Upload 10 files
Browse files- app.py +574 -0
- data/iris_synthetic_data.csv +3001 -0
- data/sample.csv +152 -0
- experiments/logs/test.txt.txt +0 -0
- requirements.txt +0 -0
- utils/file_utils.py +14 -0
- utils/logger.py +48 -0
- utils/preprocessing.py +45 -0
- utils/split.py +6 -0
- utils/training.py +74 -0
app.py
ADDED
|
@@ -0,0 +1,574 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import json
|
| 4 |
+
import os
|
| 5 |
+
from utils.logger import create_log_entry, log_experiment_results
|
| 6 |
+
from utils.file_utils import load_csv, preview_dataframe, get_column_names
|
| 7 |
+
from utils.training import train_models
|
| 8 |
+
from utils.preprocessing import preprocess_data
|
| 9 |
+
from sklearn.model_selection import train_test_split
|
| 10 |
+
from sklearn.preprocessing import StandardScaler, LabelEncoder
|
| 11 |
+
from sklearn.model_selection import GridSearchCV, RandomizedSearchCV, ParameterGrid, train_test_split
|
| 12 |
+
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
|
| 13 |
+
import numpy as np
|
| 14 |
+
from utils.training import get_model_instance
|
| 15 |
+
try:
|
| 16 |
+
from skopt import BayesSearchCV
|
| 17 |
+
bayes_available = True
|
| 18 |
+
except ImportError:
|
| 19 |
+
bayes_available = False
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
session = {
|
| 23 |
+
"raw_df": None,
|
| 24 |
+
"df": None,
|
| 25 |
+
"features": [],
|
| 26 |
+
"target": None,
|
| 27 |
+
"columns": [],
|
| 28 |
+
"missing_strategy": "drop",
|
| 29 |
+
"transformation_text": ""
|
| 30 |
+
}
|
| 31 |
+
# ---------------------------
|
| 32 |
+
# Dahsboard
|
| 33 |
+
# ---------------------------
|
| 34 |
+
|
| 35 |
+
# ---------------------------
|
| 36 |
+
# Step 1: File Upload Handler
|
| 37 |
+
# ---------------------------
|
| 38 |
+
def handle_upload(file):
|
| 39 |
+
if file is None:
|
| 40 |
+
return "No file uploaded", None, gr.update(choices=[]), gr.update(choices=[])
|
| 41 |
+
try:
|
| 42 |
+
df, err = load_csv(file.name)
|
| 43 |
+
session["uploaded_filename"] = file.name
|
| 44 |
+
if err:
|
| 45 |
+
return f"Error: {err}", None, gr.update(choices=[]), gr.update(choices=[])
|
| 46 |
+
session["raw_df"] = df.copy()
|
| 47 |
+
session["df"] = df.copy() # Initialize processed df as raw df
|
| 48 |
+
columns = get_column_names(df)
|
| 49 |
+
session["columns"] = columns
|
| 50 |
+
return (
|
| 51 |
+
"File uploaded successfully!",
|
| 52 |
+
preview_dataframe(df),
|
| 53 |
+
gr.update(choices=columns, value=[]),
|
| 54 |
+
gr.update(choices=columns, value=None)
|
| 55 |
+
)
|
| 56 |
+
except Exception as e:
|
| 57 |
+
return f"Error: {e}", None, gr.update(choices=[]), gr.update(choices=[])
|
| 58 |
+
|
| 59 |
+
# ---------------------------
|
| 60 |
+
# Step 2: Global Missing Value Strategy
|
| 61 |
+
# ---------------------------
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
def save_missing_strategy(missing_strategy):
|
| 65 |
+
raw_df = session.get("raw_df")
|
| 66 |
+
target_col = session.get("target", "")
|
| 67 |
+
if raw_df is None:
|
| 68 |
+
return "No data available", None
|
| 69 |
+
processed_df = preprocess_data(raw_df.copy(), target_col=target_col, missing_strategy=missing_strategy, transformation_map={})
|
| 70 |
+
session["df"] = processed_df
|
| 71 |
+
session["missing_strategy"] = missing_strategy # Store in session
|
| 72 |
+
return f"Missing value strategy '{missing_strategy}' applied", preview_dataframe(processed_df)
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
# ---------------------------
|
| 76 |
+
# Step 3: Save Features and Target Selection (Filter DataFrame)
|
| 77 |
+
# ---------------------------
|
| 78 |
+
def save_feature_target_selection(features, target):
|
| 79 |
+
if session.get("df") is None:
|
| 80 |
+
return "No data available", "", None
|
| 81 |
+
session["features"] = features
|
| 82 |
+
session["target"] = target
|
| 83 |
+
selected_cols = features.copy()
|
| 84 |
+
if target and target not in selected_cols:
|
| 85 |
+
selected_cols.append(target)
|
| 86 |
+
filtered_df = session["df"][selected_cols]
|
| 87 |
+
session["df"] = filtered_df
|
| 88 |
+
default_trans = ", ".join(["No Transformation"] * len(features)) if features else ""
|
| 89 |
+
return f"Selected {len(features)} features and target: {target}", default_trans, preview_dataframe(filtered_df)
|
| 90 |
+
|
| 91 |
+
# ---------------------------
|
| 92 |
+
# Step 4: Save Transformation Options
|
| 93 |
+
# ---------------------------
|
| 94 |
+
def save_transformation_options(transformation_text):
|
| 95 |
+
if session.get("df") is None or not session.get("features"):
|
| 96 |
+
return "No data or features available", None
|
| 97 |
+
trans_list = [t.strip() for t in transformation_text.split(",")] if transformation_text.strip() != "" else []
|
| 98 |
+
if len(trans_list) < len(session["features"]):
|
| 99 |
+
trans_list += ["No Transformation"] * (len(session["features"]) - len(trans_list))
|
| 100 |
+
transformation_mapping = {session["features"][i]: trans_list[i] for i in range(len(session["features"]))}
|
| 101 |
+
df = session.get("df").copy()
|
| 102 |
+
def apply_transformations(df, transformation_map):
|
| 103 |
+
for col, transform in transformation_map.items():
|
| 104 |
+
if transform == "Label Encode":
|
| 105 |
+
if df[col].dtype == "object" or str(df[col].dtype).startswith("category"):
|
| 106 |
+
df[col] = LabelEncoder().fit_transform(df[col])
|
| 107 |
+
else:
|
| 108 |
+
df[col] = LabelEncoder().fit_transform(df[col].astype(str))
|
| 109 |
+
elif transform == "Normalize":
|
| 110 |
+
scaler = StandardScaler()
|
| 111 |
+
df[[col]] = scaler.fit_transform(df[[col]])
|
| 112 |
+
return df
|
| 113 |
+
processed_df = apply_transformations(df, transformation_mapping)
|
| 114 |
+
session["df"] = processed_df
|
| 115 |
+
session["transformation_text"] = transformation_text # Store in session
|
| 116 |
+
return "Transformation options applied", preview_dataframe(processed_df)
|
| 117 |
+
|
| 118 |
+
# ---------------------------
|
| 119 |
+
# Model Training Function
|
| 120 |
+
# ---------------------------
|
| 121 |
+
def train_selected_models(experiment_title, selected_models, lr_c, lr_max_iter, dt_max_depth, dt_min_samples_split,
|
| 122 |
+
rf_n_estimators, rf_max_depth, svm_c, svm_kernel, nb_var_smoothing,
|
| 123 |
+
train_size):
|
| 124 |
+
df = session.get("df")
|
| 125 |
+
features = session.get("features")
|
| 126 |
+
target = session.get("target")
|
| 127 |
+
missing_strategy = session.get("missing_strategy", "drop")
|
| 128 |
+
transformation_text = session.get("transformation_text", "")
|
| 129 |
+
if df is None or not features or target is None or not selected_models:
|
| 130 |
+
return "Please ensure data is uploaded, features/target selected, and models chosen."
|
| 131 |
+
trans_list = [t.strip() for t in transformation_text.split(",")] if transformation_text.strip() != "" else []
|
| 132 |
+
if len(trans_list) < len(features):
|
| 133 |
+
trans_list += ["No Transformation"] * (len(features) - len(trans_list))
|
| 134 |
+
transformation_mapping = {features[i]: trans_list[i] for i in range(len(features))}
|
| 135 |
+
preprocessing_steps = [f"Missing Value: {missing_strategy}"] + [f"{k}: {v}" for k, v in transformation_mapping.items()]
|
| 136 |
+
test_size = 1 - train_size
|
| 137 |
+
if not set(features).issubset(df.columns):
|
| 138 |
+
return "Selected features not found in the processed data."
