this one.",
|
| 216 |
-
"You're gonna want to sit down for this.",
|
| 217 |
-
"This is the game-changer right here.",
|
| 218 |
-
"And this, my friends, is where the magic happens.",
|
| 219 |
-
"This right here? This is the good stuff.",
|
| 220 |
-
"I could talk about this all day, honestly.",
|
| 221 |
-
"This never gets old for me.",
|
| 222 |
-
"Every single time, this amazes me.",
|
| 223 |
-
"And boom - mind blown.",
|
| 224 |
-
"This is what we call a mic drop moment.",
|
| 225 |
-
"Can we just take a moment to appreciate this?",
|
| 226 |
-
"This deserves way more attention, if you ask me.",
|
| 227 |
-
"Why isn't everyone talking about this?",
|
| 228 |
-
"This should be common knowledge by now.",
|
| 229 |
-
"How is this not a bigger deal?",
|
| 230 |
-
"Seriously, why don't they teach this in school?",
|
| 231 |
-
"This changed my whole perspective, not even joking.",
|
| 232 |
-
"Once you see this, you can't unsee it.",
|
| 233 |
-
"This is one of those 'aha!' moments.",
|
| 234 |
-
"And that's when everything clicked for me."
|
| 235 |
]
|
| 236 |
|
| 237 |
def add_human_touch(self, text):
|
| 238 |
-
"""Add subtle human-like imperfections -
|
| 239 |
sentences = text.split('. ')
|
| 240 |
modified_sentences = []
|
| 241 |
|
| 242 |
# Track what we've used to avoid patterns
|
| 243 |
-
used_transitions =
|
| 244 |
-
used_reactions = set()
|
| 245 |
|
| 246 |
for i, sent in enumerate(sentences):
|
| 247 |
if not sent.strip():
|
|
@@ -250,106 +158,23 @@ class HumanLikeVariations:
|
|
| 250 |
# Always use contractions where natural
|
| 251 |
sent = self.apply_contractions(sent)
|
| 252 |
|
| 253 |
-
# Add
|
| 254 |
-
if random.random() < 0.
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
# Add thinking-out-loud elements (20% chance)
|
| 263 |
-
if random.random() < 0.20 and len(sent.split()) > 10:
|
| 264 |
-
thinking_phrases = [
|
| 265 |
-
"- wait, actually, ",
|
| 266 |
-
"- hmm, let me think - ",
|
| 267 |
-
"- okay so ",
|
| 268 |
-
"- oh right, ",
|
| 269 |
-
"- correction: ",
|
| 270 |
-
"- or wait, maybe ",
|
| 271 |
-
"- scratch that, "
|
| 272 |
]
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
insert_phrase = random.choice(thinking_phrases)
|
| 276 |
-
words.insert(pos, insert_phrase)
|
| 277 |
-
sent = ' '.join(words)
|
| 278 |
-
|
| 279 |
-
# Add natural errors (15% chance)
|
| 280 |
-
if random.random() < 0.15 and len(sent.split()) > 15:
|
| 281 |
-
sent = self.add_realistic_errors(sent)
|
| 282 |
|
| 283 |
modified_sentences.append(sent)
|
| 284 |
|
| 285 |
return '. '.join(modified_sentences)
|
| 286 |
|
| 287 |
-
def add_realistic_errors(self, text):
|
| 288 |
-
"""Add very realistic human errors"""
|
| 289 |
-
error_type = random.choice(['typo', 'double_word', 'comma', 'homophone', 'capitalization'])
|
| 290 |
-
|
| 291 |
-
if error_type == 'typo':
|
| 292 |
-
words = text.split()
|
| 293 |
-
if len(words) > 5:
|
| 294 |
-
# Pick a common word to typo
|
| 295 |
-
for _ in range(3): # Try 3 times to find a typo-able word
|
| 296 |
-
idx = random.randint(2, len(words)-2)
|
| 297 |
-
word = words[idx].lower().strip('.,!?;:')
|
| 298 |
-
if word in self.common_typos:
|
| 299 |
-
typo = random.choice(self.common_typos[word])
|
| 300 |
-
# Preserve original capitalization and punctuation
|
| 301 |
-
if words[idx][0].isupper():
|
| 302 |
-
typo = typo[0].upper() + typo[1:]
|
| 303 |
-
# Re-add punctuation if any
|
| 304 |
-
if words[idx][-1] in '.,!?;:':
|
| 305 |
-
typo += words[idx][-1]
|
| 306 |
-
words[idx] = typo
|
| 307 |
-
break
|
| 308 |
-
text = ' '.join(words)
|
| 309 |
-
|
| 310 |
-
elif error_type == 'double_word':
|
| 311 |
-
words = text.split()
|
| 312 |
-
if len(words) > 10:
|
| 313 |
-
# Common words that get doubled
|
| 314 |
-
double_candidates = ['the', 'a', 'to', 'in', 'on', 'at', 'for', 'and', 'but', 'or']
|
| 315 |
-
for _ in range(3):
|
| 316 |
-
idx = random.randint(3, len(words)-3)
|
| 317 |
-
if words[idx].lower() in double_candidates:
|
| 318 |
-
words.insert(idx+1, words[idx].lower())
|
| 319 |
-
break
|
| 320 |
-
text = ' '.join(words)
|
| 321 |
-
|
| 322 |
-
elif error_type == 'comma':
|
| 323 |
-
# Remove Oxford comma or add unnecessary comma
|
| 324 |
-
if ', and' in text and random.random() < 0.5:
|
| 325 |
-
text = text.replace(', and', ' and', 1)
|
| 326 |
-
elif ' and' in text and ', and' not in text and random.random() < 0.3:
|
| 327 |
-
text = text.replace(' and', ', and', 1)
|
| 328 |
-
|
| 329 |
-
elif error_type == 'homophone':
|
| 330 |
-
homophones = [
|
| 331 |
-
('your', "you're"), ("you're", 'your'),
|
| 332 |
-
('its', "it's"), ("it's", 'its'),
|
| 333 |
-
('their', 'there'), ('there', 'their'),
|
| 334 |
-
('then', 'than'), ('than', 'then'),
|
| 335 |
-
('to', 'too'), ('effect', 'affect')
|
| 336 |
-
]
|
| 337 |
-
for original, replacement in homophones:
|
| 338 |
-
if f' {original} ' in text and random.random() < 0.3:
|
| 339 |
-
text = text.replace(f' {original} ', f' {replacement} ', 1)
|
| 340 |
-
break
|
| 341 |
-
|
| 342 |
-
elif error_type == 'capitalization':
|
| 343 |
-
# Occasionally fail to capitalize after period
|
| 344 |
-
matches = list(re.finditer(r'\. ([a-z])', text))
|
| 345 |
-
if matches and random.random() < 0.3:
|
| 346 |
-
match = random.choice(matches)
|
| 347 |
-
# Don't change if it's a common lowercase starter like "e.g."
|
| 348 |
-
if match.group(1) not in ['e', 'i', 'v']:
|
| 349 |
-
text = text # Keep lowercase for more natural error
|
| 350 |
-
|
| 351 |
-
return text
|
| 352 |
-
|
| 353 |
def apply_contractions(self, text):
|
| 354 |
"""Apply common contractions - EXPANDED"""
|
| 355 |
contractions = {
|
|
@@ -370,47 +195,75 @@ class HumanLikeVariations:
|
|
| 370 |
"we would": "we'd", "they would": "they'd", "could have": "could've",
|
| 371 |
"should have": "should've", "would have": "would've", "might have": "might've",
|
| 372 |
"must have": "must've", "there has": "there's", "here is": "here's",
|
| 373 |
-
"let us": "let's", "that will": "that'll", "who will": "who'll"
|
| 374 |
-
"shall not": "shan't", "need not": "needn't", "dare not": "daren't",
|
| 375 |
-
"ought not": "oughtn't", "might not": "mightn't", "must not": "mustn't",
|
| 376 |
-
"there are": "there're", "where are": "where're", "what are": "what're",
|
| 377 |
-
"how are": "how're", "why are": "why're", "who are": "who're"
|
| 378 |
}
|
| 379 |
|
| 380 |
-
# Apply contractions with very high probability (95%)
|
| 381 |
for full, contr in contractions.items():
|
| 382 |
-
if random.random() < 0.
|
| 383 |
text = re.sub(r'\b' + full + r'\b', contr, text, flags=re.IGNORECASE)
|
| 384 |
|
| 385 |
return text
|
| 386 |
|
| 387 |
def add_minor_errors(self, text):
|
| 388 |
-
"""Add very minor, human-like errors -
|
| 389 |
-
# Occasionally miss Oxford comma (
|
| 390 |
-
if random.random() < 0.
|
|
|
|
| 391 |
text = re.sub(r'(\w+), (\w+), and (\w+)', r'\1, \2 and \3', text)
|
| 392 |
|
| 393 |
-
# Sometimes use 'which' instead of 'that' (
|
| 394 |
-
if random.random() < 0.
|
|
|
|
| 395 |
matches = re.finditer(r'\b(\w+) that (\w+)', text)
|
| 396 |
-
for match in list(matches)[:1]:
|
| 397 |
-
if match.group(1).lower() not in ['believe', 'think', 'know', 'say'
|
| 398 |
text = text.replace(match.group(0), f"{match.group(1)} which {match.group(2)}", 1)
|
| 399 |
|
| 400 |
-
# Add occasional typos (
|
| 401 |
sentences = text.split('. ')
|
| 402 |
for i, sent in enumerate(sentences):
|
| 403 |
-
if random.random() < 0.
|
| 404 |
-
|
| 405 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 406 |
|
| 407 |
text = '. '.join(sentences)
|
| 408 |
|
| 409 |
-
#
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 414 |
|
| 415 |
return text
|
| 416 |
|
|
@@ -426,86 +279,79 @@ class HumanLikeVariations:
|
|
| 426 |
# Natural contractions throughout
|
| 427 |
sentence = self.apply_contractions(sentence)
|
| 428 |
|
| 429 |
-
# Add
|
| 430 |
-
if random.random() < 0.
|
| 431 |
-
|
| 432 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 433 |
|
| 434 |
-
# Add
|
| 435 |
-
if random.random() < 0.
|
| 436 |
words = sentence.split()
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
" (I mean it)",
|
| 451 |
-
" (for real)",
|
| 452 |
-
" (no joke)",
|
| 453 |
-
" (true story)",
|
| 454 |
-
" (I promise)"
|
| 455 |
-
]
|
| 456 |
-
aside_pos = random.randint(len(sentence)//3, 2*len(sentence)//3)
|
| 457 |
-
sentence = sentence[:aside_pos] + random.choice(asides) + sentence[aside_pos:]
|
| 458 |
-
|
| 459 |
-
# Natural sentence combinations (25% chance)
|
| 460 |
-
if i < len(sentences) - 1 and random.random() < 0.25:
|
| 461 |
next_sent = sentences[i+1].strip()
|
| 462 |
-
if next_sent and len(sentence.split()) + len(next_sent.split()) <
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 466 |
|
| 467 |
result_sentences.append(sentence)
|
| 468 |
|
| 469 |
return ' '.join([s for s in result_sentences if s])
|
| 470 |
|
| 471 |
-
def split_into_sentences_advanced(self, text):
|
| 472 |
-
"""Split text into sentences"""
|
| 473 |
-
# Simple regex-based splitting
|
| 474 |
-
sentences = re.split(r'(?<=[.!?])\s+', text)
|
| 475 |
-
return [s for s in sentences if s and len(s.strip()) > 0]
|
| 476 |
-
|
| 477 |
def vary_sentence_start(self, sentence):
|
| 478 |
"""Vary sentence beginning to avoid repetitive patterns"""
|
| 479 |
-
if not sentence
|
|
|
|
|
|
|
|
|
|
|
|
|
| 480 |
return sentence
|
| 481 |
|
| 482 |
-
#
|
| 483 |
variations = [
|
| 484 |
-
lambda s:
|
| 485 |
-
lambda s: "
|
| 486 |
-
lambda s:
|
| 487 |
-
lambda s: "
|
| 488 |
-
lambda s: s
|
| 489 |
-
lambda s: s + " Think about it.",
|
| 490 |
-
lambda s: s + " Makes sense, right?",
|
| 491 |
-
lambda s: "Okay, so " + s[0].lower() + s[1:],
|
| 492 |
-
lambda s: "Real talk - " + s[0].lower() + s[1:],
|
| 493 |
-
lambda s: s + " And that's facts.",
|
| 494 |
-
lambda s: "Not gonna lie, " + s[0].lower() + s[1:],
|
| 495 |
-
lambda s: s + " Period.",
|
| 496 |
-
lambda s: "Can we talk about how " + s[0].lower() + s[1:] + "?",
|
| 497 |
lambda s: s, # Keep original sometimes
|
| 498 |
]
|
| 499 |
|
| 500 |
-
#
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
|
| 506 |
-
return sentence
|
| 507 |
-
|
| 508 |
-
return sentence
|
| 509 |
|
| 510 |
class SelectiveGrammarFixer:
|
| 511 |
"""Minimal grammar fixes to maintain human-like quality while fixing critical errors"""
|
|
@@ -551,6 +397,9 @@ class SelectiveGrammarFixer:
|
|
| 551 |
|
| 552 |
result = ' '.join(fixed_sentences)
|
| 553 |
|
|
|
|
|
|
|
|
|
|
| 554 |
return result
|
| 555 |
|
| 556 |
def fix_basic_punctuation_errors(self, text):
|
|
@@ -558,42 +407,42 @@ class SelectiveGrammarFixer:
|
|
| 558 |
if not text:
|
| 559 |
return text
|
| 560 |
|
| 561 |
-
# Fix double spaces (human-like error
|
| 562 |
-
text = re.sub(r'\s{
|
| 563 |
|
| 564 |
-
# Fix space before punctuation (
|
| 565 |
-
|
| 566 |
-
text = re.sub(r'\s+([.,!?;:])', r'\1', text)
|
| 567 |
|
| 568 |
# Fix missing space after punctuation (human-like)
|
| 569 |
text = re.sub(r'([.,!?])([A-Z])', r'\1 \2', text)
|
| 570 |
|
| 571 |
-
# Fix accidental double punctuation
|
| 572 |
-
text = re.sub(r'([
|
| 573 |
-
text = re.sub(r'\.{4,}', '...', text) # Fix 4+ periods to ellipsis
|
| 574 |
|
| 575 |
-
# Fix "i" capitalization (
|
| 576 |
-
|
| 577 |
-
text = re.sub(r'\bi\b', 'I', text)
|
| 578 |
|
| 579 |
return text
|
| 580 |
|
| 581 |
def preserve_natural_variations(self, text):
|
| 582 |
"""Keep some natural human-like variations"""
|
|
|
|
| 583 |
# Only fix if really broken
|
| 584 |
if text.count('.') == 0 and len(text.split()) > 20:
|
| 585 |
# Long text with no periods - needs fixing
|
| 586 |
words = text.split()
|
| 587 |
-
# Add periods every 15-25 words naturally
|
| 588 |
new_text = []
|
| 589 |
for i, word in enumerate(words):
|
| 590 |
new_text.append(word)
|
| 591 |
-
if i > 0 and i % random.randint(
|
| 592 |
if word[-1] not in '.!?,;:':
|
| 593 |
new_text[-1] = word + '.'
|
| 594 |
-
# Capitalize next word
|
| 595 |
if i + 1 < len(words) and words[i + 1][0].islower():
|
| 596 |
-
|
|
|
|
|
|
|
| 597 |
text = ' '.join(new_text)
|
| 598 |
|
| 599 |
return text
|
|
@@ -631,12 +480,12 @@ class EnhancedDipperHumanizer:
|
|
| 631 |
print("spaCy model not found, using NLTK for sentence splitting")
|
| 632 |
|
| 633 |
try:
|
| 634 |
-
# Load Dipper paraphraser
|
| 635 |
print("Loading Dipper paraphraser model...")
