Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from langchain_groq import ChatGroq
|
| 3 |
+
from langchain_ollama import ChatOllama
|
| 4 |
+
from langchain_community.document_loaders import PyMuPDFLoader
|
| 5 |
+
from langchain.schema import Document
|
| 6 |
+
from langchain_core.prompts import PromptTemplate
|
| 7 |
+
from langchain_core.output_parsers import JsonOutputParser
|
| 8 |
+
from pydantic import BaseModel, Field
|
| 9 |
+
import os
|
| 10 |
+
import json
|
| 11 |
+
from prompt import REAG_SYSTEM_PROMPT, rag_prompt # Import prompts
|
| 12 |
+
|
| 13 |
+
# Hugging Face Spaces API Key Handling
|
| 14 |
+
st.set_page_config(page_title="ReAG", layout="centered")
|
| 15 |
+
|
| 16 |
+
# Set API Key using Hugging Face Secrets
|
| 17 |
+
os.environ["GROQ_API_KEY"] = st.secrets["GROQ_API_KEY"]
|
| 18 |
+
|
| 19 |
+
# Initialize LLM models
|
| 20 |
+
llm_relevancy = ChatGroq(model="llama-3.3-70b-versatile", temperature=0)
|
| 21 |
+
llm = ChatOllama(model="deepseek-r1:14b", temperature=0.6, max_tokens=3000)
|
| 22 |
+
|
| 23 |
+
# Define schema for extracted content
|
| 24 |
+
class ResponseSchema(BaseModel):
|
| 25 |
+
content: str = Field(..., description="Relevant content from the document")
|
| 26 |
+
reasoning: str = Field(..., description="Why this content was selected")
|
| 27 |
+
is_irrelevant: bool = Field(..., description="True if the content is irrelevant")
|
| 28 |
+
|
| 29 |
+
class RelevancySchemaMessage(BaseModel):
|
| 30 |
+
source: ResponseSchema
|
| 31 |
+
|
| 32 |
+
relevancy_parser = JsonOutputParser(pydantic_object=RelevancySchemaMessage)
|
| 33 |
+
|
| 34 |
+
# Function to format document
|
| 35 |
+
def format_doc(doc: Document) -> str:
|
| 36 |
+
return f"Document_Title: {doc.metadata.get('title', 'Unknown')}\nPage: {doc.metadata.get('page', 'Unknown')}\nContent: {doc.page_content}"
|
| 37 |
+
|
| 38 |
+
# Extract relevant context function
|
| 39 |
+
def extract_relevant_context(question, documents):
|
| 40 |
+
result = []
|
| 41 |
+
with st.spinner("π Extracting relevant content from document..."):
|
| 42 |
+
for doc in documents:
|
| 43 |
+
formatted_documents = format_doc(doc)
|
| 44 |
+
system_prompt = f"{REAG_SYSTEM_PROMPT}\n\n# Available source\n\n{formatted_documents}"
|
| 45 |
+
prompt = f"""Determine if the 'Available source' content is sufficient to answer the QUESTION.
|
| 46 |
+
QUESTION: {question}
|
| 47 |
+
RESPONSE FORMAT (Strict JSON):
|
| 48 |
+
```json
|
| 49 |
+
{{
|
| 50 |
+
"content": "Extracted relevant content",
|
| 51 |
+
"reasoning": "Why this was chosen",
|
| 52 |
+
"is_irrelevant": false
|
| 53 |
+
}}
|
| 54 |
+
```
|
| 55 |
+
"""
|
| 56 |
+
messages = [{"role": "system", "content": system_prompt},
|
| 57 |
+
{"role": "user", "content": prompt}]
|
| 58 |
+
response = llm_relevancy.invoke(messages)
|
| 59 |
+
formatted_response = relevancy_parser.parse(response.content)
|
| 60 |
+
result.append(formatted_response)
|
| 61 |
+
|
| 62 |
+
final_context = [item['content'] for item in result if not item['is_irrelevant']]
|
| 63 |
+
return final_context
|
| 64 |
+
|
| 65 |
+
# Generate response using RAG Prompt
|
| 66 |
+
def generate_response(question, final_context):
|
| 67 |
+
with st.spinner("π Generating AI response..."):
|
| 68 |
+
prompt = PromptTemplate(template=rag_prompt, input_variables=["question", "context"])
|
| 69 |
+
chain = prompt | llm
|
| 70 |
+
response = chain.invoke({"question": question, "context": final_context})
|
| 71 |
+
return response.content.split("\n\n")[-1]
|
| 72 |
+
|
| 73 |
+
# Streamlit UI
|
| 74 |
+
st.title("π RAG-based Knowledge Retrieval App")
|
| 75 |
+
st.markdown("Upload a PDF and ask questions based on its content.")
|
| 76 |
+
|
| 77 |
+
uploaded_file = st.file_uploader("π Upload PDF", type=["pdf"])
|
| 78 |
+
if uploaded_file:
|
| 79 |
+
with st.spinner("π₯ Uploading and processing PDF..."):
|
| 80 |
+
file_path = f"/tmp/{uploaded_file.name}"
|
| 81 |
+
with open(file_path, "wb") as f:
|
| 82 |
+
f.write(uploaded_file.getbuffer())
|
| 83 |
+
|
| 84 |
+
loader = PyMuPDFLoader(file_path)
|
| 85 |
+
docs = loader.load()
|
| 86 |
+
st.success("β
PDF uploaded and processed successfully!")
|
| 87 |
+
|
| 88 |
+
question = st.text_input("β Ask a question about the document:")
|
| 89 |
+
if st.button("π Get Answer"):
|
| 90 |
+
if question:
|
| 91 |
+
final_context = extract_relevant_context(question, docs)
|
| 92 |
+
if final_context:
|
| 93 |
+
answer = generate_response(question, final_context)
|
| 94 |
+
st.success(f"π§ **Response:**\n\n{answer}")
|
| 95 |
+
else:
|
| 96 |
+
st.warning("β οΈ No relevant information found in the document.")
|