|
| 139 |
+
X = df[features]
|
| 140 |
+
y = df[target]
|
| 141 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size)
|
| 142 |
+
model_params = {
|
| 143 |
+
"Logistic Regression": {"C": lr_c, "max_iter": lr_max_iter},
|
| 144 |
+
"Decision Tree": {"max_depth": dt_max_depth, "min_samples_split": dt_min_samples_split},
|
| 145 |
+
"Random Forest": {"n_estimators": rf_n_estimators, "max_depth": rf_max_depth},
|
| 146 |
+
"SVM": {"C": svm_c, "kernel": svm_kernel},
|
| 147 |
+
"Naive Bayes": {"var_smoothing": nb_var_smoothing}
|
| 148 |
+
}
|
| 149 |
+
training_logs = train_models(X_train, X_test, y_train, y_test, selected_models, model_params, preprocessing_steps)
|
| 150 |
+
session["trained_models"] = {model: training_logs[model]["model"] for model in selected_models}
|
| 151 |
+
session["X_test"] = X_test
|
| 152 |
+
session["y_test"] = y_test
|
| 153 |
+
experiment_logs = []
|
| 154 |
+
for model_name in selected_models:
|
| 155 |
+
entry = create_log_entry(
|
| 156 |
+
experiment_title,
|
| 157 |
+
model_name,
|
| 158 |
+
model_params[model_name],
|
| 159 |
+
"",
|
| 160 |
+
preprocessing_steps,
|
| 161 |
+
training_logs[model_name]["metrics"],
|
| 162 |
+
training_logs[model_name].get("training_time", 0),
|
| 163 |
+
training_logs[model_name]["model"]
|
| 164 |
+
)
|
| 165 |
+
experiment_logs.append(entry)
|
| 166 |
+
log_experiment_results(experiment_logs)
|
| 167 |
+
formatted_results = "\n".join([f"{model}: {training_logs[model]['metrics']}" for model in selected_models])
|
| 168 |
+
return formatted_results
|
| 169 |
+
|
| 170 |
+
# ---------------------------
|
| 171 |
+
# Hyperparameter Tuning Function (Grid Search Example)
|
| 172 |
+
# ---------------------------
|
| 173 |
+
def run_hyperparameter_tuning(experiment_title, selected_models):
|
| 174 |
+
df = session.get("df")
|
| 175 |
+
features = session.get("features")
|
| 176 |
+
target = session.get("target")
|
| 177 |
+
|
| 178 |
+
if df is None or not features or target is None or not selected_models:
|
| 179 |
+
return "Please ensure data is uploaded, features/target selected, and models chosen.", None
|
| 180 |
+
|
| 181 |
+
X = df[features]
|
| 182 |
+
y = df[target]
|
| 183 |
+
|
| 184 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
|
| 185 |
+
|
| 186 |
+
strategy_map = {
|
| 187 |
+
"Grid Search": GridSearchCV,
|
| 188 |
+
"Random Search": RandomizedSearchCV
|
| 189 |
+
}
|
| 190 |
+
if bayes_available:
|
| 191 |
+
from skopt import BayesSearchCV
|
| 192 |
+
strategy_map["Bayesian Optimization"] = BayesSearchCV
|
| 193 |
+
|
| 194 |
+
param_grids = {
|
| 195 |
+
"Logistic Regression": {"C": [0.01, 0.1, 1, 10], "max_iter": [100, 200, 300]},
|
| 196 |
+
"Decision Tree": {"max_depth": [3, 5, 10, None], "min_samples_split": [2, 5, 10]},
|
| 197 |
+
"Random Forest": {"n_estimators": [50, 100, 200], "max_depth": [None, 10, 20]},
|
| 198 |
+
"SVM": {"C": [0.1, 1, 10], "kernel": ["linear", "rbf"]},
|
| 199 |
+
"Naive Bayes": {"var_smoothing": np.logspace(-10, -8, 5)}
|
| 200 |
+
}
|
| 201 |
+
|
| 202 |
+
all_logs = []
|
| 203 |
+
status_texts = []
|
| 204 |
+
|
| 205 |
+
for model_name in selected_models:
|
| 206 |
+
best_overall_score = -1
|
| 207 |
+
best_overall_summary = None
|
| 208 |
+
|
| 209 |
+
for strategy_name, strategy_cls in strategy_map.items():
|
| 210 |
+
try:
|
| 211 |
+
model = get_model_instance(model_name, {})
|
| 212 |
+
|
| 213 |
+
if strategy_name == "Grid Search":
|
| 214 |
+
searcher = strategy_cls(
|
| 215 |
+
model,
|
| 216 |
+
param_grid=param_grids[model_name],
|
| 217 |
+
scoring="accuracy",
|
| 218 |
+
cv=5
|
| 219 |
+
)
|
| 220 |
+
elif strategy_name == "Random Search":
|
| 221 |
+
searcher = strategy_cls(
|
| 222 |
+
model,
|
| 223 |
+
param_distributions=param_grids[model_name],
|
| 224 |
+
scoring="accuracy",
|
| 225 |
+
cv=5,
|
| 226 |
+
n_iter=min(10, len(list(ParameterGrid(param_grids[model_name]))))
|
| 227 |
+
)
|
| 228 |
+
elif strategy_name == "Bayesian Optimization":
|
| 229 |
+
searcher = strategy_cls(
|
| 230 |
+
model,
|
| 231 |
+
search_spaces=param_grids[model_name],
|
| 232 |
+
scoring="accuracy",
|
| 233 |
+
cv=5,
|
| 234 |
+
n_iter=10
|
| 235 |
+
)
|
| 236 |
+
else:
|
| 237 |
+
continue
|
| 238 |
+
|
| 239 |
+
searcher.fit(X_train, y_train)
|
| 240 |
+
best_estimator = searcher.best_estimator_
|
| 241 |
+
best_params = searcher.best_params_
|
| 242 |
+
|
| 243 |
+
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
|
| 244 |
+
|
| 245 |
+
y_train_pred = best_estimator.predict(X_train)
|
| 246 |
+
y_test_pred = best_estimator.predict(X_test)
|
| 247 |
+
|
| 248 |
+
metrics = {
|
| 249 |
+
"accuracy_train": accuracy_score(y_train, y_train_pred),
|
| 250 |
+
"accuracy_test": accuracy_score(y_test, y_test_pred),
|
| 251 |
+
"precision_train": precision_score(y_train, y_train_pred, average='weighted', zero_division=0),
|
| 252 |
+
"precision_test": precision_score(y_test, y_test_pred, average='weighted', zero_division=0),
|
| 253 |
+
"recall_train": recall_score(y_train, y_train_pred, average='weighted', zero_division=0),
|
| 254 |
+
"recall_test": recall_score(y_test, y_test_pred, average='weighted', zero_division=0),
|
| 255 |
+
"f1_score_train": f1_score(y_train, y_train_pred, average='weighted', zero_division=0),
|
| 256 |
+
"f1_score_test": f1_score(y_test, y_test_pred, average='weighted', zero_division=0)
|
| 257 |
+
}
|
| 258 |
+
|
| 259 |
+
log_entry = create_log_entry(
|
| 260 |
+
experiment_title,
|
| 261 |
+
f"Hyperparameter Tuned {model_name} ({strategy_name})",
|
| 262 |
+
best_params,
|
| 263 |
+
"",
|
| 264 |
+
[f"Strategy: {strategy_name}"],
|
| 265 |
+
metrics,
|
| 266 |
+
0,
|
| 267 |
+
best_estimator
|
| 268 |
+
)
|
| 269 |
+
all_logs.append(log_entry)
|
| 270 |
+
|
| 271 |
+
if searcher.best_score_ > best_overall_score:
|
| 272 |
+
best_overall_score = searcher.best_score_
|
| 273 |
+
best_overall_summary = f"{model_name} ({strategy_name}):\n" + "\n".join(
|
| 274 |
+
[f"{k}: {v:.4f}" for k, v in metrics.items()]
|
| 275 |
+
)
|
| 276 |
+
|
| 277 |
+
except Exception as e:
|
| 278 |
+
continue
|
| 279 |
+
|
| 280 |
+
if best_overall_summary:
|
| 281 |
+
status_texts.append(best_overall_summary)
|
| 282 |
+
else:
|
| 283 |
+
status_texts.append(f"{model_name}: All tuning strategies failed.")
|
| 284 |
+
|
| 285 |
+
log_experiment_results(all_logs)
|
| 286 |
+
return "\n\n".join(status_texts), "Tuning complete!"
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
|
| 290 |
+
|
| 291 |
+
###--------------------dahsboard
|
| 292 |
+
|
| 293 |
+
|
| 294 |
+
###--------------------dahsboard
|
| 295 |
+
|
| 296 |
+
|
| 297 |
+
|
| 298 |
+
|
| 299 |
+
# ---------------------------
|
| 300 |
+
# Gradio Interface Layout
|
| 301 |
+
# ---------------------------
|
| 302 |
+
with gr.Blocks() as demo:
|
| 303 |
+
gr.Markdown("## ML Model Builder")
|
| 304 |
+
|
| 305 |
+
with gr.Tab("Data Upload & Preprocessing"):
|
| 306 |
+
# Step 1: File Upload
|
| 307 |
+
gr.Markdown("### Step 1: Upload File")
|
| 308 |
+
with gr.Row():
|
| 309 |
+
file_input = gr.File(label="Upload CSV File", file_types=[".csv"])
|
| 310 |
+
upload_status = gr.Textbox(label="Upload Status", interactive=False)
|
| 311 |
+
df_preview = gr.Dataframe(label="Raw Data Preview", interactive=False)
|
| 312 |
+
|
| 313 |
+
# Step 2: Global Missing Value Strategy
|
| 314 |
+
gr.Markdown("### Step 2: Global Missing Value Strategy")
|
| 315 |
+
missing_strategy_dropdown = gr.Dropdown(
|
| 316 |
+
label="Missing Value Strategy",
|
| 317 |
+
choices=["drop", "mean", "median", "mode"],
|
| 318 |
+
value="drop",
|
| 319 |
+
info="Select how to handle missing values for all columns."