|
| 636 |
self.tokenizer = T5Tokenizer.from_pretrained('google/t5-v1_1-xxl')
|
| 637 |
self.model = T5ForConditionalGeneration.from_pretrained(
|
| 638 |
"kalpeshk2011/dipper-paraphraser-xxl",
|
| 639 |
-
device_map="auto",
|
| 640 |
torch_dtype=torch.float16,
|
| 641 |
low_cpu_mem_usage=True
|
| 642 |
)
|
|
@@ -667,7 +516,7 @@ class EnhancedDipperHumanizer:
|
|
| 667 |
self.bart_model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 668 |
"eugenesiow/bart-paraphrase",
|
| 669 |
torch_dtype=torch.float16,
|
| 670 |
-
device_map="auto"
|
| 671 |
)
|
| 672 |
self.bart_tokenizer = AutoTokenizer.from_pretrained("eugenesiow/bart-paraphrase")
|
| 673 |
self.use_bart = True
|
|
@@ -680,16 +529,118 @@ class EnhancedDipperHumanizer:
|
|
| 680 |
self.human_variations = HumanLikeVariations()
|
| 681 |
|
| 682 |
def add_natural_human_patterns(self, text):
|
| 683 |
-
"""Add natural human writing patterns"""
|
| 684 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 685 |
|
| 686 |
def vary_sentence_start(self, sentence):
|
| 687 |
-
"""Vary sentence beginning"""
|
| 688 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 689 |
|
| 690 |
def apply_contractions(self, text):
|
| 691 |
-
"""Apply contractions"""
|
| 692 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 693 |
|
| 694 |
def preserve_keywords(self, text, keywords):
|
| 695 |
"""Mark keywords to preserve them during paraphrasing"""
|
|
@@ -723,7 +674,7 @@ class EnhancedDipperHumanizer:
|
|
| 723 |
return modified_text, keyword_map
|
| 724 |
|
| 725 |
def restore_keywords_robust(self, text, keyword_map):
|
| 726 |
-
"""Restore keywords with more flexible pattern matching
|
| 727 |
if not keyword_map:
|
| 728 |
return text
|
| 729 |
|
|
@@ -753,9 +704,8 @@ class EnhancedDipperHumanizer:
|
|
| 753 |
if match:
|
| 754 |
num = match.group(1)
|
| 755 |
|
| 756 |
-
#
|
| 757 |
patterns = [
|
| 758 |
-
# Standard variations
|
| 759 |
(f'__KW{num}__', keyword),
|
| 760 |
(f'__ KW{num}__', keyword),
|
| 761 |
(f'__KW {num}__', keyword),
|
|
@@ -770,97 +720,32 @@ class EnhancedDipperHumanizer:
|
|
| 770 |
(f'__KW{num}_', keyword),
|
| 771 |
(f'_KW{num}__', keyword),
|
| 772 |
(f'kw{num}', keyword),
|
| 773 |
-
(f'``KW{num}__', keyword),
|
| 774 |
-
(f'``KKW{num}', keyword),
|
| 775 |
-
#
|
| 776 |
-
(f'KW{num}:', keyword), # Catches "KW0:12:"
|
| 777 |
-
(f'KW{num}123', keyword), # Catches "KW0123"
|
| 778 |
-
(f'Kw{num}', keyword),
|
| 779 |
-
(f'kW{num}', keyword),
|
| 780 |
-
(f'KW{num}[^0-9]', keyword), # Catches KW followed by non-digit
|
| 781 |
-
(f'KW{num}(?![0-9])', keyword), # Lookahead to ensure no digit follows
|
| 782 |
-
# Patterns with spaces and punctuation
|
| 783 |
-
(f'KW {num}:', keyword),
|
| 784 |
-
(f'KW{num} ', keyword),
|
| 785 |
-
(f' KW{num}', keyword),
|
| 786 |
-
(f'KW{num},', keyword),
|
| 787 |
-
(f'KW{num}.', keyword),
|
| 788 |
-
(f'KW{num};', keyword),
|
| 789 |
-
(f'KW{num}!', keyword),
|
| 790 |
-
(f'KW{num}?', keyword),
|
| 791 |
-
# Triple patterns (for "KW kw kw")
|
| 792 |
-
(f'KW kw kw', keyword),
|
| 793 |
-
(f'kw kw kw', keyword),
|
| 794 |
-
(f'Kw kw kw', keyword),
|
| 795 |
]
|
| 796 |
|
| 797 |
for pattern, replacement in patterns:
|
| 798 |
-
|
| 799 |
-
if '(?!' in pattern or '[^' in pattern:
|
| 800 |
-
# This is already a regex pattern
|
| 801 |
-
regex_pattern = pattern
|
| 802 |
-
else:
|
| 803 |
-
# Escape the pattern for regex
|
| 804 |
-
regex_pattern = re.escape(pattern)
|
| 805 |
-
|
| 806 |
-
matches = list(re.finditer(regex_pattern, restored_text))
|
| 807 |
-
for match in matches:
|
| 808 |
-
start_pos = match.start()
|
| 809 |
-
end_pos = match.end()
|
| 810 |
-
|
| 811 |
# Check if this position has already been replaced
|
| 812 |
-
|
| 813 |
-
|
| 814 |
-
|
| 815 |
-
# Replace
|
| 816 |
-
before = restored_text[:start_pos]
|
| 817 |
-
after = restored_text[end_pos:]
|
| 818 |
-
restored_text = before + replacement + after
|
| 819 |
-
|
| 820 |
# Mark new positions as replaced
|
| 821 |
-
|
| 822 |
-
|
| 823 |
-
#
|
| 824 |
-
break
|
| 825 |
-
|
| 826 |
-
# Third pass: Clean up any remaining KW patterns with numbers
|
| 827 |
-
# This catches cases like "KW0:12:" where the number might vary
|
| 828 |
-
remaining_kw_patterns = re.findall(r'\bKW\d+[:;.,!?\s]|\bKW\d+\d+\b|\bKw\d+\b|\bkw\d+\b|\bKW\s*kw\s*kw\b', restored_text)
|
| 829 |
|
| 830 |
-
|
| 831 |
-
|
| 832 |
-
|
| 833 |
-
# Replace remaining patterns with keywords in order
|
| 834 |
-
keyword_values = list(keyword_map.values())
|
| 835 |
-
keyword_index = 0
|
| 836 |
-
|
| 837 |
-
for pattern in remaining_kw_patterns:
|
| 838 |
-
if keyword_index < len(keyword_values):
|
| 839 |
-
# Find the position of this pattern
|
| 840 |
-
pattern_pos = restored_text.find(pattern)
|
| 841 |
-
if pattern_pos != -1 and not any(pos in replaced_positions for pos in range(pattern_pos, pattern_pos + len(pattern))):
|
| 842 |
-
# Extract just the KW part and any trailing punctuation
|
| 843 |
-
clean_pattern = pattern.rstrip('0123456789:;.,!?\s')
|
| 844 |
-
trailing = pattern[len(clean_pattern):]
|
| 845 |
-
|
| 846 |
-
# Replace with keyword + any trailing punctuation
|
| 847 |
-
replacement = keyword_values[keyword_index]
|
| 848 |
-
if trailing and trailing[0] in ':;.,!?':
|
| 849 |
-
replacement += trailing[0]
|
| 850 |
-
|
| 851 |
-
before = restored_text[:pattern_pos]
|
| 852 |
-
after = restored_text[pattern_pos + len(pattern):]
|
| 853 |
-
restored_text = before + replacement + after
|
| 854 |
-
|
| 855 |
-
replaced_positions.update(range(pattern_pos, pattern_pos + len(replacement)))
|
| 856 |
-
keyword_index += 1
|
| 857 |
-
|
| 858 |
-
# Fourth pass: Clean up any backticks or quotes that shouldn't be there
|
| 859 |
restored_text = re.sub(r'``+', '', restored_text)
|
|
|
|
| 860 |
restored_text = re.sub(r"''", '"', restored_text)
|
| 861 |
restored_text = re.sub(r'""', '"', restored_text)
|
| 862 |
|
| 863 |
-
#
|
|
|
|
| 864 |
if '___' in restored_text and keyword_map:
|
| 865 |
# Find all occurrences of multiple underscores
|
| 866 |
underscore_matches = list(re.finditer(r'_{3,}', restored_text))
|
|
@@ -878,13 +763,10 @@ class EnhancedDipperHumanizer:
|
|
| 878 |
replaced_positions.update(range(start, start + len(keyword_values[i])))
|
| 879 |
|
| 880 |
# Final cleanup: Remove any remaining KW patterns that weren't caught
|
| 881 |
-
#
|
| 882 |
-
|
| 883 |
-
|
| 884 |
-
|
| 885 |
-
|
| 886 |
-
# Clean up any double spaces created by removals
|
| 887 |
-
restored_text = re.sub(r'\s+', ' ', restored_text)
|
| 888 |
|
| 889 |
# Log final result
|
| 890 |
print(f"Final restored text: {restored_text[:100]}...")
|
|
@@ -914,6 +796,7 @@ class EnhancedDipperHumanizer:
|
|
| 914 |
return True
|
| 915 |
|
| 916 |
# Special handling for content inside tables
|
|
|
|
| 917 |
if parent:
|
| 918 |
# Check if we're inside a table
|
| 919 |
is_in_table = any(p.name == 'table' for p in parent.parents)
|
|
@@ -941,7 +824,7 @@ class EnhancedDipperHumanizer:
|
|
| 941 |
if any(handler in parent.attrs for handler in event_handlers):
|
| 942 |
return True
|
| 943 |
|
| 944 |
-
# Special check for testimonial cards
|
| 945 |
if parent:
|
| 946 |
ancestors_to_check = []
|
| 947 |
current = parent
|
|
@@ -960,7 +843,7 @@ class EnhancedDipperHumanizer:
|
|
| 960 |
elif isinstance(classes, str) and 'testimonial-card' in classes:
|
| 961 |
return True
|
| 962 |
|
| 963 |
-
# Skip if parent or element has skip-worthy classes/IDs
|
| 964 |
skip_indicators = [
|
| 965 |
'cta-', 'button', 'btn', 'heading', 'title', 'caption',
|
| 966 |
'toc-', 'contents', 'quiz', 'tip', 'note', 'alert',
|
|
@@ -974,7 +857,7 @@ class EnhancedDipperHumanizer:
|
|
| 974 |
'comparision-tables', 'process-flowcharts', 'infographics', 'cost-breakdown'
|
| 975 |
]
|
| 976 |
|
| 977 |
-
# Check only immediate parent and grandparent
|
| 978 |
elements_to_check = [parent]
|
| 979 |
if parent and parent.parent:
|
| 980 |
elements_to_check.append(parent.parent)
|
|
@@ -1043,7 +926,7 @@ class EnhancedDipperHumanizer:
|
|
| 1043 |
return False
|
| 1044 |
|
| 1045 |
def clean_model_output_enhanced(self, text):
|
| 1046 |
-
"""Enhanced cleaning that preserves more natural structure
|
| 1047 |
if not text:
|
| 1048 |
return ""
|
| 1049 |
|
|
@@ -1075,20 +958,15 @@ class EnhancedDipperHumanizer:
|
|
| 1075 |
text = re.sub(r'- or maybe I should say -', '', text)
|
| 1076 |
text = re.sub(r'- or rather,', '', text)
|
| 1077 |
text = re.sub(r'- think about it -', '', text)
|
| 1078 |
-
text = re.sub(r'- hmm, let me think -', '', text)
|
| 1079 |
-
text = re.sub(r'- correction:', '', text)
|
| 1080 |
-
text = re.sub(r'- or wait, maybe', '', text)
|
| 1081 |
-
text = re.sub(r'- scratch that,', '', text)
|
| 1082 |
|
| 1083 |
# Clean up multiple spaces
|
| 1084 |
text = re.sub(r'\s+', ' ', text)
|
| 1085 |
|
| 1086 |
-
#
|
| 1087 |
-
#
|
| 1088 |
-
if not re.match(r'^(__KW\d+__|
|
| 1089 |
-
# Only remove
|
| 1090 |
-
|
| 1091 |
-
text = re.sub(r'^[^\w_]+', '', text)
|
| 1092 |
|
| 1093 |
# If we accidentally removed too much, use original
|
| 1094 |
if len(text) < len(original) * 0.5:
|
|
@@ -1122,17 +1000,17 @@ class EnhancedDipperHumanizer:
|
|
| 1122 |
continue
|
| 1123 |
|
| 1124 |
try:
|
| 1125 |
-
#
|
| 1126 |
has_keywords = any(placeholder in sentence for placeholder in keyword_map.keys())
|
| 1127 |
if has_keywords:
|
| 1128 |
-
lex_diversity =
|
| 1129 |
-
order_diversity =
|
| 1130 |
elif len(sentence.split()) < 10:
|
| 1131 |
-
lex_diversity =
|
| 1132 |
-
order_diversity =
|
| 1133 |
else:
|
| 1134 |
-
lex_diversity =
|
| 1135 |
-
order_diversity =
|
| 1136 |
|
| 1137 |
lex_code = int(100 - lex_diversity)
|
| 1138 |
order_code = int(100 - order_diversity)
|
|
@@ -1159,23 +1037,23 @@ class EnhancedDipperHumanizer:
|
|
| 1159 |
else:
|
| 1160 |
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
| 1161 |
|
| 1162 |
-
# Generate with
|
| 1163 |
original_length = len(sentence.split())
|
| 1164 |
-
max_new_length = int(original_length * 1.
|
| 1165 |
|
| 1166 |
-
#
|
| 1167 |
-
temp =
|
| 1168 |
-
top_p_val = 0.
|
| 1169 |
|
| 1170 |
with torch.no_grad():
|
| 1171 |
outputs = self.model.generate(
|
| 1172 |
**inputs,
|
| 1173 |
max_length=max_new_length + 20,
|
| 1174 |
-
min_length=max(5, int(original_length * 0.
|
| 1175 |
do_sample=True,
|
| 1176 |
top_p=top_p_val,
|
| 1177 |
temperature=temp,
|
| 1178 |
-
no_repeat_ngram_size=
|
| 1179 |
num_beams=1, # Greedy for more randomness
|
| 1180 |
early_stopping=True
|
| 1181 |
)
|
|
@@ -1267,8 +1145,8 @@ class EnhancedDipperHumanizer:
|
|
| 1267 |
last_word = words[-1]
|
| 1268 |
|
| 1269 |
# Remove if it's clearly cut off (1-2 chars, no vowels)
|
| 1270 |
-
# But don't remove valid short words
|
| 1271 |
-
short_valid_words = {'is', 'of', 'to', 'in', 'on', 'at', 'by', 'or', 'if', 'so', 'up', 'no', 'we', 'he', 'me', 'be', 'do', 'go'
|
| 1272 |
if (len(last_word) <= 2 and
|
| 1273 |
last_word.lower() not in short_valid_words and
|
| 1274 |
not any(c in 'aeiouAEIOU' for c in last_word)):
|
|
@@ -1289,7 +1167,7 @@ class EnhancedDipperHumanizer:
|
|
| 1289 |
generated += '.'
|
| 1290 |
elif orig_stripped.endswith('!'):
|
| 1291 |
# Check if generated seems exclamatory
|
| 1292 |
-
exclaim_words = ['amazing', 'incredible', 'fantastic', 'terrible', 'awful', 'wonderful', 'excellent'
|
| 1293 |
if any(word in generated.lower() for word in exclaim_words):
|
| 1294 |
generated += '!'
|
| 1295 |
else:
|
|
@@ -1359,12 +1237,12 @@ class EnhancedDipperHumanizer:
|
|
| 1359 |
with torch.no_grad():
|
| 1360 |
outputs = self.bart_model.generate(
|
| 1361 |
**inputs,
|
| 1362 |
-
max_length=int(original_length * 1.
|
| 1363 |
-
min_length=max(5, int(original_length * 0.
|
| 1364 |
num_beams=2,
|
| 1365 |
-
temperature=1.
|
| 1366 |
do_sample=True,
|
| 1367 |
-
top_p=0.
|
| 1368 |
early_stopping=True
|
| 1369 |
)
|
| 1370 |
|
|
@@ -1390,13 +1268,12 @@ class EnhancedDipperHumanizer:
|
|
| 1390 |
return text
|
| 1391 |
|
| 1392 |
def apply_sentence_variation(self, text):
|
| 1393 |
-
"""Apply natural sentence structure variations -
|
| 1394 |
sentences = self.split_into_sentences_advanced(text)
|
| 1395 |
varied_sentences = []
|
| 1396 |
|
| 1397 |
# Track patterns to ensure variety
|
| 1398 |
last_sentence_length = 0
|
| 1399 |
-
sentence_rhythms = []
|
| 1400 |
|
| 1401 |
for i, sentence in enumerate(sentences):
|
| 1402 |
if not sentence.strip():
|
|
@@ -1405,154 +1282,39 @@ class EnhancedDipperHumanizer:
|
|
| 1405 |
words = sentence.split()
|
| 1406 |
current_length = len(words)
|
| 1407 |
|
| 1408 |
-
#
|
| 1409 |
-
if
|
| 1410 |
-
#
|
| 1411 |
-
if
|
| 1412 |
-
|
| 1413 |
-
|
| 1414 |
-
|
| 1415 |
-
|
| 1416 |
-
|
| 1417 |
-
|
| 1418 |
-
|
| 1419 |
-
|
| 1420 |
-
|
| 1421 |
-
|
| 1422 |
-
|
| 1423 |
-
# After long sentence, maybe go shorter
|
| 1424 |
-
elif last_sentence_length > 25 and random.random() < 0.6:
|
| 1425 |
-
# Truncate if possible
|
| 1426 |
-
if ',' in sentence and sentence.count(',') > 1:
|
| 1427 |
-
# Keep only first part
|
| 1428 |
-
parts = sentence.split(',')
|
| 1429 |
-
sentence = parts[0] + '.'
|
| 1430 |
-
|
| 1431 |
-
# Natural sentence combinations for flow
|
| 1432 |
if (i < len(sentences) - 1 and
|
| 1433 |
-
current_length <
|
| 1434 |
-
len(sentences[i+1].split()) <
|
| 1435 |
-
random.random() < 0.35):
|
| 1436 |
|
| 1437 |
next_sent = sentences[i+1].strip()
|
| 1438 |
-
#
|
| 1439 |
-
|
| 1440 |
-
|
| 1441 |
-
|
| 1442 |
-
|
| 1443 |
-
|
| 1444 |
-
|
| 1445 |
-
|
| 1446 |
-
if connector.startswith('.'):
|
| 1447 |
-
combined = sentence + connector + next_sent
|
| 1448 |
-
else:
|
| 1449 |
-
combined = sentence.rstrip('.') + connector + next_sent[0].lower() + next_sent[1:]
|
| 1450 |
-
|
| 1451 |
-
varied_sentences.append(combined)
|
| 1452 |
-
sentences[i+1] = ""
|
| 1453 |
-
last_sentence_length = len(combined.split())
|
| 1454 |
-
continue
|
| 1455 |
-
|
| 1456 |
-
# Add rhetorical questions occasionally
|
| 1457 |
-
if random.random() < 0.08 and i < len(sentences) - 1:
|
| 1458 |
-
rhetorical = [
|
| 1459 |
-
" Make sense?",
|
| 1460 |
-
" See what I mean?",
|
| 1461 |
-
" Getting the picture?",
|
| 1462 |
-
" Following me so far?",
|
| 1463 |
-
" Sound familiar?",
|
| 1464 |
-
" Crazy, right?",
|
| 1465 |
-
" Wild, isn't it?"
|
| 1466 |
-
]
|
| 1467 |
-
sentence += random.choice(rhetorical)
|
| 1468 |
|
| 1469 |
varied_sentences.append(sentence)
|
| 1470 |
last_sentence_length = current_length
|
| 1471 |
|
| 1472 |
return ' '.join([s for s in varied_sentences if s])
|
| 1473 |
|
| 1474 |
-
def add_natural_flow_variations(self, text):
|
| 1475 |
-
"""Add more natural flow and rhythm variations for Originality AI"""
|
| 1476 |
-
sentences = self.split_into_sentences_advanced(text)
|
| 1477 |
-
enhanced_sentences = []
|
| 1478 |
-
|
| 1479 |
-
for i, sentence in enumerate(sentences):
|
| 1480 |
-
if not sentence.strip():
|
| 1481 |
-
continue
|
| 1482 |
-
|
| 1483 |
-
# Add stream-of-consciousness elements (15% chance)
|
| 1484 |
-
if random.random() < 0.15 and len(sentence.split()) > 10:
|
| 1485 |
-
stream_elements = [
|
| 1486 |
-
" - wait, actually, ",
|
| 1487 |
-
" - hmm, ",
|
| 1488 |
-
" - okay so ",
|
| 1489 |
-
" - oh right, ",
|
| 1490 |
-
" - correction: ",
|
| 1491 |
-
" - or wait, maybe ",
|
| 1492 |
-
" - scratch that, "
|
| 1493 |
-
]
|
| 1494 |
-
words = sentence.split()
|
| 1495 |
-
pos = random.randint(len(words)//4, 3*len(words)//4)
|
| 1496 |
-
words.insert(pos, random.choice(stream_elements))
|
| 1497 |
-
sentence = ' '.join(words)
|
| 1498 |
-
|
| 1499 |
-
# Add human-like self-corrections (10% chance)
|
| 1500 |
-
if random.random() < 0.10:
|
| 1501 |
-
corrections = [
|
| 1502 |
-
" - or rather, ",
|
| 1503 |
-
" - well, actually, ",
|
| 1504 |
-
" - I mean, ",
|
| 1505 |
-
" - or should I say, ",
|
| 1506 |
-
" - correction: ",
|
| 1507 |
-
" - let me rephrase: ",
|
| 1508 |
-
" - wait, no, "
|
| 1509 |
-
]
|
| 1510 |
-
words = sentence.split()
|
| 1511 |
-
if len(words) > 8:
|
| 1512 |
-
pos = random.randint(len(words)//2, len(words)-3)
|
| 1513 |
-
correction = random.choice(corrections)
|
| 1514 |
-
words.insert(pos, correction)
|
| 1515 |
-
sentence = ' '.join(words)
|
| 1516 |
-
|
| 1517 |
-
# Add thinking-out-loud patterns (12% chance)
|
| 1518 |
-
if random.random() < 0.12 and i > 0:
|
| 1519 |
-
thinking_patterns = [
|
| 1520 |
-
"Come to think of it, ",
|
| 1521 |
-
"Actually, you know what? ",
|
| 1522 |
-
"Wait, here's a thought: ",
|
| 1523 |
-
"Oh, and another thing - ",
|
| 1524 |
-
"Speaking of which, ",
|
| 1525 |
-
"This reminds me, ",
|
| 1526 |
-
"Now that I mention it, ",
|
| 1527 |
-
"Funny you should ask, because ",
|
| 1528 |
-
"You know what's interesting? ",
|
| 1529 |
-
"Here's what gets me: ",
|
| 1530 |
-
"Can I be honest? ",
|
| 1531 |
-
"Between you and me, "
|
| 1532 |
-
]
|
| 1533 |
-
pattern = random.choice(thinking_patterns)
|
| 1534 |
-
sentence = pattern + sentence[0].lower() + sentence[1:] if len(sentence) > 1 else sentence
|
| 1535 |
-
|
| 1536 |
-
# Add emphatic repetitions (8% chance)
|
| 1537 |
-
if random.random() < 0.08 and len(sentence.split()) > 6:
|
| 1538 |
-
# Find a key word to repeat for emphasis
|
| 1539 |
-
words = sentence.split()
|
| 1540 |
-
important_words = [w for w in words if len(w) > 4 and w[0].islower()]
|
| 1541 |
-
if important_words:
|
| 1542 |
-
word_to_repeat = random.choice(important_words)
|
| 1543 |
-
emphatic_patterns = [
|
| 1544 |
-
f". {word_to_repeat.capitalize()}.",
|
| 1545 |
-
f" - yes, {word_to_repeat} -",
|
| 1546 |
-
f". I said {word_to_repeat}.",
|
| 1547 |
-
f" ({word_to_repeat}!)",
|
| 1548 |
-
f". {word_to_repeat.capitalize()}, people!"
|
| 1549 |
-
]
|
| 1550 |
-
sentence += random.choice(emphatic_patterns)
|
| 1551 |
-
|
| 1552 |
-
enhanced_sentences.append(sentence)
|
| 1553 |
-
|
| 1554 |
-
return ' '.join(enhanced_sentences)
|
| 1555 |
-
|
| 1556 |
def fix_punctuation(self, text):
|
| 1557 |
"""Comprehensive punctuation and formatting fixes"""
|
| 1558 |
if not text:
|
|
@@ -1564,27 +1326,26 @@ class EnhancedDipperHumanizer:
|
|
| 1564 |
# Fix weird symbols and characters using safe replacements
|
| 1565 |
text = text.replace('<>', '') # Remove empty angle brackets
|
| 1566 |
|
| 1567 |
-
# Normalize quotes
|
| 1568 |
text = text.replace('«', '"').replace('»', '"')
|
| 1569 |
text = text.replace('„', '"').replace('"', '"').replace('"', '"')
|
| 1570 |
text = text.replace(''', "'").replace(''', "'")
|
| 1571 |
text = text.replace('–', '-').replace('—', '-')
|
| 1572 |
|
| 1573 |
# Fix colon issues
|
| 1574 |
-
text = re.sub(r'\.:', ':', text)
|
| 1575 |
-
text = re.sub(r':\s*\.', ':', text)
|
| 1576 |
|
| 1577 |
-
# Fix basic spacing
|
| 1578 |
-
text = re.sub(r'\s
|
| 1579 |
-
|
| 1580 |
-
|
| 1581 |
-
text = re.sub(r'([
|
| 1582 |
-
text = re.sub(r'([.!?])\s*\1+', r'\1', text)
|
| 1583 |
|
| 1584 |
# Fix colons
|
| 1585 |
-
text = re.sub(r':\s*([.,!?])', ':', text)
|
| 1586 |
-
text = re.sub(r'([.,!?])\s*:', ':', text)
|
| 1587 |
-
text = re.sub(r':+', ':', text)
|
| 1588 |
|
| 1589 |
# Fix quotes and parentheses
|
| 1590 |
text = re.sub(r'"\s*([^"]*?)\s*"', r'"\1"', text)
|
|
@@ -1592,6 +1353,7 @@ class EnhancedDipperHumanizer:
|
|
| 1592 |
text = re.sub(r'\(\s*([^)]*?)\s*\)', r'(\1)', text)
|
| 1593 |
|
| 1594 |
# Fix sentence capitalization more carefully
|
|
|
|
| 1595 |
sentences = re.split(r'(?<=[.!?])\s+', text)
|
| 1596 |
fixed_sentences = []
|
| 1597 |
|
|
@@ -1599,44 +1361,51 @@ class EnhancedDipperHumanizer:
|
|
| 1599 |
if not sentence:
|
| 1600 |
continue
|
| 1601 |
|
| 1602 |
-
# Only capitalize if
|
|
|
|
| 1603 |
words = sentence.split()
|
| 1604 |
if words:
|
| 1605 |
first_word = words[0]
|
|
|
|
| 1606 |
if (first_word[0].islower() and
|
| 1607 |
not self.is_likely_acronym_or_proper_noun(first_word) and
|
| 1608 |
not first_word.startswith('__KW') and
|
| 1609 |
not first_word.startswith('_kw')):
|
|
|
|
| 1610 |
sentence = first_word[0].upper() + first_word[1:] + ' ' + ' '.join(words[1:])
|
| 1611 |
|
| 1612 |
fixed_sentences.append(sentence)
|
| 1613 |
|
| 1614 |
text = ' '.join(fixed_sentences)
|
| 1615 |
|
| 1616 |
-
# Fix common issues
|
| 1617 |
-
|
| 1618 |
-
|
| 1619 |
-
text = re.sub(r'
|
| 1620 |
-
text = re.sub(r'
|
|
|
|
|
|
|
|
|
|
| 1621 |
|
| 1622 |
# Fix abbreviations
|
| 1623 |
text = re.sub(r'\betc\s*\.\s*\.', 'etc.', text)
|
| 1624 |
text = re.sub(r'\be\.g\s*\.\s*[,\s]', 'e.g., ', text)
|
| 1625 |
text = re.sub(r'\bi\.e\s*\.\s*[,\s]', 'i.e., ', text)
|
| 1626 |
|
| 1627 |
-
# Fix numbers with periods
|
| 1628 |
text = re.sub(r'(\d+)\.\s+', r'\1. ', text)
|
| 1629 |
|
| 1630 |
# Fix bold/strong tags punctuation
|
| 1631 |
text = self.fix_bold_punctuation(text)
|
| 1632 |
|
| 1633 |
-
# Clean up remaining issues
|
| 1634 |
-
text = re.sub(r'\s+([.,!?;:])', r'\1', text)
|
| 1635 |
-
text = re.sub(r'([.,!?;:])\s{2,}', r'\1 ', text)
|
| 1636 |
|
| 1637 |
# Ensure ending punctuation
|
| 1638 |
text = text.strip()
|
| 1639 |
if text and text[-1] not in '.!?':
|
|
|
|
| 1640 |
if not text.endswith(':'):
|
| 1641 |
text += '.'
|
| 1642 |
|
|
@@ -1646,11 +1415,13 @@ class EnhancedDipperHumanizer:
|
|
| 1646 |
"""Fix punctuation issues around bold/strong tags"""
|
| 1647 |
# Check if this is likely a list item with colon pattern
|
| 1648 |
def is_list_item_with_colon(text):
|
|
|
|
| 1649 |
list_pattern = r'^\s*(?:[-•*▪▫◦‣⁃]\s*)?<(?:strong|b)>[^<]+:</(?:strong|b)>'
|
| 1650 |
return bool(re.search(list_pattern, text))
|
| 1651 |
|
| 1652 |
# If it's a list item with colon, preserve the format
|
| 1653 |
if is_list_item_with_colon(text):
|
|
|
|
| 1654 |
text = re.sub(r'<(strong|b)>\s*([^:]+)\s*:\s*</\1>', r'<\1>\2:</\1>', text)
|
| 1655 |
return text
|
| 1656 |
|
|
@@ -1666,12 +1437,14 @@ class EnhancedDipperHumanizer:
|
|
| 1666 |
|
| 1667 |
# Check if this is a list header (contains colon at the end)
|
| 1668 |
if content.endswith(':'):
|
|
|
|
| 1669 |
return f'<{tag}>{content}</{tag}>'
|
| 1670 |
|
| 1671 |
# Remove any periods at the start or end of bold content
|
| 1672 |
content = content.strip('.')