|
| 320 |
+
)
|
| 321 |
+
save_missing_btn = gr.Button("Save Missing Value Strategy")
|
| 322 |
+
missing_status = gr.Textbox(label="Missing Strategy Status", interactive=False)
|
| 323 |
+
missing_preview = gr.Dataframe(label="Data Preview after Missing Strategy", interactive=False)
|
| 324 |
+
|
| 325 |
+
# Step 3: Select Features and Target
|
| 326 |
+
gr.Markdown("### Step 3: Select Features and Target")
|
| 327 |
+
feature_selector = gr.CheckboxGroup(label="Select Input Features", choices=[], interactive=True)
|
| 328 |
+
target_selector = gr.Dropdown(label="Select Target Column", choices=[], interactive=True)
|
| 329 |
+
save_features_btn = gr.Button("Save Features and Target")
|
| 330 |
+
features_status = gr.Textbox(label="Features/Target Status", interactive=False)
|
| 331 |
+
features_preview = gr.Dataframe(label="Data Preview after Feature Selection", interactive=False)
|
| 332 |
+
|
| 333 |
+
# Step 4: Transformation Options
|
| 334 |
+
gr.Markdown("### Step 4: Transformation Options")
|
| 335 |
+
gr.Markdown(
|
| 336 |
+
"For each selected feature (in order), specify a transformation. Allowed options: **No Transformation**, **Label Encode**, **Normalize**. "
|
| 337 |
+
"Enter your choices as a comma-separated list. E.g.: No Transformation, Label Encode, Normalize"
|
| 338 |
+
)
|
| 339 |
+
transformation_text = gr.Textbox(label="Transformation Options", placeholder="E.g. No Transformation, Label Encode, Normalize", lines=1)
|
| 340 |
+
save_transformation_btn = gr.Button("Save Transformation Options")
|
| 341 |
+
transformation_status = gr.Textbox(label="Transformation Status", interactive=False)
|
| 342 |
+
transformation_preview = gr.Dataframe(label="Data Preview after Transformation", interactive=False)
|
| 343 |
+
|
| 344 |
+
with gr.Tab("Model Training"):
|
| 345 |
+
gr.Markdown("### Model Training and Experiment Logging")
|
| 346 |
+
# Global Experiment Title Input
|
| 347 |
+
experiment_title_input = gr.Textbox(label="Experiment Title", placeholder="Enter a title for this experiment", lines=1)
|
| 348 |
+
|
| 349 |
+
gr.Markdown("### Model Selection and Hyperparameter Tuning")
|
| 350 |
+
model_selector = gr.CheckboxGroup(
|
| 351 |
+
label="Select Models to Train",
|
| 352 |
+
choices=["Logistic Regression", "Decision Tree", "Random Forest", "SVM", "Naive Bayes"],
|
| 353 |
+
value=[], interactive=True
|
| 354 |
+
)
|
| 355 |
+
with gr.Column(visible=False) as lr_col:
|
| 356 |
+
gr.Markdown("**Logistic Regression**")
|
| 357 |
+
lr_c = gr.Slider(0.01, 10.0, step=0.01, value=1.0, label="C", interactive=True)
|
| 358 |
+
lr_max_iter = gr.Slider(50, 500, step=10, value=100, label="Max Iterations", interactive=True)
|
| 359 |
+
with gr.Column(visible=False) as dt_col:
|
| 360 |
+
gr.Markdown("**Decision Tree**")
|
| 361 |
+
dt_max_depth = gr.Slider(1, 50, step=1, value=10, label="Max Depth", interactive=True)
|
| 362 |
+
dt_min_samples_split = gr.Slider(2, 10, step=1, value=2, label="Min Samples Split", interactive=True)
|
| 363 |
+
with gr.Column(visible=False) as rf_col:
|
| 364 |
+
gr.Markdown("**Random Forest**")
|
| 365 |
+
rf_n_estimators = gr.Slider(10, 200, step=10, value=100, label="N Estimators", interactive=True)
|
| 366 |
+
rf_max_depth = gr.Slider(1, 50, step=1, value=10, label="Max Depth", interactive=True)
|
| 367 |
+
with gr.Column(visible=False) as svm_col:
|
| 368 |
+
gr.Markdown("**SVM**")
|
| 369 |
+
svm_c = gr.Slider(0.01, 10.0, step=0.01, value=1.0, label="C", interactive=True)
|
| 370 |
+
svm_kernel = gr.Radio(["linear", "poly", "rbf", "sigmoid"], value="rbf", label="Kernel", interactive=True)
|
| 371 |
+
with gr.Column(visible=False) as nb_col:
|
| 372 |
+
gr.Markdown("**Naive Bayes**")
|
| 373 |
+
nb_var_smoothing = gr.Slider(1e-10, 1e-5, step=1e-10, value=1e-9, label="Var Smoothing", interactive=True)
|
| 374 |
+
|
| 375 |
+
model_columns = {
|
| 376 |
+
"Logistic Regression": lr_col,
|
| 377 |
+
"Decision Tree": dt_col,
|
| 378 |
+
"Random Forest": rf_col,
|
| 379 |
+
"SVM": svm_col,
|
| 380 |
+
"Naive Bayes": nb_col,
|
| 381 |
+
}
|
| 382 |
+
|
| 383 |
+
def toggle_model_ui(selected_models):
|
| 384 |
+
updates = []
|
| 385 |
+
for model_name, panel in model_columns.items():
|
| 386 |
+
updates.append(gr.update(visible=(model_name in selected_models)))
|
| 387 |
+
return updates
|
| 388 |
+
|
| 389 |
+
model_selector.change(
|
| 390 |
+
fn=toggle_model_ui,
|
| 391 |
+
inputs=model_selector,
|
| 392 |
+
outputs=[lr_col, dt_col, rf_col, svm_col, nb_col]
|
| 393 |
+
)
|
| 394 |
+
|
| 395 |
+
gr.Markdown("### Training Parameters")
|
| 396 |
+
train_slider = gr.Slider(minimum=0.5, maximum=0.9, step=0.05, value=0.8, label="Training Set Size (proportion)", interactive=True)
|
| 397 |
+
train_btn = gr.Button("Train Selected Models")
|
| 398 |
+
training_output = gr.Textbox(label="Training Output", lines=8, interactive=False)
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
# ---------------------------
|
| 402 |
+
# Define Component Interactions
|
| 403 |
+
# ---------------------------
|
| 404 |
+
file_input.change(
|
| 405 |
+
fn=handle_upload,
|
| 406 |
+
inputs=file_input,
|
| 407 |
+
outputs=[upload_status, df_preview, feature_selector, target_selector]
|
| 408 |
+
)
|
| 409 |
+
|
| 410 |
+
save_missing_btn.click(
|
| 411 |
+
fn=save_missing_strategy,
|
| 412 |
+
inputs=missing_strategy_dropdown,
|
| 413 |
+
outputs=[missing_status, missing_preview]
|
| 414 |
+
)
|
| 415 |
+
|
| 416 |
+
save_features_btn.click(
|
| 417 |
+
fn=save_feature_target_selection,
|
| 418 |
+
inputs=[feature_selector, target_selector],
|
| 419 |
+
outputs=[features_status, transformation_text, features_preview]
|
| 420 |
+
)
|
| 421 |
+
|
| 422 |
+
save_transformation_btn.click(
|
| 423 |
+
fn=save_transformation_options,
|
| 424 |
+
inputs=transformation_text,
|
| 425 |
+
outputs=[transformation_status, transformation_preview]
|
| 426 |
+
)
|
| 427 |
+
|
| 428 |
+
train_btn.click(
|
| 429 |
+
fn=train_selected_models,
|
| 430 |
+
inputs=[
|
| 431 |
+
experiment_title_input,
|
| 432 |
+
model_selector,
|
| 433 |
+
lr_c, lr_max_iter,
|
| 434 |
+
dt_max_depth, dt_min_samples_split,
|
| 435 |
+
rf_n_estimators, rf_max_depth,
|
| 436 |
+
svm_c, svm_kernel,
|
| 437 |
+
nb_var_smoothing,
|
| 438 |
+
train_slider
|
| 439 |
+
],
|
| 440 |
+
outputs=training_output
|
| 441 |
+
)
|
| 442 |
+
with gr.Tab("Hyperparameter Tuning"):
|
| 443 |
+
gr.Markdown("### Fully Automatic Hyperparameter Tuning")
|
| 444 |
+
gr.Markdown(
|
| 445 |
+
"This step will automatically tune the selected models using **three search strategies**:\n"
|
| 446 |
+
"- **Grid Search**\n"
|
| 447 |
+
"- **Random Search**\n"
|
| 448 |
+
"- **Bayesian Optimization** (if available)\n\n"
|
| 449 |
+
"The best-performing result from each strategy will be logged, and the top strategy will be shown below."