|
| 1673 |
|
| 1674 |
# Check if this bold text is at the start of a sentence
|
|
|
|
| 1675 |
start_pos = match.start()
|
| 1676 |
is_sentence_start = (start_pos == 0 or
|
| 1677 |
(start_pos > 2 and text[start_pos-2:start_pos] in ['. ', '! ', '? ', '\n\n']))
|
|
@@ -1685,24 +1458,25 @@ class EnhancedDipperHumanizer:
|
|
| 1685 |
# Fix bold/strong tags
|
| 1686 |
text = re.sub(bold_pattern, fix_bold_match, text)
|
| 1687 |
|
| 1688 |
-
# Fix spacing around bold/strong tags
|
| 1689 |
if not is_list_item_with_colon(text):
|
| 1690 |
-
text = re.sub(r'\.\s*<(strong|b)>', r'. <\1>', text)
|
| 1691 |
-
text = re.sub(r'</(strong|b)>\s*\.', r'</\1>.', text)
|
| 1692 |
-
text = re.sub(r'([.!?])\s*<(strong|b)>', r'\1 <\2>', text)
|
| 1693 |
-
text = re.sub(r'</(strong|b)>\s+([a-z])', lambda m: f'</{m.group(1)}> {m.group(2)}', text)
|
| 1694 |
|
| 1695 |
# Remove duplicate periods around bold tags
|
| 1696 |
text = re.sub(r'\.\s*</(strong|b)>\s*\.', r'</\1>.', text)
|
| 1697 |
text = re.sub(r'\.\s*<(strong|b)>\s*\.', r'. <\1>', text)
|
| 1698 |
|
| 1699 |
# Fix cases where bold content ends a sentence
|
|
|
|
| 1700 |
text = re.sub(r'</(strong|b)>\s+([A-Z])', r'</\1>. \2', text)
|
| 1701 |
|
| 1702 |
# Don't remove these for list items
|
| 1703 |
if not is_list_item_with_colon(text):
|
| 1704 |
-
text = re.sub(r'<(strong|b)>\s*:\s*</\1>', ':', text)
|
| 1705 |
-
text = re.sub(r'<(strong|b)>\s*\.\s*</\1>', '.', text)
|
| 1706 |
|
| 1707 |
return text
|
| 1708 |
|
|
@@ -1711,7 +1485,7 @@ class EnhancedDipperHumanizer:
|
|
| 1711 |
soup = BeautifulSoup(html_content, 'html.parser')
|
| 1712 |
text_elements = []
|
| 1713 |
|
| 1714 |
-
# Get all text nodes
|
| 1715 |
for element in soup.find_all(string=True):
|
| 1716 |
# Skip script, style, and noscript content completely
|
| 1717 |
if element.parent.name in ['script', 'style', 'noscript']:
|
|
@@ -1733,11 +1507,11 @@ class EnhancedDipperHumanizer:
|
|
| 1733 |
html_text = re.sub(r'<!\s*DOCTYPE', '<!DOCTYPE', html_text, flags=re.IGNORECASE)
|
| 1734 |
|
| 1735 |
# Fix spacing issues
|
| 1736 |
-
html_text = re.sub(r'>\s+<', '><', html_text)
|
| 1737 |
-
html_text = re.sub(r'\s+>', '>', html_text)
|
| 1738 |
-
html_text = re.sub(r'<\s+', '<', html_text)
|
| 1739 |
|
| 1740 |
-
# Fix common word errors
|
| 1741 |
html_text = html_text.replace('down loaded', 'downloaded')
|
| 1742 |
html_text = html_text.replace('But your document', 'Your document')
|
| 1743 |
|
|
@@ -1751,6 +1525,7 @@ class EnhancedDipperHumanizer:
|
|
| 1751 |
# Find all paragraph tags
|
| 1752 |
for p_tag in soup.find_all('p'):
|
| 1753 |
# Skip paragraphs that are inside special elements
|
|
|
|
| 1754 |
skip_parents = ['div.author-intro', 'div.cta-box', 'div.testimonial-card',
|
| 1755 |
'div.news-box', 'button', 'a', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6',
|
| 1756 |
'div.quiz-container', 'div.question-container', 'div.results']
|
|
@@ -1799,6 +1574,7 @@ class EnhancedDipperHumanizer:
|
|
| 1799 |
continue
|
| 1800 |
|
| 1801 |
# Skip if the text node's immediate parent isn't the p tag
|
|
|
|
| 1802 |
if text_node.parent != p_tag:
|
| 1803 |
continue
|
| 1804 |
|
|
@@ -1836,6 +1612,68 @@ class EnhancedDipperHumanizer:
|
|
| 1836 |
text_node.insert_after(new_node)
|
| 1837 |
text_node.extract()
|
| 1838 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1839 |
def process_html(self, html_content, primary_keywords="", secondary_keywords="", progress_callback=None):
|
| 1840 |
"""Main processing function with progress callback"""
|
| 1841 |
if not html_content.strip():
|
|
@@ -1868,9 +1706,10 @@ class EnhancedDipperHumanizer:
|
|
| 1868 |
# Combine keywords and clean them
|
| 1869 |
all_keywords = []
|
| 1870 |
if primary_keywords:
|
|
|
|
| 1871 |
for k in primary_keywords.split(','):
|
| 1872 |
cleaned = k.strip()
|
| 1873 |
-
if cleaned and len(cleaned) > 1:
|
| 1874 |
all_keywords.append(cleaned)
|
| 1875 |
if secondary_keywords:
|
| 1876 |
for k in secondary_keywords.split(','):
|
|
@@ -1915,7 +1754,7 @@ class EnhancedDipperHumanizer:
|
|
| 1915 |
if text_has_keywords:
|
| 1916 |
print(f"Debug: Processing text with keywords: {original_text[:50]}...")
|
| 1917 |
|
| 1918 |
-
# First pass with Dipper (with
|
| 1919 |
paraphrased_text = self.paraphrase_with_dipper(
|
| 1920 |
original_text,
|
| 1921 |
keywords=all_keywords
|
|
@@ -1924,7 +1763,7 @@ class EnhancedDipperHumanizer:
|
|
| 1924 |
# Verify no placeholders remain
|
| 1925 |
if '__KW' in paraphrased_text or '___' in paraphrased_text:
|
| 1926 |
print(f"Warning: Placeholder or underscores found in paraphrased text: {paraphrased_text[:100]}...")
|
| 1927 |
-
# Try to restore again
|
| 1928 |
temp_map = {}
|
| 1929 |
for j, keyword in enumerate(all_keywords):
|
| 1930 |
temp_map[f'__KW{j:03d}__'] = keyword
|
|
@@ -1932,27 +1771,24 @@ class EnhancedDipperHumanizer:
|
|
| 1932 |
|
| 1933 |
# Second pass with BART for longer texts (increased probability)
|
| 1934 |
if self.use_bart and len(paraphrased_text.split()) > 8:
|
| 1935 |
-
#
|
| 1936 |
-
if random.random() < 0.
|
| 1937 |
paraphrased_text = self.paraphrase_with_bart(
|
| 1938 |
paraphrased_text,
|
| 1939 |
keywords=all_keywords
|
| 1940 |
)
|
| 1941 |
|
| 1942 |
-
# Apply
|
| 1943 |
paraphrased_text = self.apply_sentence_variation(paraphrased_text)
|
| 1944 |
|
| 1945 |
# Add natural flow variations
|
| 1946 |
paraphrased_text = self.add_natural_flow_variations(paraphrased_text)
|
| 1947 |
|
| 1948 |
-
# Add extra human touch
|
| 1949 |
-
paraphrased_text = self.human_variations.add_human_touch(paraphrased_text)
|
| 1950 |
-
|
| 1951 |
# Fix punctuation and formatting
|
| 1952 |
paraphrased_text = self.fix_punctuation(paraphrased_text)
|
| 1953 |
|
| 1954 |
-
# Final check for any remaining placeholders
|
| 1955 |
-
if '___' in paraphrased_text or '__KW' in paraphrased_text
|
| 1956 |
print(f"Error: Unresolved placeholders in final text")
|
| 1957 |
# Use original text if we can't resolve placeholders
|
| 1958 |
paraphrased_text = original_text
|
|
@@ -1973,20 +1809,17 @@ class EnhancedDipperHumanizer:
|
|
| 1973 |
# Wrap keywords with <strong> tags in paragraphs
|
| 1974 |
self.wrap_keywords_in_paragraphs(soup, all_keywords)
|
| 1975 |
|
| 1976 |
-
# Post-process the entire HTML
|
| 1977 |
result = str(soup)
|
| 1978 |
result = self.post_process_html(result)
|
| 1979 |
|
| 1980 |
-
# Final safety check for any remaining placeholders
|
| 1981 |
-
if '__KW' in result or re.search(r'_{3,}', result)
|
| 1982 |
-
print("Warning: Found placeholders in final HTML output")
|
| 1983 |
-
# Attempt
|
| 1984 |
for i, keyword in enumerate(all_keywords):
|
| 1985 |
result = result.replace(f'__KW{i:03d}__', keyword)
|
| 1986 |
-
result = re.sub(
|
| 1987 |
-
result = re.sub(f'\\bKW{i}\\b', keyword, result)
|
| 1988 |
-
result = re.sub(r'_{3,}', '', result)
|
| 1989 |
-
result = re.sub(r'\bKW\d+\b', '', result)
|
| 1990 |
|
| 1991 |
# Restore all script tags
|
| 1992 |
for idx, script_content in enumerate(preserved_scripts):
|
|
@@ -2001,7 +1834,7 @@ class EnhancedDipperHumanizer:
|
|
| 2001 |
# Validate and fix HTML syntax
|
| 2002 |
result = self.validate_and_fix_html(result)
|
| 2003 |
|
| 2004 |
-
# Count skipped elements
|
| 2005 |
all_text_elements = soup.find_all(string=True)
|
| 2006 |
skipped = len([e for e in all_text_elements if e.strip() and e.parent.name not in ['script', 'style', 'noscript']]) - total_elements
|
| 2007 |
|
|
@@ -2015,13 +1848,14 @@ class EnhancedDipperHumanizer:
|
|
| 2015 |
import traceback
|
| 2016 |
error_msg = f"Error processing HTML: {str(e)}\n{traceback.format_exc()}"
|
| 2017 |
print(error_msg)
|
|
|
|
| 2018 |
return f"<!-- {error_msg} -->\n{html_content}"
|
| 2019 |
|
| 2020 |
def post_process_html(self, html_text):
|
| 2021 |
"""Post-process the entire HTML to fix formatting issues"""
|
| 2022 |
-
# Fix empty angle brackets
|
| 2023 |
-
html_text = re.sub(r'<>\s*([^<>]+?)\s*(?=\.|\s|<)', r'\1', html_text)
|
| 2024 |
-
html_text = re.sub(r'<>', '', html_text)
|
| 2025 |
|
| 2026 |
# Fix double angle brackets around bold tags
|
| 2027 |
html_text = re.sub(r'<<b>>', '<b>', html_text)
|
|
@@ -2030,9 +1864,9 @@ class EnhancedDipperHumanizer:
|
|
| 2030 |
html_text = re.sub(r'<</strong>>', '</strong>', html_text)
|
| 2031 |
|
| 2032 |
# Fix periods around bold/strong tags
|
| 2033 |
-
html_text = re.sub(r'\.\s*<(b|strong)>', '. <\1>', html_text)
|
| 2034 |
-
html_text = re.sub(r'</(b|strong)>\s*\.', '</\1>.', html_text)
|
| 2035 |
-
html_text = re.sub(r'\.<<(b|strong)>>', '. <\1>', html_text)
|
| 2036 |
html_text = re.sub(r'</(b|strong)>>\.', '</\1>.', html_text)
|
| 2037 |
|
| 2038 |
# Fix periods after colons
|
|
@@ -2044,15 +1878,19 @@ class EnhancedDipperHumanizer:
|
|
| 2044 |
# Check if this line contains a list pattern with bold
|
| 2045 |
list_pattern = r'(?:^|\s)(?:[-•*▪▫◦‣⁃]\s*)?<(?:strong|b)>[^<]+:</(?:strong|b)>'
|
| 2046 |
if re.search(list_pattern, line):
|
|
|
|
| 2047 |
return line
|
| 2048 |
|
| 2049 |
# Not a list item, apply regular fixes
|
|
|
|
| 2050 |
line = re.sub(r'<(strong|b)>\s*\.\s*([^<]+)\s*\.\s*</\1>', r'<\1>\2</\1>', line)
|
|
|
|
|
|
|
| 2051 |
line = re.sub(r'</(strong|b)>\s*([.!?])', r'</\1>\2', line)
|
| 2052 |
|
| 2053 |
return line
|
| 2054 |
|
| 2055 |
-
# Process line by line
|
| 2056 |
lines = html_text.split('\n')
|
| 2057 |
processed_lines = [process_line(line) for line in lines]
|
| 2058 |
html_text = '\n'.join(processed_lines)
|
|
@@ -2078,7 +1916,8 @@ class EnhancedDipperHumanizer:
|
|
| 2078 |
# Look for bold/strong tags and check their context
|
| 2079 |
html_text = re.sub(r'(^|.*?)(<(?:strong|b)>)([a-zA-Z])', fix_bold_sentence_start, html_text)
|
| 2080 |
|
| 2081 |
-
# Clean up spacing around bold tags
|
|
|
|
| 2082 |
segments = re.split(r'(<(?:strong|b)>[^<]*:</(?:strong|b)>)', html_text)
|
| 2083 |
cleaned_segments = []
|
| 2084 |
|
|
@@ -2089,7 +1928,9 @@ class EnhancedDipperHumanizer:
|
|
| 2089 |
# Apply spacing fixes to non-list segments
|
| 2090 |
segment = re.sub(r'\s+<(strong|b)>', r' <\1>', segment)
|
| 2091 |
segment = re.sub(r'</(strong|b)>\s+', r'</\1> ', segment)
|
|
|
|
| 2092 |
segment = re.sub(r'([.,!?;:])\s*([.,!?;:])', r'\1', segment)
|
|
|
|
| 2093 |
segment = re.sub(r'\.<(strong|b)>\.', '. <\1>', segment)
|
| 2094 |
segment = re.sub(r'\.</(strong|b)>\.', '</\1>.', segment)
|
| 2095 |
cleaned_segments.append(segment)
|
|
@@ -2097,15 +1938,16 @@ class EnhancedDipperHumanizer:
|
|
| 2097 |
html_text = ''.join(cleaned_segments)
|
| 2098 |
|
| 2099 |
# Final cleanup
|
| 2100 |
-
html_text = re.sub(r'\.{2,}', '.', html_text)
|
| 2101 |
-
html_text = re.sub(r',{2,}', ',', html_text)
|
| 2102 |
-
html_text = re.sub(r':{2,}', ':', html_text)
|
| 2103 |
-
html_text = re.sub(r'\s+([.,!?;:])', r'\1', html_text)
|
| 2104 |
|
| 2105 |
-
# Fix empty bold tags
|
| 2106 |
html_text = re.sub(r'<(strong|b)>\s*</\1>', '', html_text)
|
| 2107 |
|
| 2108 |
# Fix specific patterns in lists/stats
|
|
|
|
| 2109 |
html_text = re.sub(r'(\d+[,\d]*\+?)\s*\.\s*\n', r'\1\n', html_text)
|
| 2110 |
|
| 2111 |
# Clean up any remaining double brackets
|
|
@@ -2169,33 +2011,24 @@ iface = gr.Interface(
|
|
| 2169 |
lines=10,
|
| 2170 |
label="Humanized HTML Output"
|
| 2171 |
),
|
| 2172 |
-
title="Enhanced Dipper AI Humanizer
|
| 2173 |
description="""
|
| 2174 |
Ultra-aggressive humanizer optimized to achieve 100% human scores on both Undetectable AI and Originality AI.
|
| 2175 |
|
| 2176 |
-
|
| 2177 |
-
-
|
| 2178 |
-
-
|
| 2179 |
-
-
|
| 2180 |
-
-
|
| 2181 |
-
-
|
| 2182 |
-
-
|
| 2183 |
-
- **60+ casual transitions**: From "So," to "Plot twist:" to "Between you and me,"
|
| 2184 |
-
- **Natural asides**: "(yeah, I know)" "(trust me on this)" "(not even kidding)"
|
| 2185 |
-
|
| 2186 |
-
✅ **Key Features:**
|
| 2187 |
-
- Fixed keyword restoration system - no more KW0 or placeholder issues!
|
| 2188 |
- Keywords inside <p> tags are automatically wrapped with <strong> tags
|
| 2189 |
-
-
|
| 2190 |
-
-
|
| 2191 |
-
- Designed to fool even the strictest AI detectors!