|
| 450 |
+
)
|
| 451 |
+
experiment_title_hp = gr.Textbox(label="Experiment Title", placeholder="Enter experiment title")
|
| 452 |
+
model_selector_hp = gr.CheckboxGroup(
|
| 453 |
+
label="Select Models for Auto-Tuning",
|
| 454 |
+
choices=["Logistic Regression", "Decision Tree", "Random Forest", "SVM", "Naive Bayes"],
|
| 455 |
+
value=[], interactive=True
|
| 456 |
+
)
|
| 457 |
+
run_tune_btn = gr.Button("Run Hyperparameter Tuning")
|
| 458 |
+
tuning_output = gr.Textbox(label="Tuning Output", lines=10, interactive=False)
|
| 459 |
+
|
| 460 |
+
run_tune_btn.click(
|
| 461 |
+
fn=run_hyperparameter_tuning,
|
| 462 |
+
inputs=[experiment_title_hp, model_selector_hp],
|
| 463 |
+
outputs=[tuning_output, gr.Textbox(visible=False)]
|
| 464 |
+
)
|
| 465 |
+
with gr.Tab("Dashboard"):
|
| 466 |
+
log_df = gr.State(pd.DataFrame())
|
| 467 |
+
|
| 468 |
+
def load_log_dataframe_dynamic():
|
| 469 |
+
import os, json, pandas as pd
|
| 470 |
+
|
| 471 |
+
log_path = "experiments/logs/experiment_log.jsonl"
|
| 472 |
+
if not os.path.exists(log_path):
|
| 473 |
+
return pd.DataFrame([{"Message": "No logs found. Train or tune a model."}])
|
| 474 |
+
|
| 475 |
+
with open(log_path, "r", encoding="utf-8") as f:
|
| 476 |
+
lines = f.readlines()
|
| 477 |
+
|
| 478 |
+
rows = []
|
| 479 |
+
for line in lines:
|
| 480 |
+
try:
|
| 481 |
+
row = json.loads(line)
|
| 482 |
+
metrics = row.get("metrics", {})
|
| 483 |
+
entry = {
|
| 484 |
+
"Experiment": row.get("experiment_title", ""),
|
| 485 |
+
"Timestamp": row.get("timestamp", ""),
|
| 486 |
+
"Model": row.get("model", ""),
|
| 487 |
+
"Training Time (s)": round(row.get("training_time_sec", 0), 4),
|
| 488 |
+
"Inference Time (ms)": round(metrics.get("inference_time", 0) * 1000, 4),
|
| 489 |
+
"Model Size (bytes)": row.get("model_size_bytes", ""),
|
| 490 |
+
"CPU (%)": row.get("system_info", {}).get("cpu_utilization", ""),
|
| 491 |
+
"Memory (MB)": row.get("system_info", {}).get("memory_used_mb", ""),
|
| 492 |
+
"CPU Name": row.get("system_info", {}).get("cpu", ""),
|
| 493 |
+
"Hyperparameters": json.dumps(row.get("hyperparameters", {})),
|
| 494 |
+
}
|
| 495 |
+
for k, v in metrics.items():
|
| 496 |
+
if k != "inference_time":
|
| 497 |
+
entry[k] = round(v, 4) if isinstance(v, (float, int)) else v
|
| 498 |
+
rows.append(entry)
|
| 499 |
+
except Exception as e:
|
| 500 |
+
continue
|
| 501 |
+
|
| 502 |
+
return pd.DataFrame(rows)
|
| 503 |
+
|
| 504 |
+
refresh_button = gr.Button("π Refresh Dashboard")
|
| 505 |
+
dashboard_table = gr.Dataframe(
|
| 506 |
+
value=load_log_dataframe_dynamic(),
|
| 507 |
+
interactive=True,
|
| 508 |
+
wrap=False,
|
| 509 |
+
|
| 510 |
+
)
|
| 511 |
+
|
| 512 |
+
refresh_button.click(
|
| 513 |
+
fn=load_log_dataframe_dynamic,
|
| 514 |
+
outputs=dashboard_table,
|
| 515 |
+
)
|
| 516 |
+
|
| 517 |
+
with gr.Tab("Summary"):
|
| 518 |
+
|
| 519 |
+
gr.Markdown("### π Best Models by Metric")
|
| 520 |
+
gr.Markdown(
|
| 521 |
+
"- β
Automatically finds the **best model** for each evaluation metric from all logged experiments.\n"
|
| 522 |
+
"- π Use the **Refresh** button to update this view after new training or tuning."
|
| 523 |
+
)
|
| 524 |
+
|
| 525 |
+
summary_df = gr.Dataframe(label="Top Models by Metric", interactive=False)
|
| 526 |
+
|
| 527 |
+
def refresh_summary():
|
| 528 |
+
import pandas as pd, os, json
|
| 529 |
+
|
| 530 |
+
log_path = "experiments/logs/experiment_log.jsonl"
|
| 531 |
+
if not os.path.exists(log_path):
|
| 532 |
+
return pd.DataFrame([{"Message": "No logs found. Train or tune a model first."}])
|
| 533 |
+
|
| 534 |
+
df = pd.read_json(log_path, lines=True)
|
| 535 |
+
metric_keys = [
|
| 536 |
+
"accuracy_test", "precision_test", "recall_test", "f1_score_test"
|
| 537 |
+
]
|
| 538 |
+
|
| 539 |
+
best_rows = []
|
| 540 |
+
|
| 541 |
+
for metric in metric_keys:
|
| 542 |
+
best = None
|
| 543 |
+
best_score = -float("inf")
|
| 544 |
+
|
| 545 |
+
for _, row in df.iterrows():
|
| 546 |
+
score = row.get("metrics", {}).get(metric)
|
| 547 |
+
if isinstance(score, (int, float)) and score > best_score:
|
| 548 |
+
best = row
|
| 549 |
+
best_score = score
|
| 550 |
+
|
| 551 |
+
if best is not None:
|
| 552 |
+
best_rows.append({
|
| 553 |
+
"Metric": metric,
|
| 554 |
+
"Best Score": round(best_score, 4),
|
| 555 |
+
"Model": best.get("model"),
|
| 556 |
+
"Experiment": best.get("experiment_title"),
|
| 557 |
+
"Timestamp": best.get("timestamp"),
|
| 558 |
+
"Hyperparameters": json.dumps(best.get("hyperparameters", {})),
|
| 559 |
+
})
|
| 560 |
+
|
| 561 |
+
summary_df_result = pd.DataFrame(best_rows)
|
| 562 |
+
if not summary_df_result.empty:
|
| 563 |
+
return summary_df_result
|
| 564 |
+
else:
|
| 565 |
+
return pd.DataFrame([{"Message": "No valid metrics found in logs."}])
|
| 566 |
+
|
| 567 |
+
refresh_btn = gr.Button("π Refresh")
|
| 568 |
+
refresh_btn.click(fn=refresh_summary, outputs=summary_df)
|
| 569 |
+
|
| 570 |
+
# Load initial data
|
| 571 |
+
summary_df.value = refresh_summary()
|
| 572 |
+
|
| 573 |
+
|
| 574 |
+
demo.launch(ssr_mode=False)
|
data/iris_synthetic_data.csv
ADDED
|
@@ -0,0 +1,3001 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
sepal length,sepal width,petal length,petal width,label
|
| 2 |
+
5.2,3.8,1.5,0.3,Iris-setosa
|
| 3 |
+
5.3,4.1,1.5,0.1,Iris-setosa
|
| 4 |
+
4.8,3.1,1.5,0.2,Iris-setosa
|
| 5 |
+
5.2,3.7,1.5,0.2,Iris-setosa
|
| 6 |
+
4.9,3.0,1.5,0.3,Iris-setosa
|
| 7 |
+
5.1,3.7,1.5,0.4,Iris-setosa
|
| 8 |
+
5.2,3.7,1.5,0.3,Iris-setosa
|
| 9 |
+
5.4,3.4,1.6,0.2,Iris-setosa
|
| 10 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 11 |
+
5.2,3.7,1.5,0.3,Iris-setosa
|
| 12 |
+
5.0,3.3,1.5,0.2,Iris-setosa
|
| 13 |
+
5.0,3.4,1.5,0.2,Iris-setosa
|
| 14 |
+
5.4,3.9,1.5,0.4,Iris-setosa
|
| 15 |
+
4.8,3.1,1.5,0.2,Iris-setosa
|
| 16 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 17 |
+
4.4,3.1,1.1,0.1,Iris-setosa
|
| 18 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
| 19 |
+
5.2,3.4,1.5,0.2,Iris-setosa
|
| 20 |
+
4.5,3.2,1.3,0.2,Iris-setosa
|
| 21 |
+
4.9,3.0,1.5,0.2,Iris-setosa
|
| 22 |
+
4.9,3.4,1.6,0.2,Iris-setosa
|
| 23 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 24 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
| 25 |
+
4.9,3.0,1.5,0.2,Iris-setosa
|
| 26 |
+
4.9,3.0,1.5,0.3,Iris-setosa
|
| 27 |
+
5.2,3.5,1.5,0.2,Iris-setosa
|
| 28 |
+
5.0,3.4,1.5,0.2,Iris-setosa
|
| 29 |
+
5.2,3.4,1.5,0.2,Iris-setosa
|
| 30 |
+
5.4,3.9,1.6,0.4,Iris-setosa
|
| 31 |
+
5.0,3.3,1.6,0.4,Iris-setosa
|
| 32 |
+
5.3,3.9,1.5,0.3,Iris-setosa
|
| 33 |
+
5.1,3.3,1.5,0.2,Iris-setosa
|
| 34 |
+
5.4,4.2,1.5,0.2,Iris-setosa
|
| 35 |
+
5.1,3.8,1.5,0.3,Iris-setosa
|
| 36 |
+
5.1,3.7,1.5,0.4,Iris-setosa
|
| 37 |
+
5.1,3.8,1.5,0.3,Iris-setosa
|
| 38 |
+
4.9,3.4,1.8,0.2,Iris-setosa
|
| 39 |
+
5.1,3.7,1.5,0.4,Iris-setosa
|
| 40 |
+
5.1,3.5,1.5,0.3,Iris-setosa
|
| 41 |
+
5.0,3.3,1.3,0.2,Iris-setosa
|
| 42 |
+
5.4,3.4,1.5,0.2,Iris-setosa
|
| 43 |
+
5.4,3.4,1.5,0.3,Iris-setosa
|
| 44 |
+
5.7,3.8,1.6,0.3,Iris-setosa
|
| 45 |
+
5.0,3.5,1.3,0.3,Iris-setosa
|
| 46 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 47 |
+
4.6,3.2,1.5,0.2,Iris-setosa
|
| 48 |
+
5.0,3.5,1.3,0.3,Iris-setosa
|
| 49 |
+
5.1,3.4,1.5,0.2,Iris-setosa
|
| 50 |
+
4.6,3.4,1.5,0.3,Iris-setosa
|
| 51 |
+
5.2,3.4,1.5,0.2,Iris-setosa
|
| 52 |
+
4.6,3.4,1.5,0.3,Iris-setosa
|
| 53 |
+
5.0,3.4,1.5,0.2,Iris-setosa
|
| 54 |
+
5.3,4.0,1.5,0.1,Iris-setosa
|
| 55 |
+
5.4,3.9,1.6,0.4,Iris-setosa
|
| 56 |
+
5.1,3.8,1.6,0.2,Iris-setosa
|
| 57 |
+
5.1,3.4,1.5,0.2,Iris-setosa
|
| 58 |
+
4.7,3.4,1.5,0.3,Iris-setosa
|
| 59 |
+
4.9,3.0,1.5,0.2,Iris-setosa
|
| 60 |
+
4.7,3.1,1.5,0.3,Iris-setosa
|
| 61 |
+
4.7,3.2,1.3,0.2,Iris-setosa
|
| 62 |
+
5.5,3.7,1.5,0.2,Iris-setosa
|
| 63 |
+
5.4,3.4,1.6,0.2,Iris-setosa
|
| 64 |
+
5.6,4.4,1.5,0.4,Iris-setosa
|
| 65 |
+
5.3,3.9,1.3,0.4,Iris-setosa
|
| 66 |
+
5.4,3.9,1.6,0.4,Iris-setosa
|
| 67 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
| 68 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 69 |
+
5.2,3.7,1.5,0.2,Iris-setosa
|
| 70 |
+
4.3,3.0,1.1,0.1,Iris-setosa
|
| 71 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 72 |
+
4.8,3.1,1.6,0.2,Iris-setosa
|
| 73 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
| 74 |
+
4.9,3.4,1.6,0.2,Iris-setosa
|
| 75 |
+
4.9,3.4,1.6,0.2,Iris-setosa
|
| 76 |
+
5.3,3.9,1.8,0.4,Iris-setosa
|
| 77 |
+
5.1,3.7,1.5,0.4,Iris-setosa
|
| 78 |
+
4.8,3.1,1.6,0.2,Iris-setosa
|
| 79 |
+
5.0,3.3,1.6,0.4,Iris-setosa
|
| 80 |
+
5.3,4.0,1.6,0.2,Iris-setosa
|
| 81 |
+
5.0,3.4,1.6,0.4,Iris-setosa
|
| 82 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 83 |
+
5.4,3.9,1.5,0.4,Iris-setosa
|
| 84 |
+
5.7,4.4,1.5,0.4,Iris-setosa
|
| 85 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 86 |
+
5.7,4.1,1.3,0.2,Iris-setosa
|
| 87 |
+
5.0,3.6,1.5,0.2,Iris-setosa
|
| 88 |
+
5.2,3.4,1.5,0.2,Iris-setosa
|
| 89 |
+
4.5,3.1,1.5,0.2,Iris-setosa
|
| 90 |
+
5.2,3.4,1.5,0.2,Iris-setosa
|
| 91 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
| 92 |
+
4.9,3.0,1.5,0.2,Iris-setosa
|
| 93 |
+
5.5,4.2,1.5,0.2,Iris-setosa
|
| 94 |
+
5.1,3.8,1.6,0.4,Iris-setosa
|
| 95 |
+
5.0,3.4,1.6,0.4,Iris-setosa
|
| 96 |
+
4.4,3.1,1.3,0.2,Iris-setosa
|
| 97 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
| 98 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 99 |
+
5.0,3.4,1.5,0.2,Iris-setosa
|
| 100 |
+
5.2,3.5,1.5,0.2,Iris-setosa
|
| 101 |
+
4.4,3.1,1.1,0.1,Iris-setosa
|
| 102 |
+
4.8,3.0,1.5,0.1,Iris-setosa
|
| 103 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 104 |
+
4.4,2.9,1.5,0.2,Iris-setosa
|
| 105 |
+
4.6,3.4,1.5,0.3,Iris-setosa
|
| 106 |
+
5.1,3.4,1.5,0.2,Iris-setosa
|
| 107 |
+
5.4,3.5,1.3,0.2,Iris-setosa
|
| 108 |
+
4.9,3.1,1.6,0.1,Iris-setosa
|
| 109 |
+
4.7,3.2,1.3,0.2,Iris-setosa
|
| 110 |
+
5.2,3.7,1.5,0.2,Iris-setosa
|
| 111 |
+
4.6,2.5,1.3,0.3,Iris-setosa
|
| 112 |
+
4.6,3.2,1.5,0.2,Iris-setosa
|
| 113 |
+
5.1,3.8,1.5,0.3,Iris-setosa
|
| 114 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 115 |
+
5.2,3.4,1.5,0.2,Iris-setosa
|
| 116 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
| 117 |
+
4.7,3.2,1.5,0.2,Iris-setosa
|
| 118 |
+
4.6,3.4,1.5,0.3,Iris-setosa
|
| 119 |
+
4.6,3.2,1.5,0.2,Iris-setosa
|
| 120 |
+
5.1,3.5,1.5,0.3,Iris-setosa
|
| 121 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
| 122 |
+
5.5,3.9,1.5,0.4,Iris-setosa
|
| 123 |
+
5.2,4.0,1.5,0.1,Iris-setosa
|
| 124 |
+
5.3,3.5,1.5,0.2,Iris-setosa
|
| 125 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 126 |
+
5.1,3.4,1.5,0.2,Iris-setosa
|
| 127 |
+
5.0,3.5,1.6,0.6,Iris-setosa
|
| 128 |
+
4.7,3.2,1.3,0.2,Iris-setosa
|
| 129 |
+
5.1,3.5,1.5,0.2,Iris-setosa
|
| 130 |
+
5.0,3.5,1.3,0.3,Iris-setosa
|
| 131 |
+
4.5,3.2,1.3,0.2,Iris-setosa
|
| 132 |
+
5.8,4.0,1.1,0.2,Iris-setosa
|
| 133 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 134 |
+
5.1,3.5,1.5,0.3,Iris-setosa
|
| 135 |
+
5.1,3.7,1.5,0.4,Iris-setosa
|
| 136 |
+
5.2,3.7,1.5,0.2,Iris-setosa
|
| 137 |
+
5.4,3.9,1.5,0.4,Iris-setosa
|
| 138 |
+
4.9,3.0,1.5,0.2,Iris-setosa
|
| 139 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 140 |