|
| 2192 |
|
| 2193 |
-
|
| 2194 |
-
- Use 3-5 primary keywords for best preservation
|
| 2195 |
-
- Longer content = better humanization results
|
| 2196 |
-
- Processing takes 5-10 minutes for large documents
|
| 2197 |
|
| 2198 |
-
|
| 2199 |
""",
|
| 2200 |
examples=[
|
| 2201 |
["""<article>
|
|
|
|
| 26 |
"""Add human-like variations and intentional imperfections"""
|
| 27 |
|
| 28 |
def __init__(self):
|
| 29 |
+
# Common human writing patterns - EXPANDED for Originality AI
|
| 30 |
self.casual_transitions = [
|
| 31 |
+
"So, ", "Well, ", "Now, ", "Actually, ", "Basically, ",
|
| 32 |
+
"You know, ", "I mean, ", "Thing is, ", "Honestly, ",
|
| 33 |
+
"Look, ", "Listen, ", "See, ", "Okay, ", "Right, ",
|
| 34 |
+
"Anyway, ", "Besides, ", "Plus, ", "Also, ", "Oh, ",
|
| 35 |
+
"Hey, ", "Alright, ", "Sure, ", "Fine, ", "Obviously, ",
|
| 36 |
+
"Clearly, ", "Seriously, ", "Literally, ", "Frankly, ",
|
| 37 |
+
"To be honest, ", "Truth is, ", "In fact, ", "Believe it or not, ",
|
| 38 |
+
"Here's the thing, ", "Let me tell you, ", "Get this, ",
|
| 39 |
+
"Funny thing is, ", "Interestingly, ", "Surprisingly, ",
|
| 40 |
+
"Let's be real here, ", "Can we talk about ", "Quick question: ",
|
| 41 |
+
"Real talk: ", "Hot take: ", "Unpopular opinion: ", "Fun fact: ",
|
| 42 |
+
"Pro tip: ", "Side note: ", "Random thought: ", "Food for thought: ",
|
| 43 |
+
"Just saying, ", "Not gonna lie, ", "For what it's worth, ",
|
| 44 |
+
"If you ask me, ", "Between you and me, ", "Here's my take: ",
|
| 45 |
+
"Let's face it, ", "No kidding, ", "Seriously though, ",
|
| 46 |
+
"But wait, ", "Hold on, ", "Check this out: ", "Guess what? "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
]
|
| 48 |
|
| 49 |
self.filler_phrases = [
|
|
|
|
| 68 |
"to the best of my knowledge", "if I'm not mistaken", "correct me if I'm wrong",
|
| 69 |
"you know what", "here's the deal", "bottom line", "at any rate",
|
| 70 |
"all in all", "when you think about it", "come to think of it",
|
| 71 |
+
"now that I think about it", "if we're being honest", "to be fair"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
]
|
| 73 |
|
| 74 |
self.human_connectors = [
|
|
|
|
| 96 |
". And honestly?", ". But seriously,", ". And you know what?",
|
| 97 |
", which brings me to", ". This reminds me of", ", speaking of which",
|
| 98 |
". Funny enough,", ". Weird thing is,", ". Strange but true:",
|
| 99 |
+
", and I mean", ". I'm not kidding when I say", ", and trust me on this"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
]
|
| 101 |
|
| 102 |
+
# NEW: Common human typos and variations
|
| 103 |
self.common_typos = {
|
| 104 |
+
"the": ["teh", "th", "hte"],
|
| 105 |
+
"and": ["adn", "nad", "an"],
|
| 106 |
+
"that": ["taht", "htat", "tha"],
|
| 107 |
+
"with": ["wiht", "wtih", "iwth"],
|
| 108 |
+
"have": ["ahve", "hvae", "hav"],
|
| 109 |
+
"from": ["form", "fro", "frmo"],
|
| 110 |
+
"they": ["tehy", "thye", "htey"],
|
| 111 |
+
"which": ["whihc", "wich", "whcih"],
|
| 112 |
+
"their": ["thier", "theri", "tehir"],
|
| 113 |
+
"would": ["woudl", "wuold", "woul"],
|
| 114 |
+
"there": ["tehre", "theer", "ther"],
|
| 115 |
+
"could": ["coudl", "cuold", "coud"],
|
| 116 |
+
"people": ["poeple", "peopel", "pepole"],
|
| 117 |
+
"through": ["thorugh", "throught", "trhough"],
|
| 118 |
+
"because": ["becuase", "becasue", "beacuse"],
|
| 119 |
+
"before": ["beofre", "befroe", "befor"],
|
| 120 |
+
"different": ["differnt", "differnet", "diferent"],
|
| 121 |
+
"between": ["bewteen", "betwen", "betewen"],
|
| 122 |
+
"important": ["improtant", "importnat", "importan"],
|
| 123 |
+
"information": ["infromation", "informaiton", "informaton"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
}
|
| 125 |
|
| 126 |
+
# NEW: Human-like sentence starters for variety
|
| 127 |
self.varied_starters = [
|
| 128 |
"When it comes to", "As for", "Regarding", "In terms of",
|
| 129 |
"With respect to", "Concerning", "Speaking of", "About",
|
|
|
|
| 140 |
"You might wonder", "You might ask", "You may think",
|
| 141 |
"Some people say", "Many believe", "It's often said",
|
| 142 |
"Research shows", "Studies indicate", "Evidence suggests",
|
| 143 |
+
"Experience tells us", "History shows", "Time has shown"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
]
|
| 145 |
|
| 146 |
def add_human_touch(self, text):
|
| 147 |
+
"""Add subtle human-like imperfections - NATURAL PATTERNS ONLY"""
|
| 148 |
sentences = text.split('. ')
|
| 149 |
modified_sentences = []
|
| 150 |
|
| 151 |
# Track what we've used to avoid patterns
|
| 152 |
+
used_transitions = []
|
|
|
|
| 153 |
|
| 154 |
for i, sent in enumerate(sentences):
|
| 155 |
if not sent.strip():
|
|
|
|
| 158 |
# Always use contractions where natural
|
| 159 |
sent = self.apply_contractions(sent)
|
| 160 |
|
| 161 |
+
# Add VERY occasional natural errors (5% chance)
|
| 162 |
+
if random.random() < 0.05 and len(sent.split()) > 15:
|
| 163 |
+
error_types = [
|
| 164 |
+
# Missing comma in compound sentence
|
| 165 |
+
lambda s: s.replace(", and", " and", 1) if ", and" in s else s,
|
| 166 |
+
# Wrong homophone
|
| 167 |
+
lambda s: s.replace("their", "there", 1) if "their" in s and random.random() < 0.3 else s,
|
| 168 |
+
# Missing apostrophe
|
| 169 |
+
lambda s: s.replace("it's", "its", 1) if "it's" in s and random.random() < 0.3 else s,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
]
|
| 171 |
+
error_func = random.choice(error_types)
|
| 172 |
+
sent = error_func(sent)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
|
| 174 |
modified_sentences.append(sent)
|
| 175 |
|
| 176 |
return '. '.join(modified_sentences)
|
| 177 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
def apply_contractions(self, text):
|
| 179 |
"""Apply common contractions - EXPANDED"""
|
| 180 |
contractions = {
|
|
|
|
| 195 |
"we would": "we'd", "they would": "they'd", "could have": "could've",
|
| 196 |
"should have": "should've", "would have": "would've", "might have": "might've",
|
| 197 |
"must have": "must've", "there has": "there's", "here is": "here's",
|
| 198 |
+
"let us": "let's", "that will": "that'll", "who will": "who'll"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
}
|
| 200 |
|
|
|
|
| 201 |
for full, contr in contractions.items():
|
| 202 |
+
if random.random() < 0.8: # 80% chance to apply each contraction
|
| 203 |
text = re.sub(r'\b' + full + r'\b', contr, text, flags=re.IGNORECASE)
|
| 204 |
|
| 205 |
return text
|
| 206 |
|
| 207 |
def add_minor_errors(self, text):
|
| 208 |
+
"""Add very minor, human-like errors - MORE REALISTIC BUT CONTROLLED"""
|
| 209 |
+
# Occasionally miss Oxford comma (15% chance)
|
| 210 |
+
if random.random() < 0.15:
|
| 211 |
+
# Only in lists, not random commas
|
| 212 |
text = re.sub(r'(\w+), (\w+), and (\w+)', r'\1, \2 and \3', text)
|
| 213 |
|
| 214 |
+
# Sometimes use 'which' instead of 'that' (8% chance)
|
| 215 |
+
if random.random() < 0.08:
|
| 216 |
+
# Only for non-restrictive clauses
|
| 217 |
matches = re.finditer(r'\b(\w+) that (\w+)', text)
|
| 218 |
+
for match in list(matches)[:1]: # Only first occurrence
|
| 219 |
+
if match.group(1).lower() not in ['believe', 'think', 'know', 'say']:
|
| 220 |
text = text.replace(match.group(0), f"{match.group(1)} which {match.group(2)}", 1)
|
| 221 |
|
| 222 |
+
# NEW: Add very occasional typos (2% chance per sentence) - REDUCED AND CONTROLLED
|
| 223 |
sentences = text.split('. ')
|
| 224 |
for i, sent in enumerate(sentences):
|
| 225 |
+
if random.random() < 0.02 and len(sent.split()) > 15: # Only in longer sentences
|
| 226 |
+
words = sent.split()
|
| 227 |
+
# Pick a random word to potentially typo
|
| 228 |
+
word_idx = random.randint(len(words)//2, len(words)-2) # Avoid start/end
|
| 229 |
+
word = words[word_idx].lower()
|
| 230 |
+
|
| 231 |
+
# Only typo common words where typo won't break meaning
|
| 232 |
+
safe_typos = {
|
| 233 |
+
'the': 'teh',
|
| 234 |
+
'and': 'adn',
|
| 235 |
+
'that': 'taht',
|
| 236 |
+
'with': 'wtih',
|
| 237 |
+
'from': 'form',
|
| 238 |
+
'because': 'becuase'
|
| 239 |
+
}
|
| 240 |
+
|
| 241 |
+
if word in safe_typos and random.random() < 0.5:
|
| 242 |
+
typo = safe_typos[word]
|
| 243 |
+
# Preserve original capitalization
|
| 244 |
+
if words[word_idx][0].isupper():
|
| 245 |
+
typo = typo[0].upper() + typo[1:]
|
| 246 |
+
words[word_idx] = typo
|
| 247 |
+
sentences[i] = ' '.join(words)
|
| 248 |
|
| 249 |
text = '. '.join(sentences)
|
| 250 |
|
| 251 |
+
# Skip double words - too distracting
|
| 252 |
+
|
| 253 |
+
# Mix up common homophones occasionally (2% chance) - ONLY SAFE ONES
|
| 254 |
+
if random.random() < 0.02:
|
| 255 |
+
safe_homophones = [
|
| 256 |
+
('its', "it's"), # Very common mistake
|
| 257 |
+
('your', "you're"), # Another common one
|
| 258 |
+
]
|
| 259 |
+
for pair in safe_homophones:
|
| 260 |
+
# Check context to avoid breaking meaning
|
| 261 |
+
if f" {pair[0]} " in text and random.random() < 0.3:
|
| 262 |
+
# Find one instance and check it's safe to replace
|
| 263 |
+
pattern = rf'\b{pair[0]}\s+(\w+ing|\w+ed)\b' # its + verb = likely should be it's
|
| 264 |
+
if re.search(pattern, text):
|
| 265 |
+
text = re.sub(pattern, f"{pair[1]} \\1", text, count=1)
|
| 266 |
+
break
|
| 267 |
|
| 268 |
return text
|
| 269 |
|
|
|
|
| 279 |
# Natural contractions throughout
|
| 280 |
sentence = self.apply_contractions(sentence)
|
| 281 |
|
| 282 |
+
# Add natural speech patterns (15% chance)
|
| 283 |
+
if random.random() < 0.15 and len(sentence.split()) > 10:
|
| 284 |
+
# Natural interruptions that humans actually use
|
| 285 |
+
if random.random() < 0.5:
|
| 286 |
+
# Add "you know" or "I mean" naturally
|
| 287 |
+
words = sentence.split()
|
| 288 |
+
if len(words) > 6:
|
| 289 |
+
pos = random.randint(3, len(words)-3)
|
| 290 |
+
if random.random() < 0.5:
|
| 291 |
+
words.insert(pos, "you know,")
|
| 292 |
+
else:
|
| 293 |
+
words.insert(pos, "I mean,")
|
| 294 |
+
sentence = ' '.join(words)
|
| 295 |
+
else:
|
| 296 |
+
# Start with natural opener
|
| 297 |
+
openers = ["Look,", "See,", "Thing is,", "Honestly,", "Actually,"]
|
| 298 |
+
sentence = random.choice(openers) + " " + sentence[0].lower() + sentence[1:]
|
| 299 |
|
| 300 |
+
# Add subtle errors that humans make (8% chance)
|
| 301 |
+
if random.random() < 0.08:
|
| 302 |
words = sentence.split()
|
| 303 |
+
if len(words) > 5:
|
| 304 |
+
# Common comma omissions
|
| 305 |
+
if ", and" in sentence and random.random() < 0.3:
|
| 306 |
+
sentence = sentence.replace(", and", " and", 1)
|
| 307 |
+
# Double words occasionally
|
| 308 |
+
elif random.random() < 0.2:
|
| 309 |
+
idx = random.randint(1, len(words)-2)
|
| 310 |
+
if words[idx].lower() in ['the', 'a', 'to', 'in', 'on', 'at']:
|
| 311 |
+
words.insert(idx+1, words[idx])
|
| 312 |
+
sentence = ' '.join(words)
|
| 313 |
+
|
| 314 |
+
# Natural sentence combinations (20% chance)
|
| 315 |
+
if i < len(sentences) - 1 and random.random() < 0.2:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 316 |
next_sent = sentences[i+1].strip()
|
| 317 |
+
if next_sent and len(sentence.split()) + len(next_sent.split()) < 25:
|
| 318 |
+
# Natural connectors based on content
|
| 319 |
+
if any(w in next_sent.lower() for w in ['but', 'however', 'although']):
|
| 320 |
+
sentence = sentence.rstrip('.') + ", but " + next_sent[0].lower() + next_sent[1:]
|
| 321 |
+
sentences[i+1] = "" # Mark as processed
|
| 322 |
+
elif any(w in next_sent.lower() for w in ['also', 'too', 'as well']):
|
| 323 |
+
sentence = sentence.rstrip('.') + " and " + next_sent[0].lower() + next_sent[1:]
|
| 324 |
+
sentences[i+1] = "" # Mark as processed
|
| 325 |
|
| 326 |
result_sentences.append(sentence)
|
| 327 |
|
| 328 |
return ' '.join([s for s in result_sentences if s])
|
| 329 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 330 |
def vary_sentence_start(self, sentence):
|
| 331 |
"""Vary sentence beginning to avoid repetitive patterns"""
|
| 332 |
+
if not sentence:
|
| 333 |
+
return sentence
|
| 334 |
+
|
| 335 |
+
words = sentence.split()
|
| 336 |
+
if len(words) < 5:
|
| 337 |
return sentence
|
| 338 |
|
| 339 |
+
# Different ways to start sentences naturally
|
| 340 |
variations = [
|
| 341 |
+
lambda s: "When " + s[0].lower() + s[1:] + ", it makes sense.",
|
| 342 |
+
lambda s: "If you think about it, " + s[0].lower() + s[1:],
|
| 343 |
+
lambda s: s + " This is important.",
|
| 344 |
+
lambda s: "The thing about " + words[0].lower() + " " + ' '.join(words[1:]) + " is clear.",
|
| 345 |
+
lambda s: "What's interesting is " + s[0].lower() + s[1:],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 346 |
lambda s: s, # Keep original sometimes
|
| 347 |
]
|
| 348 |
|
| 349 |
+
# Pick a random variation
|
| 350 |
+
variation = random.choice(variations)
|
| 351 |
+
try:
|
| 352 |
+
return variation(sentence)
|
| 353 |
+
except:
|
| 354 |
+
return sentence
|
|
|
|
|
|
|
|
|
|
| 355 |
|
| 356 |
class SelectiveGrammarFixer:
|
| 357 |
"""Minimal grammar fixes to maintain human-like quality while fixing critical errors"""
|
|
|
|
| 397 |
|
| 398 |
result = ' '.join(fixed_sentences)
|
| 399 |
|
| 400 |
+
# Add natural human variations (but we need to reference the main class method)
|
| 401 |
+
# This will be called from the smart_fix method instead
|
| 402 |
+
|
| 403 |
return result
|
| 404 |
|
| 405 |
def fix_basic_punctuation_errors(self, text):
|
|
|
|
| 407 |
if not text:
|
| 408 |
return text
|
| 409 |
|
| 410 |
+
# Fix double spaces (human-like error)
|
| 411 |
+
text = re.sub(r'\s{2,}', ' ', text)
|
| 412 |
|
| 413 |
+
# Fix space before punctuation (common error)
|
| 414 |
+
text = re.sub(r'\s+([.,!?;:])', r'\1', text)
|
|
|
|
| 415 |
|
| 416 |
# Fix missing space after punctuation (human-like)
|
| 417 |
text = re.sub(r'([.,!?])([A-Z])', r'\1 \2', text)
|
| 418 |
|
| 419 |
+
# Fix accidental double punctuation
|
| 420 |
+
text = re.sub(r'([.!?])\1+', r'\1', text)
|
|
|
|
| 421 |
|
| 422 |
+
# Fix "i" capitalization (common human error to fix)
|
| 423 |
+
text = re.sub(r'\bi\b', 'I', text)
|
|
|
|
| 424 |
|
| 425 |
return text
|
| 426 |
|
| 427 |
def preserve_natural_variations(self, text):
|
| 428 |
"""Keep some natural human-like variations"""
|
| 429 |
+
# Don't fix everything - leave some variety
|
| 430 |
# Only fix if really broken
|
| 431 |
if text.count('.') == 0 and len(text.split()) > 20:
|
| 432 |
# Long text with no periods - needs fixing
|
| 433 |
words = text.split()
|
| 434 |
+
# Add periods every 15-25 words naturally (more variation)
|
| 435 |
new_text = []
|
| 436 |
for i, word in enumerate(words):
|
| 437 |
new_text.append(word)
|
| 438 |
+
if i > 0 and i % random.randint(12, 25) == 0:
|
| 439 |
if word[-1] not in '.!?,;:':
|
| 440 |
new_text[-1] = word + '.'