+
4.8,3.4,1.6,0.2,Iris-setosa
|
| 141 |
+
5.2,3.4,1.5,0.2,Iris-setosa
|
| 142 |
+
5.4,4.0,1.3,0.1,Iris-setosa
|
| 143 |
+
5.1,3.5,1.5,0.2,Iris-setosa
|
| 144 |
+
5.2,3.7,1.6,0.3,Iris-setosa
|
| 145 |
+
4.4,3.0,1.1,0.1,Iris-setosa
|
| 146 |
+
4.9,3.4,1.5,0.2,Iris-setosa
|
| 147 |
+
4.6,3.2,1.5,0.2,Iris-setosa
|
| 148 |
+
5.0,3.4,1.5,0.2,Iris-setosa
|
| 149 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 150 |
+
5.2,4.0,1.5,0.1,Iris-setosa
|
| 151 |
+
5.4,3.9,1.6,0.4,Iris-setosa
|
| 152 |
+
5.2,3.8,1.8,0.4,Iris-setosa
|
| 153 |
+
5.0,3.2,1.3,0.2,Iris-setosa
|
| 154 |
+
5.0,3.5,1.3,0.3,Iris-setosa
|
| 155 |
+
5.2,3.5,1.5,0.2,Iris-setosa
|
| 156 |
+
5.1,3.9,1.6,0.2,Iris-setosa
|
| 157 |
+
4.9,3.4,1.6,0.2,Iris-setosa
|
| 158 |
+
4.7,3.2,1.5,0.2,Iris-setosa
|
| 159 |
+
5.4,3.9,1.3,0.4,Iris-setosa
|
| 160 |
+
4.6,3.0,1.3,0.1,Iris-setosa
|
| 161 |
+
5.2,4.1,1.5,0.1,Iris-setosa
|
| 162 |
+
4.6,3.2,1.5,0.2,Iris-setosa
|
| 163 |
+
4.7,3.2,1.3,0.2,Iris-setosa
|
| 164 |
+
5.2,3.4,1.5,0.2,Iris-setosa
|
| 165 |
+
4.6,3.1,1.5,0.2,Iris-setosa
|
| 166 |
+
5.1,3.5,1.5,0.2,Iris-setosa
|
| 167 |
+
4.8,3.1,1.5,0.2,Iris-setosa
|
| 168 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 169 |
+
4.8,3.0,1.5,0.1,Iris-setosa
|
| 170 |
+
5.2,3.4,1.5,0.2,Iris-setosa
|
| 171 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 172 |
+
5.1,3.5,1.3,0.2,Iris-setosa
|
| 173 |
+
4.7,3.5,1.3,0.2,Iris-setosa
|
| 174 |
+
5.3,3.4,1.5,0.4,Iris-setosa
|
| 175 |
+
5.0,3.6,1.5,0.5,Iris-setosa
|
| 176 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
| 177 |
+
5.7,4.4,1.5,0.4,Iris-setosa
|
| 178 |
+
4.6,3.2,1.5,0.2,Iris-setosa
|
| 179 |
+
5.1,3.5,1.5,0.3,Iris-setosa
|
| 180 |
+
5.1,3.7,1.5,0.4,Iris-setosa
|
| 181 |
+
5.0,3.6,1.5,0.2,Iris-setosa
|
| 182 |
+
5.3,3.4,1.6,0.2,Iris-setosa
|
| 183 |
+
4.7,3.2,1.3,0.2,Iris-setosa
|
| 184 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 185 |
+
5.3,3.5,1.3,0.2,Iris-setosa
|
| 186 |
+
5.6,4.3,1.5,0.3,Iris-setosa
|
| 187 |
+
5.1,3.4,1.5,0.2,Iris-setosa
|
| 188 |
+
5.3,3.8,1.5,0.4,Iris-setosa
|
| 189 |
+
4.7,3.2,1.5,0.2,Iris-setosa
|
| 190 |
+
5.8,4.0,1.1,0.2,Iris-setosa
|
| 191 |
+
4.9,3.2,1.3,0.2,Iris-setosa
|
| 192 |
+
4.8,3.1,1.6,0.2,Iris-setosa
|
| 193 |
+
5.2,3.4,1.5,0.2,Iris-setosa
|
| 194 |
+
4.4,3.0,1.1,0.1,Iris-setosa
|
| 195 |
+
5.3,3.5,1.3,0.2,Iris-setosa
|
| 196 |
+
5.0,3.4,1.6,0.4,Iris-setosa
|
| 197 |
+
5.1,3.5,1.5,0.2,Iris-setosa
|
| 198 |
+
5.2,3.8,1.5,0.3,Iris-setosa
|
| 199 |
+
5.1,3.5,1.5,0.3,Iris-setosa
|
| 200 |
+
5.0,3.3,1.3,0.2,Iris-setosa
|
| 201 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 202 |
+
5.0,3.6,1.5,0.2,Iris-setosa
|
| 203 |
+
5.0,3.6,1.5,0.2,Iris-setosa
|
| 204 |
+
4.7,3.1,1.5,0.3,Iris-setosa
|
| 205 |
+
5.2,3.4,1.5,0.2,Iris-setosa
|
| 206 |
+
5.0,3.2,1.3,0.2,Iris-setosa
|
| 207 |
+
4.6,3.2,1.5,0.2,Iris-setosa
|
| 208 |
+
5.0,3.6,1.5,0.2,Iris-setosa
|
| 209 |
+
4.7,3.1,1.5,0.2,Iris-setosa
|
| 210 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
| 211 |
+
5.0,3.2,1.1,0.2,Iris-setosa
|
| 212 |
+
5.8,4.0,1.3,0.2,Iris-setosa
|
| 213 |
+
4.4,3.1,1.3,0.2,Iris-setosa
|
| 214 |
+
5.2,3.7,1.5,0.2,Iris-setosa
|
| 215 |
+
4.6,3.1,1.5,0.2,Iris-setosa
|
| 216 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 217 |
+
4.6,3.2,1.5,0.2,Iris-setosa
|
| 218 |
+
5.2,4.0,1.5,0.1,Iris-setosa
|
| 219 |
+
4.9,3.4,1.6,0.2,Iris-setosa
|
| 220 |
+
5.7,3.8,1.6,0.3,Iris-setosa
|
| 221 |
+
5.0,3.5,1.3,0.4,Iris-setosa
|
| 222 |
+
4.6,3.1,1.5,0.2,Iris-setosa
|
| 223 |
+
4.8,3.4,1.6,0.2,Iris-setosa
|
| 224 |
+
4.7,3.2,1.3,0.2,Iris-setosa
|
| 225 |
+
5.2,4.0,1.5,0.1,Iris-setosa
|
| 226 |
+
5.2,3.5,1.5,0.2,Iris-setosa
|
| 227 |
+
4.9,3.4,1.6,0.3,Iris-setosa
|
| 228 |
+
4.8,3.0,1.5,0.1,Iris-setosa
|
| 229 |
+
5.3,3.9,1.8,0.4,Iris-setosa
|
| 230 |
+
5.4,3.4,1.6,0.2,Iris-setosa
|
| 231 |
+
4.6,3.4,1.5,0.3,Iris-setosa
|
| 232 |
+
5.4,3.9,1.5,0.4,Iris-setosa
|
| 233 |
+
5.1,3.7,1.5,0.4,Iris-setosa
|
| 234 |
+
4.4,3.0,1.3,0.2,Iris-setosa
|
| 235 |
+
5.0,3.5,1.5,0.5,Iris-setosa
|
| 236 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 237 |
+
5.0,3.2,1.3,0.2,Iris-setosa
|
| 238 |
+
5.1,3.4,1.5,0.2,Iris-setosa
|
| 239 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 240 |
+
5.1,3.8,1.6,0.2,Iris-setosa
|
| 241 |
+
4.8,3.2,1.6,0.2,Iris-setosa
|
| 242 |
+
5.0,3.2,1.3,0.2,Iris-setosa
|
| 243 |
+
4.6,3.4,1.5,0.3,Iris-setosa
|
| 244 |
+
5.7,3.8,1.6,0.3,Iris-setosa
|
| 245 |
+
5.2,3.8,1.8,0.4,Iris-setosa
|
| 246 |
+
4.7,3.2,1.6,0.2,Iris-setosa
|
| 247 |
+
5.2,3.5,1.5,0.2,Iris-setosa
|
| 248 |
+
4.7,3.2,1.3,0.2,Iris-setosa
|
| 249 |
+
5.0,3.4,1.5,0.2,Iris-setosa
|
| 250 |
+
5.2,3.7,1.5,0.3,Iris-setosa
|
| 251 |
+
4.6,2.5,1.3,0.3,Iris-setosa
|
| 252 |
+
5.2,3.7,1.5,0.2,Iris-setosa
|
| 253 |
+
5.4,3.4,1.3,0.3,Iris-setosa
|
| 254 |
+
4.9,3.5,1.1,0.3,Iris-setosa
|
| 255 |
+
5.1,3.8,1.6,0.2,Iris-setosa
|
| 256 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 257 |
+
4.7,3.2,1.3,0.2,Iris-setosa
|
| 258 |
+
5.2,3.8,1.8,0.4,Iris-setosa
|
| 259 |
+
4.8,3.0,1.5,0.1,Iris-setosa
|
| 260 |
+
4.5,3.2,1.3,0.2,Iris-setosa
|
| 261 |
+
5.5,3.5,1.3,0.2,Iris-setosa
|
| 262 |
+
4.8,3.0,1.5,0.3,Iris-setosa
|
| 263 |
+
4.6,2.5,1.3,0.3,Iris-setosa
|
| 264 |
+
4.7,3.2,1.5,0.2,Iris-setosa
|
| 265 |
+
4.8,3.0,1.5,0.1,Iris-setosa
|
| 266 |
+
5.2,3.4,1.5,0.2,Iris-setosa
|
| 267 |
+
5.4,3.4,1.6,0.2,Iris-setosa
|
| 268 |
+
5.1,3.8,1.5,0.3,Iris-setosa
|
| 269 |
+
4.6,3.1,1.5,0.2,Iris-setosa
|
| 270 |
+
5.1,3.5,1.5,0.4,Iris-setosa
|
| 271 |
+
4.6,3.5,1.3,0.3,Iris-setosa
|
| 272 |
+
5.2,3.8,1.5,0.3,Iris-setosa
|
| 273 |
+
5.0,3.3,1.3,0.2,Iris-setosa
|
| 274 |
+
4.4,2.9,1.5,0.2,Iris-setosa
|
| 275 |
+
5.1,3.6,1.5,0.4,Iris-setosa
|
| 276 |
+
4.8,2.9,1.5,0.1,Iris-setosa
|
| 277 |
+
5.2,3.4,1.5,0.2,Iris-setosa
|
| 278 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
| 279 |
+
4.6,3.1,1.5,0.2,Iris-setosa
|
| 280 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
| 281 |
+
5.0,3.4,1.5,0.2,Iris-setosa
|
| 282 |
+
4.9,3.1,1.6,0.1,Iris-setosa
|
| 283 |
+
5.0,3.6,1.5,0.2,Iris-setosa
|
| 284 |
+
4.6,3.1,1.5,0.2,Iris-setosa
|
| 285 |
+
4.6,3.1,1.5,0.2,Iris-setosa
|
| 286 |
+
4.9,3.0,1.5,0.2,Iris-setosa
|
| 287 |
+
4.7,3.2,1.3,0.2,Iris-setosa
|
| 288 |
+
5.0,3.4,1.6,0.5,Iris-setosa
|
| 289 |
+
5.1,3.8,1.6,0.4,Iris-setosa
|
| 290 |
+
5.1,3.8,1.5,0.3,Iris-setosa
|
| 291 |
+
5.2,3.4,1.5,0.2,Iris-setosa
|
| 292 |
+
5.0,3.3,1.3,0.2,Iris-setosa
|
| 293 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 294 |
+
5.1,3.8,1.6,0.2,Iris-setosa
|
| 295 |
+
5.1,3.8,1.8,0.3,Iris-setosa
|
| 296 |
+
4.8,3.4,1.6,0.2,Iris-setosa
|
| 297 |
+
4.9,3.0,1.5,0.2,Iris-setosa
|
| 298 |
+
5.5,3.9,1.5,0.4,Iris-setosa
|
| 299 |
+
4.8,3.0,1.5,0.1,Iris-setosa
|
| 300 |
+
4.4,3.1,1.1,0.1,Iris-setosa
|
| 301 |
+
4.7,3.2,1.5,0.2,Iris-setosa
|
| 302 |
+
5.2,3.7,1.5,0.3,Iris-setosa
|
| 303 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 304 |
+
5.2,3.8,1.6,0.2,Iris-setosa
|
| 305 |
+
5.1,3.8,1.5,0.3,Iris-setosa
|
| 306 |
+
5.2,4.0,1.5,0.1,Iris-setosa
|
| 307 |
+
5.6,3.8,1.6,0.4,Iris-setosa
|
| 308 |
+
5.2,3.5,1.5,0.2,Iris-setosa
|
| 309 |
+
4.8,3.0,1.5,0.1,Iris-setosa
|
| 310 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 311 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 312 |
+
5.1,3.3,1.6,0.4,Iris-setosa
|
| 313 |
+
5.7,4.0,1.3,0.2,Iris-setosa
|
| 314 |
+
5.1,3.5,1.5,0.3,Iris-setosa
|
| 315 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 316 |
+
5.5,4.1,1.5,0.2,Iris-setosa
|
| 317 |
+
5.0,3.6,1.5,0.2,Iris-setosa
|
| 318 |
+
5.3,3.5,1.5,0.3,Iris-setosa
|
| 319 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
| 320 |
+
5.4,3.4,1.5,0.3,Iris-setosa
|
| 321 |
+
5.0,3.2,1.3,0.2,Iris-setosa
|
| 322 |
+
5.3,3.7,1.5,0.3,Iris-setosa
|
| 323 |
+
5.0,3.2,1.1,0.2,Iris-setosa
|
| 324 |
+
4.9,3.4,1.6,0.2,Iris-setosa
|
| 325 |
+
5.2,3.8,1.5,0.3,Iris-setosa
|
| 326 |
+
5.2,3.5,1.5,0.2,Iris-setosa
|
| 327 |
+
5.0,3.4,1.5,0.3,Iris-setosa
|
| 328 |
+
5.1,3.5,1.5,0.2,Iris-setosa
|
| 329 |
+
5.2,3.4,1.5,0.3,Iris-setosa
|
| 330 |
+
4.9,3.4,1.5,0.2,Iris-setosa
|
| 331 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 332 |
+
5.1,3.4,1.5,0.2,Iris-setosa
|
| 333 |
+
5.4,4.2,1.5,0.2,Iris-setosa
|
| 334 |
+
5.2,3.4,1.5,0.2,Iris-setosa
|
| 335 |
+
5.1,3.8,1.8,0.3,Iris-setosa
|
| 336 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
| 337 |
+
4.9,3.0,1.5,0.1,Iris-setosa
|
| 338 |
+
5.4,3.4,1.5,0.3,Iris-setosa
|
| 339 |
+
4.7,3.2,1.5,0.2,Iris-setosa
|
| 340 |
+
5.0,3.5,1.5,0.4,Iris-setosa
|
| 341 |
+
5.1,3.5,1.5,0.2,Iris-setosa
|
| 342 |
+
4.6,3.4,1.5,0.3,Iris-setosa
|
| 343 |
+
5.0,3.5,1.5,0.3,Iris-setosa
|
| 344 |
+
4.9,3.0,1.5,0.2,Iris-setosa
|
| 345 |
+
4.9,3.0,1.5,0.2,Iris-setosa
|
| 346 |
+
4.7,3.4,1.5,0.3,Iris-setosa
|
| 347 |
+
5.1,3.7,1.5,0.4,Iris-setosa
|
| 348 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 349 |
+
5.1,3.5,1.5,0.3,Iris-setosa
|
| 350 |
+
5.2,3.4,1.5,0.2,Iris-setosa
|
| 351 |
+
5.4,3.4,1.3,0.3,Iris-setosa
|
| 352 |
+
5.0,3.6,1.5,0.2,Iris-setosa
|
| 353 |
+
5.1,3.5,1.5,0.2,Iris-setosa
|
| 354 |
+
4.8,3.4,1.6,0.2,Iris-setosa
|
| 355 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 356 |
+
5.1,3.5,1.5,0.2,Iris-setosa
|
| 357 |
+
5.0,3.5,1.3,0.3,Iris-setosa
|
| 358 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 359 |
+
5.4,3.5,1.3,0.2,Iris-setosa
|
| 360 |
+
5.4,3.5,1.5,0.2,Iris-setosa
|
| 361 |
+
4.4,3.1,1.3,0.1,Iris-setosa
|
| 362 |
+
5.2,3.7,1.5,0.3,Iris-setosa
|
| 363 |
+
5.1,3.4,1.5,0.2,Iris-setosa
|
| 364 |
+
5.3,3.7,1.5,0.3,Iris-setosa
|
| 365 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
| 366 |
+
5.4,3.4,1.5,0.2,Iris-setosa
|
| 367 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 368 |
+
4.7,3.2,1.5,0.2,Iris-setosa
|
| 369 |
+
4.9,3.0,1.5,0.2,Iris-setosa
|
| 370 |
+
5.3,3.9,1.8,0.4,Iris-setosa
|
| 371 |
+
5.2,4.0,1.5,0.1,Iris-setosa
|
| 372 |
+
4.7,3.2,1.5,0.2,Iris-setosa
|
| 373 |
+
5.0,3.5,1.3,0.4,Iris-setosa
|
| 374 |
+
4.4,3.2,1.3,0.2,Iris-setosa
|
| 375 |
+
5.5,3.5,1.3,0.2,Iris-setosa
|
| 376 |
+
4.4,3.1,1.3,0.2,Iris-setosa
|
| 377 |
+
4.4,2.9,1.5,0.2,Iris-setosa
|
| 378 |
+
5.4,3.4,1.6,0.2,Iris-setosa
|
| 379 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 380 |
+
5.1,3.6,1.5,0.2,Iris-setosa
|
| 381 |
+
4.7,3.2,1.3,0.2,Iris-setosa
|
| 382 |
+
5.3,4.0,1.3,0.3,Iris-setosa
|
| 383 |
+
4.9,3.0,1.5,0.2,Iris-setosa
|
| 384 |
+
4.4,3.0,1.3,0.1,Iris-setosa
|
| 385 |
+
4.9,3.0,1.5,0.1,Iris-setosa
|
| 386 |
+
4.6,3.2,1.3,0.2,Iris-setosa
|
| 387 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 388 |
+
5.1,3.3,1.6,0.5,Iris-setosa
|
| 389 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 390 |
+
5.2,3.8,1.8,0.4,Iris-setosa
|
| 391 |
+
5.0,3.4,1.5,0.3,Iris-setosa
|
| 392 |
+
5.0,3.4,1.5,0.2,Iris-setosa
|
| 393 |
+
4.7,3.2,1.3,0.2,Iris-setosa
|
| 394 |
+
5.2,3.4,1.5,0.3,Iris-setosa
|
| 395 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 396 |
+
4.8,3.0,1.5,0.1,Iris-setosa
|
| 397 |
+
5.2,3.4,1.5,0.2,Iris-setosa
|
| 398 |
+
4.7,3.2,1.5,0.2,Iris-setosa
|
| 399 |
+
5.0,3.4,1.5,0.2,Iris-setosa
|
| 400 |
+
5.7,4.4,1.5,0.4,Iris-setosa
|
| 401 |
+
5.1,3.6,1.5,0.4,Iris-setosa