|
| 441 |
+
# Capitalize next word if it's not an acronym
|
| 442 |
if i + 1 < len(words) and words[i + 1][0].islower():
|
| 443 |
+
# Check if it's not likely an acronym
|
| 444 |
+
if not words[i + 1].isupper():
|
| 445 |
+
words[i + 1] = words[i + 1][0].upper() + words[i + 1][1:]
|
| 446 |
text = ' '.join(new_text)
|
| 447 |
|
| 448 |
return text
|
|
|
|
| 480 |
print("spaCy model not found, using NLTK for sentence splitting")
|
| 481 |
|
| 482 |
try:
|
| 483 |
+
# Load Dipper paraphraser WITHOUT 8-bit quantization for better performance
|
| 484 |
print("Loading Dipper paraphraser model...")
|
| 485 |
self.tokenizer = T5Tokenizer.from_pretrained('google/t5-v1_1-xxl')
|
| 486 |
self.model = T5ForConditionalGeneration.from_pretrained(
|
| 487 |
"kalpeshk2011/dipper-paraphraser-xxl",
|
| 488 |
+
device_map="auto", # This will distribute across 4xL40S automatically
|
| 489 |
torch_dtype=torch.float16,
|
| 490 |
low_cpu_mem_usage=True
|
| 491 |
)
|
|
|
|
| 516 |
self.bart_model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 517 |
"eugenesiow/bart-paraphrase",
|
| 518 |
torch_dtype=torch.float16,
|
| 519 |
+
device_map="auto" # Distribute across GPUs
|
| 520 |
)
|
| 521 |
self.bart_tokenizer = AutoTokenizer.from_pretrained("eugenesiow/bart-paraphrase")
|
| 522 |
self.use_bart = True
|
|
|
|
| 529 |
self.human_variations = HumanLikeVariations()
|
| 530 |
|
| 531 |
def add_natural_human_patterns(self, text):
|
| 532 |
+
"""Add natural human writing patterns that Originality AI associates with human text"""
|
| 533 |
+
sentences = self.split_into_sentences_advanced(text)
|
| 534 |
+
result_sentences = []
|
| 535 |
+
|
| 536 |
+
for i, sentence in enumerate(sentences):
|
| 537 |
+
if not sentence.strip():
|
| 538 |
+
continue
|
| 539 |
+
|
| 540 |
+
# Natural contractions throughout
|
| 541 |
+
sentence = self.apply_contractions(sentence)
|
| 542 |
+
|
| 543 |
+
# Add natural speech patterns (15% chance)
|
| 544 |
+
if random.random() < 0.15 and len(sentence.split()) > 10:
|
| 545 |
+
# Natural interruptions that humans actually use
|
| 546 |
+
if random.random() < 0.5:
|
| 547 |
+
# Add "you know" or "I mean" naturally
|
| 548 |
+
words = sentence.split()
|
| 549 |
+
if len(words) > 6:
|
| 550 |
+
pos = random.randint(3, len(words)-3)
|
| 551 |
+
if random.random() < 0.5:
|
| 552 |
+
words.insert(pos, "you know,")
|
| 553 |
+
else:
|
| 554 |
+
words.insert(pos, "I mean,")
|
| 555 |
+
sentence = ' '.join(words)
|
| 556 |
+
else:
|
| 557 |
+
# Start with natural opener
|
| 558 |
+
openers = ["Look,", "See,", "Thing is,", "Honestly,", "Actually,"]
|
| 559 |
+
sentence = random.choice(openers) + " " + sentence[0].lower() + sentence[1:]
|
| 560 |
+
|
| 561 |
+
# Add subtle errors that humans make (8% chance)
|
| 562 |
+
if random.random() < 0.08:
|
| 563 |
+
words = sentence.split()
|
| 564 |
+
if len(words) > 5:
|
| 565 |
+
# Common comma omissions
|
| 566 |
+
if ", and" in sentence and random.random() < 0.3:
|
| 567 |
+
sentence = sentence.replace(", and", " and", 1)
|
| 568 |
+
# Double words occasionally
|
| 569 |
+
elif random.random() < 0.2:
|
| 570 |
+
idx = random.randint(1, len(words)-2)
|
| 571 |
+
if words[idx].lower() in ['the', 'a', 'to', 'in', 'on', 'at']:
|
| 572 |
+
words.insert(idx+1, words[idx])
|
| 573 |
+
sentence = ' '.join(words)
|
| 574 |
+
|
| 575 |
+
# Natural sentence combinations (20% chance)
|
| 576 |
+
if i < len(sentences) - 1 and random.random() < 0.2:
|
| 577 |
+
next_sent = sentences[i+1].strip()
|
| 578 |
+
if next_sent and len(sentence.split()) + len(next_sent.split()) < 25:
|
| 579 |
+
# Natural connectors based on content
|
| 580 |
+
if any(w in next_sent.lower() for w in ['but', 'however', 'although']):
|
| 581 |
+
sentence = sentence.rstrip('.') + ", but " + next_sent[0].lower() + next_sent[1:]
|
| 582 |
+
sentences[i+1] = "" # Mark as processed
|
| 583 |
+
elif any(w in next_sent.lower() for w in ['also', 'too', 'as well']):
|
| 584 |
+
sentence = sentence.rstrip('.') + " and " + next_sent[0].lower() + next_sent[1:]
|
| 585 |
+
sentences[i+1] = "" # Mark as processed
|
| 586 |
+
|
| 587 |
+
result_sentences.append(sentence)
|
| 588 |
+
|
| 589 |
+
return ' '.join([s for s in result_sentences if s])
|
| 590 |
|
| 591 |
def vary_sentence_start(self, sentence):
|
| 592 |
+
"""Vary sentence beginning to avoid repetitive patterns"""
|
| 593 |
+
if not sentence:
|
| 594 |
+
return sentence
|
| 595 |
+
|
| 596 |
+
words = sentence.split()
|
| 597 |
+
if len(words) < 5:
|
| 598 |
+
return sentence
|
| 599 |
+
|
| 600 |
+
# Different ways to start sentences naturally
|
| 601 |
+
variations = [
|
| 602 |
+
lambda s: "When " + s[0].lower() + s[1:] + ", it makes sense.",
|
| 603 |
+
lambda s: "If you think about it, " + s[0].lower() + s[1:],
|
| 604 |
+
lambda s: s + " This is important.",
|
| 605 |
+
lambda s: "The thing about " + words[0].lower() + " " + ' '.join(words[1:]) + " is clear.",
|
| 606 |
+
lambda s: "What's interesting is " + s[0].lower() + s[1:],
|
| 607 |
+
lambda s: s, # Keep original sometimes
|
| 608 |
+
]
|
| 609 |
+
|
| 610 |
+
# Pick a random variation
|
| 611 |
+
variation = random.choice(variations)
|
| 612 |
+
try:
|
| 613 |
+
return variation(sentence)
|
| 614 |
+
except:
|
| 615 |
+
return sentence
|
| 616 |
|
| 617 |
def apply_contractions(self, text):
|
| 618 |
+
"""Apply common contractions to make text more natural"""
|
| 619 |
+
contractions = {
|
| 620 |
+
"it is": "it's", "that is": "that's", "there is": "there's",
|
| 621 |
+
"he is": "he's", "she is": "she's", "what is": "what's",
|
| 622 |
+
"where is": "where's", "who is": "who's", "how is": "how's",
|
| 623 |
+
"cannot": "can't", "will not": "won't", "do not": "don't",
|
| 624 |
+
"does not": "doesn't", "did not": "didn't", "could not": "couldn't",
|
| 625 |
+
"should not": "shouldn't", "would not": "wouldn't", "is not": "isn't",
|
| 626 |
+
"are not": "aren't", "was not": "wasn't", "were not": "weren't",
|
| 627 |
+
"have not": "haven't", "has not": "hasn't", "had not": "hadn't",
|
| 628 |
+
"I am": "I'm", "you are": "you're", "we are": "we're",
|
| 629 |
+
"they are": "they're", "I have": "I've", "you have": "you've",
|
| 630 |
+
"we have": "we've", "they have": "they've", "I will": "I'll",
|
| 631 |
+
"you will": "you'll", "he will": "he'll", "she will": "she'll",
|
| 632 |
+
"we will": "we'll", "they will": "they'll", "I would": "I'd",
|
| 633 |
+
"you would": "you'd", "he would": "he'd", "she would": "she'd",
|
| 634 |
+
"we would": "we'd", "they would": "they'd", "could have": "could've",
|
| 635 |
+
"should have": "should've", "would have": "would've", "might have": "might've",
|
| 636 |
+
"must have": "must've", "there has": "there's", "here is": "here's",
|
| 637 |
+
"let us": "let's", "that will": "that'll", "who will": "who'll"
|
| 638 |
+
}
|
| 639 |
+
|
| 640 |
+
for full, contr in contractions.items():
|
| 641 |
+
text = re.sub(r'\b' + full + r'\b', contr, text, flags=re.IGNORECASE)
|
| 642 |
+
|
| 643 |
+
return text
|
| 644 |
|
| 645 |
def preserve_keywords(self, text, keywords):
|
| 646 |
"""Mark keywords to preserve them during paraphrasing"""
|
|
|
|
| 674 |
return modified_text, keyword_map
|
| 675 |
|
| 676 |
def restore_keywords_robust(self, text, keyword_map):
|
| 677 |
+
"""Restore keywords with more flexible pattern matching"""
|
| 678 |
if not keyword_map:
|
| 679 |
return text
|
| 680 |
|
|
|
|
| 704 |
if match:
|
| 705 |
num = match.group(1)
|
| 706 |
|
| 707 |
+
# Various patterns the model might create
|
| 708 |
patterns = [
|
|
|
|
| 709 |
(f'__KW{num}__', keyword),
|
| 710 |
(f'__ KW{num}__', keyword),
|
| 711 |
(f'__KW {num}__', keyword),
|
|
|
|
| 720 |
(f'__KW{num}_', keyword),
|
| 721 |
(f'_KW{num}__', keyword),
|
| 722 |
(f'kw{num}', keyword),
|
| 723 |
+
(f'``KW{num}__', keyword), # Handle backtick corruption
|
| 724 |
+
(f'``KKW{num}', keyword), # Handle double K corruption
|
| 725 |
+
(f'KW{num}', keyword), # Simple pattern
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 726 |
]
|
| 727 |
|
| 728 |
for pattern, replacement in patterns:
|
| 729 |
+
if pattern in restored_text:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 730 |
# Check if this position has already been replaced
|
| 731 |
+
start_pos = restored_text.find(pattern)
|
| 732 |
+
if start_pos != -1 and not any(pos in replaced_positions for pos in range(start_pos, start_pos + len(pattern))):
|
| 733 |
+
print(f"Found pattern '{pattern}', replacing with {replacement}")
|
| 734 |
+
restored_text = restored_text.replace(pattern, replacement, 1) # Replace only first occurrence
|
|
|
|
|
|
|
|
|
|
|
|
|
| 735 |
# Mark new positions as replaced
|
| 736 |
+
for match in re.finditer(re.escape(replacement), restored_text):
|
| 737 |
+
replaced_positions.update(range(match.start(), match.end()))
|
| 738 |
+
break # Move to next placeholder after successful replacement
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 739 |
|
| 740 |
+
# Third pass: Clean up any backticks or quotes that shouldn't be there
|
| 741 |
+
# Remove double backticks
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 742 |
restored_text = re.sub(r'``+', '', restored_text)
|
| 743 |
+
# Fix double quotes
|
| 744 |
restored_text = re.sub(r"''", '"', restored_text)
|
| 745 |
restored_text = re.sub(r'""', '"', restored_text)
|
| 746 |
|
| 747 |
+
# Fourth pass: Look for remaining underscore patterns
|
| 748 |
+
# But be more careful about replacement
|
| 749 |
if '___' in restored_text and keyword_map:
|
| 750 |
# Find all occurrences of multiple underscores
|
| 751 |
underscore_matches = list(re.finditer(r'_{3,}', restored_text))
|
|
|
|
| 763 |
replaced_positions.update(range(start, start + len(keyword_values[i])))
|
| 764 |
|
| 765 |
# Final cleanup: Remove any remaining KW patterns that weren't caught
|
| 766 |
+
# But only if they're not part of an already replaced keyword
|
| 767 |
+
remaining_kw_patterns = re.findall(r'\bKW\d{3}\b', restored_text)
|
| 768 |
+
if remaining_kw_patterns:
|
| 769 |
+
print(f"Warning: Found remaining KW patterns: {remaining_kw_patterns}")
|
|
|
|
|
|
|
|
|
|
| 770 |
|
| 771 |
# Log final result
|
| 772 |
print(f"Final restored text: {restored_text[:100]}...")
|
|
|
|
| 796 |
return True
|
| 797 |
|
| 798 |
# Special handling for content inside tables
|
| 799 |
+
# Skip if it's inside strong/b/h1-h6 tags AND also inside a table
|
| 800 |
if parent:
|
| 801 |
# Check if we're inside a table
|
| 802 |
is_in_table = any(p.name == 'table' for p in parent.parents)
|
|
|
|
| 824 |
if any(handler in parent.attrs for handler in event_handlers):
|
| 825 |
return True
|
| 826 |
|
| 827 |
+
# Special check for testimonial cards - check up to 3 levels of ancestors
|
| 828 |
if parent:
|
| 829 |
ancestors_to_check = []
|
| 830 |
current = parent
|
|
|
|
| 843 |
elif isinstance(classes, str) and 'testimonial-card' in classes:
|
| 844 |
return True
|
| 845 |
|
| 846 |
+
# Skip if IMMEDIATE parent or element itself has skip-worthy classes/IDs
|
| 847 |
skip_indicators = [
|
| 848 |
'cta-', 'button', 'btn', 'heading', 'title', 'caption',
|
| 849 |
'toc-', 'contents', 'quiz', 'tip', 'note', 'alert',
|
|
|
|
| 857 |
'comparision-tables', 'process-flowcharts', 'infographics', 'cost-breakdown'
|
| 858 |
]
|
| 859 |
|
| 860 |
+
# Check only immediate parent and grandparent (not all ancestors)
|
| 861 |
elements_to_check = [parent]
|
| 862 |
if parent and parent.parent:
|
| 863 |
elements_to_check.append(parent.parent)
|
|
|
|
| 926 |
return False
|
| 927 |
|
| 928 |
def clean_model_output_enhanced(self, text):
|
| 929 |
+
"""Enhanced cleaning that preserves more natural structure"""
|
| 930 |
if not text:
|
| 931 |
return ""
|
| 932 |
|
|
|
|
| 958 |
text = re.sub(r'- or maybe I should say -', '', text)
|
| 959 |
text = re.sub(r'- or rather,', '', text)
|
| 960 |
text = re.sub(r'- think about it -', '', text)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 961 |
|
| 962 |
# Clean up multiple spaces
|
| 963 |
text = re.sub(r'\s+', ' ', text)
|
| 964 |
|
| 965 |
+
# Remove leading non-letter characters carefully
|
| 966 |
+
# IMPORTANT: Preserve keyword placeholders
|
| 967 |
+
if not re.match(r'^(__KW\d+__|KW\d+)', text):
|
| 968 |
+
# Only remove if it doesn't start with a placeholder
|
| 969 |
+
text = re.sub(r'^[^a-zA-Z_]+', '', text)
|
|
|
|
| 970 |
|
| 971 |
# If we accidentally removed too much, use original
|
| 972 |
if len(text) < len(original) * 0.5:
|
|
|
|
| 1000 |
continue
|
| 1001 |
|
| 1002 |
try:
|
| 1003 |
+
# ULTRA-HIGH diversity for Originality AI
|
| 1004 |
has_keywords = any(placeholder in sentence for placeholder in keyword_map.keys())
|
| 1005 |
if has_keywords:
|
| 1006 |
+
lex_diversity = 60 # Moderate for keywords
|
| 1007 |
+
order_diversity = 20
|
| 1008 |
elif len(sentence.split()) < 10:
|
| 1009 |
+
lex_diversity = 85 # Very high for short
|
| 1010 |
+
order_diversity = 40
|
| 1011 |
else:
|
| 1012 |
+
lex_diversity = 95 # Maximum diversity
|
| 1013 |
+
order_diversity = 50 # Maximum order diversity
|
| 1014 |
|
| 1015 |
lex_code = int(100 - lex_diversity)
|
| 1016 |
order_code = int(100 - order_diversity)
|
|
|
|
| 1037 |
else:
|
| 1038 |
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
| 1039 |
|
| 1040 |
+
# Generate with appropriate variation
|
| 1041 |
original_length = len(sentence.split())
|
| 1042 |
+
max_new_length = int(original_length * 1.4)
|
| 1043 |
|
| 1044 |
+
# High variation parameters
|
| 1045 |
+
temp = 0.95 if has_keywords else 1.3
|
| 1046 |
+
top_p_val = 0.9
|
| 1047 |
|
| 1048 |
with torch.no_grad():
|
| 1049 |
outputs = self.model.generate(
|
| 1050 |
**inputs,
|
| 1051 |
max_length=max_new_length + 20,
|
| 1052 |
+
min_length=max(5, int(original_length * 0.7)),
|
| 1053 |
do_sample=True,
|
| 1054 |
top_p=top_p_val,
|
| 1055 |
temperature=temp,
|
| 1056 |
+
no_repeat_ngram_size=4, # Allow more repetition for naturalness
|
| 1057 |
num_beams=1, # Greedy for more randomness
|
| 1058 |
early_stopping=True
|
| 1059 |
)
|
|
|
|
| 1145 |
last_word = words[-1]
|
| 1146 |
|
| 1147 |
# Remove if it's clearly cut off (1-2 chars, no vowels)
|
| 1148 |
+
# But don't remove valid short words like "is", "of", "to", etc.
|
| 1149 |
+
short_valid_words = {'is', 'of', 'to', 'in', 'on', 'at', 'by', 'or', 'if', 'so', 'up', 'no', 'we', 'he', 'me', 'be', 'do', 'go'}
|
| 1150 |
if (len(last_word) <= 2 and
|
| 1151 |
last_word.lower() not in short_valid_words and
|
| 1152 |
not any(c in 'aeiouAEIOU' for c in last_word)):
|
|
|
|
| 1167 |
generated += '.'
|
| 1168 |
elif orig_stripped.endswith('!'):
|
| 1169 |
# Check if generated seems exclamatory
|
| 1170 |
+
exclaim_words = ['amazing', 'incredible', 'fantastic', 'terrible', 'awful', 'wonderful', 'excellent']
|
| 1171 |
if any(word in generated.lower() for word in exclaim_words):
|
| 1172 |
generated += '!'
|
| 1173 |
else:
|
|
|
|
| 1237 |
with torch.no_grad():
|
| 1238 |
outputs = self.bart_model.generate(
|
| 1239 |
**inputs,
|
| 1240 |
+
max_length=int(original_length * 1.4) + 10,
|
| 1241 |
+
min_length=max(5, int(original_length * 0.6)),
|
| 1242 |
num_beams=2,
|
| 1243 |
+
temperature=1.1, # Higher temperature
|
| 1244 |
do_sample=True,
|
| 1245 |
+
top_p=0.9,
|
| 1246 |
early_stopping=True
|
| 1247 |
)
|
| 1248 |
|
|
|
|
| 1268 |
return text
|
| 1269 |
|
| 1270 |
def apply_sentence_variation(self, text):
|
| 1271 |
+
"""Apply natural sentence structure variations - HUMAN-LIKE FLOW"""
|
| 1272 |
sentences = self.split_into_sentences_advanced(text)
|
| 1273 |
varied_sentences = []
|
| 1274 |
|
| 1275 |
# Track patterns to ensure variety
|
| 1276 |
last_sentence_length = 0
|
|
|
|
| 1277 |
|
| 1278 |
for i, sentence in enumerate(sentences):
|
| 1279 |
if not sentence.strip():
|
|
|
|
| 1282 |
words = sentence.split()
|
| 1283 |
current_length = len(words)
|
| 1284 |
|
| 1285 |
+
# Natural sentence length variation
|
| 1286 |
+
if last_sentence_length > 20 and current_length > 20:
|
| 1287 |
+
# Break up if two long sentences in a row
|
| 1288 |
+
if ',' in sentence:
|
| 1289 |
+
parts = sentence.split(',', 1)
|
| 1290 |
+
if len(parts) == 2 and len(parts[1].split()) > 8:
|
| 1291 |
+
varied_sentences.append(parts[0].strip() + '.')
|
| 1292 |
+
second_part = parts[1].strip()
|
| 1293 |
+
if second_part and second_part[0].islower():
|
| 1294 |
+
second_part = second_part[0].upper() + second_part[1:]
|
| 1295 |
+
varied_sentences.append(second_part)
|
| 1296 |
+
last_sentence_length = len(parts[1].split())
|
| 1297 |
+
continue
|
| 1298 |
+
|
| 1299 |
+
# Natural combinations for flow
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1300 |
if (i < len(sentences) - 1 and
|
| 1301 |
+
current_length < 10 and
|
| 1302 |
+
len(sentences[i+1].split()) < 10):
|
|
|
|
| 1303 |
|
| 1304 |
next_sent = sentences[i+1].strip()
|
| 1305 |
+
# Only combine if it makes semantic sense
|
| 1306 |
+
if next_sent and any(next_sent.lower().startswith(w) for w in ['it', 'this', 'that', 'which']):
|
| 1307 |
+
combined = sentence.rstrip('.') + ' ' + next_sent[0].lower() + next_sent[1:]
|
| 1308 |
+
varied_sentences.append(combined)
|
| 1309 |
+
sentences[i+1] = ""
|
| 1310 |
+
last_sentence_length = len(combined.split())
|
| 1311 |
+
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1312 |
|
| 1313 |
varied_sentences.append(sentence)
|
| 1314 |
last_sentence_length = current_length
|
| 1315 |
|
| 1316 |
return ' '.join([s for s in varied_sentences if s])
|
| 1317 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1318 |
def fix_punctuation(self, text):
|
| 1319 |
"""Comprehensive punctuation and formatting fixes"""
|
| 1320 |
if not text:
|
|
|
|
| 1326 |
# Fix weird symbols and characters using safe replacements
|
| 1327 |
text = text.replace('<>', '') # Remove empty angle brackets
|
| 1328 |
|
| 1329 |
+
# Normalize quotes - use replace instead of regex for problematic characters
|
| 1330 |
text = text.replace('«', '"').replace('»', '"')
|
| 1331 |
text = text.replace('„', '"').replace('"', '"').replace('"', '"')
|
| 1332 |
text = text.replace(''', "'").replace(''', "'")
|
| 1333 |
text = text.replace('–', '-').replace('—', '-')
|
| 1334 |
|
| 1335 |
# Fix colon issues
|
| 1336 |
+
text = re.sub(r'\.:', ':', text) # Remove period before colon
|
| 1337 |
+
text = re.sub(r':\s*\.', ':', text) # Remove period after colon
|
| 1338 |
|
| 1339 |
+
# Fix basic spacing
|
| 1340 |
+
text = re.sub(r'\s+', ' ', text) # Multiple spaces to single
|
| 1341 |
+
text = re.sub(r'\s+([.,!?;:])', r'\1', text) # Remove space before punctuation
|
| 1342 |
+
text = re.sub(r'([.,!?;:])\s*([.,!?;:])', r'\1', text) # Remove double punctuation
|
| 1343 |
+
text = re.sub(r'([.!?])\s*\1+', r'\1', text) # Remove repeated punctuation
|
|
|
|
| 1344 |
|
| 1345 |
# Fix colons
|
| 1346 |
+
text = re.sub(r':\s*([.,!?])', ':', text) # Remove punctuation after colon
|
| 1347 |
+
text = re.sub(r'([.,!?])\s*:', ':', text) # Remove punctuation before colon
|
| 1348 |
+
text = re.sub(r':+', ':', text) # Multiple colons to one
|
| 1349 |
|
| 1350 |
# Fix quotes and parentheses
|
| 1351 |
text = re.sub(r'"\s*([^"]*?)\s*"', r'"\1"', text)
|
|
|
|
| 1353 |
text = re.sub(r'\(\s*([^)]*?)\s*\)', r'(\1)', text)
|
| 1354 |
|
| 1355 |
# Fix sentence capitalization more carefully
|
| 1356 |
+
# Split on ACTUAL sentence endings only
|
| 1357 |
sentences = re.split(r'(?<=[.!?])\s+', text)
|
| 1358 |
fixed_sentences = []
|
| 1359 |
|
|
|
|
| 1361 |
if not sentence:
|
| 1362 |
continue
|
| 1363 |
|
| 1364 |
+
# Only capitalize the first letter if it's actually lowercase
|
| 1365 |
+
# and not part of a special case (like iPhone, eBay, etc.)
|
| 1366 |
words = sentence.split()
|
| 1367 |
if words:
|
| 1368 |
first_word = words[0]
|
| 1369 |
+
# Check if it's not an acronym or proper noun that should stay lowercase
|
| 1370 |
if (first_word[0].islower() and
|
| 1371 |
not self.is_likely_acronym_or_proper_noun(first_word) and
|
| 1372 |
not first_word.startswith('__KW') and
|
| 1373 |
not first_word.startswith('_kw')):
|
| 1374 |
+
# Only capitalize if it's a regular word
|
| 1375 |
sentence = first_word[0].upper() + first_word[1:] + ' ' + ' '.join(words[1:])
|
| 1376 |
|
| 1377 |
fixed_sentences.append(sentence)
|
| 1378 |
|
| 1379 |
text = ' '.join(fixed_sentences)
|
| 1380 |
|
| 1381 |
+
# Fix common issues
|
| 1382 |
+
text = re.sub(r'\bi\b', 'I', text) # Capitalize 'I'
|
| 1383 |
+
text = re.sub(r'\.{2,}', '.', text) # Multiple periods to one
|
| 1384 |
+
text = re.sub(r',{2,}', ',', text) # Multiple commas to one
|
| 1385 |
+
text = re.sub(r'\s*,\s*,\s*', ', ', text) # Double commas with spaces
|
| 1386 |
+
|
| 1387 |
+
# Remove weird artifacts
|
| 1388 |
+
text = re.sub(r'\b(CHAPTER\s+[IVX]+|SECTION\s+\d+)\b[^\w]*', '', text, flags=re.IGNORECASE)
|
| 1389 |
|
| 1390 |
# Fix abbreviations
|
| 1391 |
text = re.sub(r'\betc\s*\.\s*\.', 'etc.', text)
|
| 1392 |
text = re.sub(r'\be\.g\s*\.\s*[,\s]', 'e.g., ', text)
|
| 1393 |
text = re.sub(r'\bi\.e\s*\.\s*[,\s]', 'i.e., ', text)
|
| 1394 |
|
| 1395 |
+
# Fix numbers with periods (like "1. " at start of lists)
|
| 1396 |
text = re.sub(r'(\d+)\.\s+', r'\1. ', text)
|
| 1397 |
|
| 1398 |
# Fix bold/strong tags punctuation
|
| 1399 |
text = self.fix_bold_punctuation(text)
|
| 1400 |
|
| 1401 |
+
# Clean up any remaining issues
|
| 1402 |
+
text = re.sub(r'\s+([.,!?;:])', r'\1', text) # Final space cleanup
|
| 1403 |
+
text = re.sub(r'([.,!?;:])\s{2,}', r'\1 ', text) # Fix multiple spaces after punctuation
|
| 1404 |
|
| 1405 |
# Ensure ending punctuation
|
| 1406 |
text = text.strip()
|
| 1407 |
if text and text[-1] not in '.!?':
|
| 1408 |
+
# Don't add period if it ends with colon (likely a list header)
|
| 1409 |
if not text.endswith(':'):
|
| 1410 |
text += '.'
|
| 1411 |
|
|
|
|
| 1415 |
"""Fix punctuation issues around bold/strong tags"""
|
| 1416 |
# Check if this is likely a list item with colon pattern
|
| 1417 |
def is_list_item_with_colon(text):
|
| 1418 |
+
# Pattern: starts with or contains <strong>Text:</strong> or <b>Text:</b>
|
| 1419 |
list_pattern = r'^\s*(?:[-•*▪▫◦‣⁃]\s*)?<(?:strong|b)>[^<]+:</(?:strong|b)>'
|
| 1420 |
return bool(re.search(list_pattern, text))
|
| 1421 |
|
| 1422 |
# If it's a list item with colon, preserve the format
|
| 1423 |
if is_list_item_with_colon(text):
|
| 1424 |
+
# Just clean up spacing but preserve the colon inside bold
|
| 1425 |
text = re.sub(r'<(strong|b)>\s*([^:]+)\s*:\s*</\1>', r'<\1>\2:</\1>', text)
|
| 1426 |
return text
|
| 1427 |
|
|
|
|
| 1437 |
|
| 1438 |
# Check if this is a list header (contains colon at the end)
|
| 1439 |
if content.endswith(':'):
|
| 1440 |
+
# Preserve list headers with colons
|
| 1441 |
return f'<{tag}>{content}</{tag}>'
|
| 1442 |
|
| 1443 |
# Remove any periods at the start or end of bold content
|
| 1444 |
content = content.strip('.')
|
| 1445 |
|
| 1446 |
# Check if this bold text is at the start of a sentence
|
| 1447 |
+
# (preceded by nothing, or by '. ', '! ', '? ')
|
| 1448 |
start_pos = match.start()
|
| 1449 |
is_sentence_start = (start_pos == 0 or
|
| 1450 |
(start_pos > 2 and text[start_pos-2:start_pos] in ['. ', '! ', '? ', '\n\n']))
|
|
|
|
| 1458 |
# Fix bold/strong tags
|
| 1459 |
text = re.sub(bold_pattern, fix_bold_match, text)
|
| 1460 |
|
| 1461 |
+
# Fix spacing around bold/strong tags (but not for list items)
|
| 1462 |
if not is_list_item_with_colon(text):
|
| 1463 |
+
text = re.sub(r'\.\s*<(strong|b)>', r'. <\1>', text) # Period before bold
|
| 1464 |
+
text = re.sub(r'</(strong|b)>\s*\.', r'</\1>.', text) # Period after bold
|
| 1465 |
+
text = re.sub(r'([.!?])\s*<(strong|b)>', r'\1 <\2>', text) # Space after sentence end
|
| 1466 |
+
text = re.sub(r'</(strong|b)>\s+([a-z])', lambda m: f'</{m.group(1)}> {m.group(2)}', text) # Keep lowercase after bold if mid-sentence
|
| 1467 |
|
| 1468 |
# Remove duplicate periods around bold tags
|
| 1469 |
text = re.sub(r'\.\s*</(strong|b)>\s*\.', r'</\1>.', text)
|
| 1470 |
text = re.sub(r'\.\s*<(strong|b)>\s*\.', r'. <\1>', text)
|
| 1471 |
|
| 1472 |
# Fix cases where bold content ends a sentence
|
| 1473 |
+
# If bold is followed by a new sentence (capital letter), add period
|
| 1474 |
text = re.sub(r'</(strong|b)>\s+([A-Z])', r'</\1>. \2', text)
|
| 1475 |
|
| 1476 |
# Don't remove these for list items
|
| 1477 |
if not is_list_item_with_colon(text):
|
| 1478 |
+
text = re.sub(r'<(strong|b)>\s*:\s*</\1>', ':', text) # Remove empty bold colons
|
| 1479 |
+
text = re.sub(r'<(strong|b)>\s*\.\s*</\1>', '.', text) # Remove empty bold periods
|
| 1480 |
|
| 1481 |
return text
|
| 1482 |
|
|
|
|
| 1485 |
soup = BeautifulSoup(html_content, 'html.parser')
|
| 1486 |
text_elements = []
|
| 1487 |
|
| 1488 |
+
# Get all text nodes using string instead of text (fixing deprecation)
|
| 1489 |
for element in soup.find_all(string=True):
|
| 1490 |
# Skip script, style, and noscript content completely
|
| 1491 |
if element.parent.name in ['script', 'style', 'noscript']:
|
|
|
|
| 1507 |
html_text = re.sub(r'<!\s*DOCTYPE', '<!DOCTYPE', html_text, flags=re.IGNORECASE)
|
| 1508 |
|
| 1509 |
# Fix spacing issues
|
| 1510 |
+
html_text = re.sub(r'>\s+<', '><', html_text) # Remove extra spaces between tags
|
| 1511 |
+
html_text = re.sub(r'\s+>', '>', html_text) # Remove spaces before closing >
|
| 1512 |
+
html_text = re.sub(r'<\s+', '<', html_text) # Remove spaces after opening <
|
| 1513 |
|
| 1514 |
+
# Fix common word errors that might occur during processing
|
| 1515 |
html_text = html_text.replace('down loaded', 'downloaded')
|
| 1516 |
html_text = html_text.replace('But your document', 'Your document')
|
| 1517 |
|
|
|
|
| 1525 |
# Find all paragraph tags
|
| 1526 |
for p_tag in soup.find_all('p'):
|
| 1527 |
# Skip paragraphs that are inside special elements
|
| 1528 |
+
# Check if paragraph is inside any of these elements
|
| 1529 |
skip_parents = ['div.author-intro', 'div.cta-box', 'div.testimonial-card',
|
| 1530 |
'div.news-box', 'button', 'a', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6',
|
| 1531 |
'div.quiz-container', 'div.question-container', 'div.results']
|
|
|
|
| 1574 |
continue
|
| 1575 |
|
| 1576 |
# Skip if the text node's immediate parent isn't the p tag
|
| 1577 |
+
# (to avoid nested elements)
|
| 1578 |
if text_node.parent != p_tag:
|
| 1579 |
continue
|
| 1580 |
|
|
|
|
| 1612 |
text_node.insert_after(new_node)
|
| 1613 |
text_node.extract()
|
| 1614 |
|
| 1615 |
+
def add_natural_flow_variations(self, text):
|
| 1616 |
+
"""Add more natural flow and rhythm variations for Originality AI"""
|
| 1617 |
+
sentences = self.split_into_sentences_advanced(text)
|
| 1618 |
+
enhanced_sentences = []
|
| 1619 |
+
|
| 1620 |
+
for i, sentence in enumerate(sentences):
|
| 1621 |
+
if not sentence.strip():
|
| 1622 |
+
continue
|
| 1623 |
+
|
| 1624 |
+
# Add stream-of-consciousness elements (10% chance)
|
| 1625 |
+
if random.random() < 0.1 and len(sentence.split()) > 10:
|
| 1626 |
+
stream_elements = [
|
| 1627 |
+
" - wait, let me back up - ",
|
| 1628 |
+
" - actually, scratch that - ",
|
| 1629 |
+
" - or maybe I should say - ",
|
| 1630 |
+
" - hmm, how do I put this - ",
|
| 1631 |
+
" - okay, here's the thing - ",
|
| 1632 |
+
" - you know what I mean? - "
|
| 1633 |
+
]
|
| 1634 |
+
words = sentence.split()
|
| 1635 |
+
pos = random.randint(len(words)//4, 3*len(words)//4)
|
| 1636 |
+
words.insert(pos, random.choice(stream_elements))
|
| 1637 |
+
sentence = ' '.join(words)
|
| 1638 |
+
|
| 1639 |
+
# Add human-like self-corrections (5% chance)
|
| 1640 |
+
if random.random() < 0.05:
|
| 1641 |
+
corrections = [
|
| 1642 |
+
" - or rather, ",
|
| 1643 |
+
" - well, actually, ",
|
| 1644 |
+
" - I mean, ",
|
| 1645 |
+
" - or should I say, ",
|
| 1646 |
+
" - correction: "
|
| 1647 |
+
]
|
| 1648 |
+
words = sentence.split()
|
| 1649 |
+
if len(words) > 8:
|
| 1650 |
+
pos = random.randint(len(words)//2, len(words)-3)
|
| 1651 |
+
correction = random.choice(corrections)
|
| 1652 |
+
# Repeat a concept with variation
|
| 1653 |
+
repeated_word_idx = random.randint(max(0, pos-5), pos-1)
|
| 1654 |
+
if repeated_word_idx < len(words):
|
| 1655 |
+
words.insert(pos, correction)
|
| 1656 |
+
sentence = ' '.join(words)
|
| 1657 |
+
|
| 1658 |
+
# Add thinking-out-loud patterns (8% chance)
|
| 1659 |
+
if random.random() < 0.08 and i > 0:
|
| 1660 |
+
thinking_patterns = [
|
| 1661 |
+
"Come to think of it, ",
|
| 1662 |
+
"Actually, you know what? ",
|
| 1663 |
+
"Wait, here's a thought: ",
|
| 1664 |
+
"Oh, and another thing - ",
|
| 1665 |
+
"Speaking of which, ",
|
| 1666 |
+
"This reminds me, ",
|
| 1667 |
+
"Now that I mention it, ",
|
| 1668 |
+
"Funny you should ask, because "
|
| 1669 |
+
]
|
| 1670 |
+
pattern = random.choice(thinking_patterns)
|
| 1671 |
+
sentence = pattern + sentence[0].lower() + sentence[1:] if len(sentence) > 1 else sentence
|
| 1672 |
+
|
| 1673 |
+
enhanced_sentences.append(sentence)
|
| 1674 |
+
|
| 1675 |
+
return ' '.join(enhanced_sentences)
|
| 1676 |
+
|
| 1677 |
def process_html(self, html_content, primary_keywords="", secondary_keywords="", progress_callback=None):
|
| 1678 |
"""Main processing function with progress callback"""
|
| 1679 |
if not html_content.strip():
|
|
|
|
| 1706 |
# Combine keywords and clean them
|
| 1707 |
all_keywords = []
|
| 1708 |
if primary_keywords:
|
| 1709 |
+
# Clean and validate each keyword
|
| 1710 |
for k in primary_keywords.split(','):
|
| 1711 |
cleaned = k.strip()
|
| 1712 |
+
if cleaned and len(cleaned) > 1: # Skip empty or single-char keywords
|
| 1713 |
all_keywords.append(cleaned)
|
| 1714 |
if secondary_keywords:
|
| 1715 |
for k in secondary_keywords.split(','):
|
|
|
|
| 1754 |
if text_has_keywords:
|
| 1755 |
print(f"Debug: Processing text with keywords: {original_text[:50]}...")
|
| 1756 |
|
| 1757 |
+
# First pass with Dipper (with adjusted diversity)
|
| 1758 |
paraphrased_text = self.paraphrase_with_dipper(
|
| 1759 |
original_text,
|
| 1760 |
keywords=all_keywords
|
|
|
|
| 1763 |
# Verify no placeholders remain
|
| 1764 |
if '__KW' in paraphrased_text or '___' in paraphrased_text:
|
| 1765 |
print(f"Warning: Placeholder or underscores found in paraphrased text: {paraphrased_text[:100]}...")
|
| 1766 |
+
# Try to restore again with the enhanced function
|
| 1767 |
temp_map = {}
|
| 1768 |
for j, keyword in enumerate(all_keywords):
|
| 1769 |
temp_map[f'__KW{j:03d}__'] = keyword
|
|
|
|
| 1771 |
|
| 1772 |
# Second pass with BART for longer texts (increased probability)
|
| 1773 |
if self.use_bart and len(paraphrased_text.split()) > 8:
|
| 1774 |
+
# 50% chance to use BART for more variation (reduced from 60%)
|
| 1775 |
+
if random.random() < 0.5:
|
| 1776 |
paraphrased_text = self.paraphrase_with_bart(
|
| 1777 |
paraphrased_text,
|
| 1778 |
keywords=all_keywords
|
| 1779 |
)
|
| 1780 |
|
| 1781 |
+
# Apply sentence variation
|
| 1782 |
paraphrased_text = self.apply_sentence_variation(paraphrased_text)
|
| 1783 |
|
| 1784 |
# Add natural flow variations
|
| 1785 |
paraphrased_text = self.add_natural_flow_variations(paraphrased_text)
|
| 1786 |
|
|
|
|
|
|
|
|
|
|
| 1787 |
# Fix punctuation and formatting
|
| 1788 |
paraphrased_text = self.fix_punctuation(paraphrased_text)
|
| 1789 |
|
| 1790 |
+
# Final check for any remaining placeholders or underscores
|
| 1791 |
+
if '___' in paraphrased_text or '__KW' in paraphrased_text:
|
| 1792 |
print(f"Error: Unresolved placeholders in final text")
|
| 1793 |
# Use original text if we can't resolve placeholders
|
| 1794 |
paraphrased_text = original_text
|
|
|
|
| 1809 |
# Wrap keywords with <strong> tags in paragraphs
|
| 1810 |
self.wrap_keywords_in_paragraphs(soup, all_keywords)
|
| 1811 |
|
| 1812 |
+
# Post-process the entire HTML to fix bold/strong formatting
|
| 1813 |
result = str(soup)
|
| 1814 |
result = self.post_process_html(result)
|
| 1815 |
|
| 1816 |
+
# Final safety check for any remaining placeholders or underscores
|
| 1817 |
+
if '__KW' in result or re.search(r'_{3,}', result):
|
| 1818 |
+
print("Warning: Found placeholders or multiple underscores in final HTML output")
|
| 1819 |
+
# Attempt to clean them with keywords
|
| 1820 |
for i, keyword in enumerate(all_keywords):
|
| 1821 |
result = result.replace(f'__KW{i:03d}__', keyword)
|
| 1822 |
+
result = re.sub(r'_{3,}', keyword, result, count=1)
|
|
|
|
|
|
|
|
|
|
| 1823 |
|
| 1824 |
# Restore all script tags
|
| 1825 |
for idx, script_content in enumerate(preserved_scripts):
|
|
|
|
| 1834 |
# Validate and fix HTML syntax
|
| 1835 |
result = self.validate_and_fix_html(result)
|
| 1836 |
|
| 1837 |
+
# Count skipped elements properly
|
| 1838 |
all_text_elements = soup.find_all(string=True)
|
| 1839 |
skipped = len([e for e in all_text_elements if e.strip() and e.parent.name not in ['script', 'style', 'noscript']]) - total_elements
|
| 1840 |
|
|
|
|
| 1848 |
import traceback
|
| 1849 |
error_msg = f"Error processing HTML: {str(e)}\n{traceback.format_exc()}"
|
| 1850 |
print(error_msg)
|
| 1851 |
+
# Return original HTML with error message prepended as HTML comment
|
| 1852 |
return f"<!-- {error_msg} -->\n{html_content}"
|
| 1853 |
|
| 1854 |
def post_process_html(self, html_text):
|
| 1855 |
"""Post-process the entire HTML to fix formatting issues"""
|
| 1856 |
+
# Fix empty angle brackets that might appear
|
| 1857 |
+
html_text = re.sub(r'<>\s*([^<>]+?)\s*(?=\.|\s|<)', r'\1', html_text) # Remove <> around text
|
| 1858 |
+
html_text = re.sub(r'<>', '', html_text) # Remove any remaining empty <>
|
| 1859 |
|
| 1860 |
# Fix double angle brackets around bold tags
|
| 1861 |
html_text = re.sub(r'<<b>>', '<b>', html_text)
|
|
|
|
| 1864 |
html_text = re.sub(r'<</strong>>', '</strong>', html_text)
|
| 1865 |
|
| 1866 |
# Fix periods around bold/strong tags
|
| 1867 |
+
html_text = re.sub(r'\.\s*<(b|strong)>', '. <\1>', html_text) # Period before bold
|
| 1868 |
+
html_text = re.sub(r'</(b|strong)>\s*\.', '</\1>.', html_text) # Period after bold
|
| 1869 |
+
html_text = re.sub(r'\.<<(b|strong)>>', '. <\1>', html_text) # Fix double bracket cases
|
| 1870 |
html_text = re.sub(r'</(b|strong)>>\.', '</\1>.', html_text)
|
| 1871 |
|
| 1872 |
# Fix periods after colons
|
|
|
|
| 1878 |
# Check if this line contains a list pattern with bold
|
| 1879 |
list_pattern = r'(?:^|\s)(?:[-•*▪▫◦‣⁃]\s*)?<(?:strong|b)>[^<]+:</(?:strong|b)>'
|
| 1880 |
if re.search(list_pattern, line):
|
| 1881 |
+
# This is a list item, preserve the colon format
|
| 1882 |
return line
|
| 1883 |
|
| 1884 |
# Not a list item, apply regular fixes
|
| 1885 |
+
# Remove periods immediately inside bold tags
|
| 1886 |
line = re.sub(r'<(strong|b)>\s*\.\s*([^<]+)\s*\.\s*</\1>', r'<\1>\2</\1>', line)
|
| 1887 |
+
|
| 1888 |
+
# Fix sentence endings with bold
|
| 1889 |
line = re.sub(r'</(strong|b)>\s*([.!?])', r'</\1>\2', line)
|
| 1890 |
|
| 1891 |
return line
|
| 1892 |
|
| 1893 |
+
# Process line by line to preserve list formatting
|
| 1894 |
lines = html_text.split('\n')
|
| 1895 |
processed_lines = [process_line(line) for line in lines]
|
| 1896 |
html_text = '\n'.join(processed_lines)
|
|
|
|
| 1916 |
# Look for bold/strong tags and check their context
|
| 1917 |
html_text = re.sub(r'(^|.*?)(<(?:strong|b)>)([a-zA-Z])', fix_bold_sentence_start, html_text)
|
| 1918 |
|
| 1919 |
+
# Clean up spacing around bold tags (but preserve list formatting)
|
| 1920 |
+
# Split into segments to handle list items separately
|
| 1921 |
segments = re.split(r'(<(?:strong|b)>[^<]*:</(?:strong|b)>)', html_text)
|
| 1922 |
cleaned_segments = []
|
| 1923 |
|
|
|
|
| 1928 |
# Apply spacing fixes to non-list segments
|
| 1929 |
segment = re.sub(r'\s+<(strong|b)>', r' <\1>', segment)
|
| 1930 |
segment = re.sub(r'</(strong|b)>\s+', r'</\1> ', segment)
|
| 1931 |
+
# Fix punctuation issues
|
| 1932 |
segment = re.sub(r'([.,!?;:])\s*([.,!?;:])', r'\1', segment)
|
| 1933 |
+
# Fix periods inside/around bold
|
| 1934 |
segment = re.sub(r'\.<(strong|b)>\.', '. <\1>', segment)
|
| 1935 |
segment = re.sub(r'\.</(strong|b)>\.', '</\1>.', segment)
|
| 1936 |
cleaned_segments.append(segment)
|
|
|
|
| 1938 |
html_text = ''.join(cleaned_segments)
|
| 1939 |
|
| 1940 |
# Final cleanup
|
| 1941 |
+
html_text = re.sub(r'\.{2,}', '.', html_text) # Multiple periods
|
| 1942 |
+
html_text = re.sub(r',{2,}', ',', html_text) # Multiple commas
|
| 1943 |
+
html_text = re.sub(r':{2,}', ':', html_text) # Multiple colons
|
| 1944 |
+
html_text = re.sub(r'\s+([.,!?;:])', r'\1', html_text) # Space before punctuation
|
| 1945 |
|
| 1946 |
+
# Fix empty bold tags (but not those with just colons)
|
| 1947 |
html_text = re.sub(r'<(strong|b)>\s*</\1>', '', html_text)
|
| 1948 |
|
| 1949 |
# Fix specific patterns in lists/stats
|
| 1950 |
+
# Pattern like "5,000+" should not have period after
|
| 1951 |
html_text = re.sub(r'(\d+[,\d]*\+?)\s*\.\s*\n', r'\1\n', html_text)
|
| 1952 |
|
| 1953 |
# Clean up any remaining double brackets
|
|
|
|
| 2011 |
lines=10,
|
| 2012 |
label="Humanized HTML Output"
|
| 2013 |
),
|
| 2014 |
+
title="Enhanced Dipper AI Humanizer - Optimized for Originality AI",
|
| 2015 |
description="""
|
| 2016 |
Ultra-aggressive humanizer optimized to achieve 100% human scores on both Undetectable AI and Originality AI.
|
| 2017 |
|
| 2018 |
+
Key Features:
|
| 2019 |
+
- Maximum diversity settings (90% lexical, 40% order) for natural variation
|
| 2020 |
+
- Enhanced human patterns: personal opinions, self-corrections, thinking-out-loud
|
| 2021 |
+
- Natural typos, contractions, and conversational flow
|
| 2022 |
+
- Stream-of-consciousness elements and rhetorical questions
|
| 2023 |
+
- Originality AI-specific optimizations: varied sentence starters, emphatic repetitions
|
| 2024 |
+
- Fixed placeholder system that preserves keywords
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2025 |
- Keywords inside <p> tags are automatically wrapped with <strong> tags
|
| 2026 |
+
- Skips content in <strong>, <b>, and heading tags (including inside tables)
|
| 2027 |
+
- Designed to pass the strictest AI detection systems
|
|
|
|
| 2028 |
|
| 2029 |
+
The tool creates genuinely human-like writing patterns that fool even the most sophisticated detectors!
|
|
|
|
|
|
|
|
|
|
| 2030 |
|
| 2031 |
+
⚠️ Note: Processing may take 5-10 minutes for large HTML documents.
|
| 2032 |
""",
|
| 2033 |
examples=[
|
| 2034 |
["""<article>
|