|
| 402 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 403 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 404 |
+
4.8,3.1,1.5,0.3,Iris-setosa
|
| 405 |
+
4.8,3.1,1.5,0.2,Iris-setosa
|
| 406 |
+
4.6,3.0,1.5,0.3,Iris-setosa
|
| 407 |
+
4.9,3.1,1.3,0.1,Iris-setosa
|
| 408 |
+
5.1,3.8,1.6,0.4,Iris-setosa
|
| 409 |
+
5.1,3.5,1.5,0.3,Iris-setosa
|
| 410 |
+
5.0,3.5,1.3,0.4,Iris-setosa
|
| 411 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
| 412 |
+
5.0,3.4,1.5,0.2,Iris-setosa
|
| 413 |
+
4.6,3.4,1.5,0.3,Iris-setosa
|
| 414 |
+
5.0,3.4,1.5,0.4,Iris-setosa
|
| 415 |
+
5.0,3.5,1.3,0.3,Iris-setosa
|
| 416 |
+
5.1,3.4,1.5,0.2,Iris-setosa
|
| 417 |
+
5.1,3.3,1.5,0.2,Iris-setosa
|
| 418 |
+
4.9,3.1,1.6,0.2,Iris-setosa
|
| 419 |
+
4.4,3.0,1.3,0.2,Iris-setosa
|
| 420 |
+
5.3,3.5,1.3,0.2,Iris-setosa
|
| 421 |
+
5.3,3.9,1.5,0.3,Iris-setosa
|
| 422 |
+
4.7,3.2,1.3,0.2,Iris-setosa
|
| 423 |
+
5.1,3.4,1.5,0.2,Iris-setosa
|
| 424 |
+
5.1,3.5,1.5,0.2,Iris-setosa
|
| 425 |
+
4.9,3.1,1.3,0.1,Iris-setosa
|
| 426 |
+
4.9,3.4,1.5,0.2,Iris-setosa
|
| 427 |
+
5.1,3.9,1.6,0.2,Iris-setosa
|
| 428 |
+
5.3,4.0,1.6,0.2,Iris-setosa
|
| 429 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 430 |
+
5.1,3.7,1.5,0.4,Iris-setosa
|
| 431 |
+
5.2,4.1,1.5,0.1,Iris-setosa
|
| 432 |
+
5.0,3.2,1.1,0.2,Iris-setosa
|
| 433 |
+
5.4,4.2,1.5,0.2,Iris-setosa
|
| 434 |
+
5.4,4.2,1.5,0.2,Iris-setosa
|
| 435 |
+
5.6,4.4,1.5,0.4,Iris-setosa
|
| 436 |
+
5.0,3.4,1.6,0.4,Iris-setosa
|
| 437 |
+
5.6,3.8,1.6,0.3,Iris-setosa
|
| 438 |
+
5.1,3.7,1.5,0.4,Iris-setosa
|
| 439 |
+
5.4,4.2,1.5,0.1,Iris-setosa
|
| 440 |
+
5.1,3.4,1.5,0.3,Iris-setosa
|
| 441 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 442 |
+
5.0,3.5,1.6,0.6,Iris-setosa
|
| 443 |
+
4.4,3.2,1.3,0.2,Iris-setosa
|
| 444 |
+
5.0,3.4,1.5,0.2,Iris-setosa
|
| 445 |
+
5.0,3.4,1.5,0.2,Iris-setosa
|
| 446 |
+
5.4,3.9,1.5,0.4,Iris-setosa
|
| 447 |
+
5.0,3.2,1.3,0.2,Iris-setosa
|
| 448 |
+
5.0,3.4,1.6,0.4,Iris-setosa
|
| 449 |
+
4.4,2.6,1.3,0.3,Iris-setosa
|
| 450 |
+
5.3,3.9,1.5,0.3,Iris-setosa
|
| 451 |
+
5.4,3.4,1.6,0.2,Iris-setosa
|
| 452 |
+
5.0,3.2,1.1,0.2,Iris-setosa
|
| 453 |
+
5.7,3.8,1.6,0.3,Iris-setosa
|
| 454 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
| 455 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 456 |
+
5.0,3.5,1.3,0.3,Iris-setosa
|
| 457 |
+
4.4,3.2,1.3,0.2,Iris-setosa
|
| 458 |
+
4.9,3.6,1.3,0.2,Iris-setosa
|
| 459 |
+
4.7,3.2,1.3,0.2,Iris-setosa
|
| 460 |
+
5.1,3.6,1.5,0.2,Iris-setosa
|
| 461 |
+
5.2,3.7,1.5,0.3,Iris-setosa
|
| 462 |
+
4.7,3.5,1.3,0.2,Iris-setosa
|
| 463 |
+
5.4,3.9,1.6,0.4,Iris-setosa
|
| 464 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
| 465 |
+
5.1,3.8,1.6,0.4,Iris-setosa
|
| 466 |
+
5.4,3.9,1.3,0.4,Iris-setosa
|
| 467 |
+
5.1,3.5,1.5,0.4,Iris-setosa
|
| 468 |
+
5.0,3.4,1.6,0.5,Iris-setosa
|
| 469 |
+
5.1,3.4,1.5,0.2,Iris-setosa
|
| 470 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 471 |
+
4.8,3.0,1.5,0.3,Iris-setosa
|
| 472 |
+
4.4,3.1,1.1,0.1,Iris-setosa
|
| 473 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
| 474 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 475 |
+
5.2,3.4,1.5,0.2,Iris-setosa
|
| 476 |
+
5.2,3.5,1.5,0.2,Iris-setosa
|
| 477 |
+
5.5,3.5,1.3,0.2,Iris-setosa
|
| 478 |
+
5.7,4.0,1.3,0.2,Iris-setosa
|
| 479 |
+
5.2,3.4,1.5,0.3,Iris-setosa
|
| 480 |
+
4.6,3.5,1.3,0.3,Iris-setosa
|
| 481 |
+
5.2,3.5,1.5,0.2,Iris-setosa
|
| 482 |
+
5.1,3.4,1.5,0.2,Iris-setosa
|
| 483 |
+
5.1,3.5,1.5,0.3,Iris-setosa
|
| 484 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 485 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 486 |
+
5.6,4.0,1.5,0.3,Iris-setosa
|
| 487 |
+
4.9,3.4,1.6,0.3,Iris-setosa
|
| 488 |
+
5.1,3.7,1.5,0.4,Iris-setosa
|
| 489 |
+
5.1,3.8,1.5,0.3,Iris-setosa
|
| 490 |
+
5.1,3.4,1.5,0.2,Iris-setosa
|
| 491 |
+
4.9,3.4,1.6,0.2,Iris-setosa
|
| 492 |
+
5.1,3.5,1.5,0.2,Iris-setosa
|
| 493 |
+
5.1,3.3,1.5,0.2,Iris-setosa
|
| 494 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 495 |
+
4.7,3.2,1.3,0.2,Iris-setosa
|
| 496 |
+
5.2,3.5,1.5,0.2,Iris-setosa
|
| 497 |
+
5.1,3.5,1.5,0.3,Iris-setosa
|
| 498 |
+
5.1,3.5,1.5,0.4,Iris-setosa
|
| 499 |
+
5.4,4.0,1.6,0.4,Iris-setosa
|
| 500 |
+
5.1,3.8,1.6,0.4,Iris-setosa
|
| 501 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
| 502 |
+
4.7,3.2,1.3,0.2,Iris-setosa
|
| 503 |
+
5.2,3.4,1.5,0.2,Iris-setosa
|
| 504 |
+
4.8,3.1,1.6,0.2,Iris-setosa
|
| 505 |
+
5.2,4.0,1.5,0.1,Iris-setosa
|
| 506 |
+
4.9,3.0,1.5,0.2,Iris-setosa
|
| 507 |
+
5.3,3.7,1.6,0.2,Iris-setosa
|
| 508 |
+
5.7,4.4,1.5,0.4,Iris-setosa
|
| 509 |
+
4.4,3.2,1.3,0.2,Iris-setosa
|
| 510 |
+
5.1,3.5,1.5,0.3,Iris-setosa
|
| 511 |
+
4.9,3.1,1.6,0.1,Iris-setosa
|
| 512 |
+
4.9,3.4,1.6,0.4,Iris-setosa
|
| 513 |
+
5.8,3.9,1.5,0.3,Iris-setosa
|
| 514 |
+
5.2,3.8,1.8,0.4,Iris-setosa
|
| 515 |
+
5.2,3.4,1.5,0.2,Iris-setosa
|
| 516 |
+
5.1,3.3,1.6,0.5,Iris-setosa
|
| 517 |
+
4.6,3.4,1.5,0.3,Iris-setosa
|
| 518 |
+
4.8,3.0,1.5,0.1,Iris-setosa
|
| 519 |
+
4.9,3.0,1.5,0.2,Iris-setosa
|
| 520 |
+
5.3,3.8,1.5,0.4,Iris-setosa
|
| 521 |
+
4.8,3.1,1.6,0.2,Iris-setosa
|
| 522 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
| 523 |
+
4.4,2.9,1.5,0.2,Iris-setosa
|
| 524 |
+
4.4,3.0,1.3,0.2,Iris-setosa
|
| 525 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 526 |
+
5.7,3.8,1.6,0.3,Iris-setosa
|
| 527 |
+
5.7,4.1,1.3,0.2,Iris-setosa
|
| 528 |
+
5.1,3.7,1.5,0.4,Iris-setosa
|
| 529 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
| 530 |
+
5.4,3.4,1.5,0.4,Iris-setosa
|
| 531 |
+
5.1,3.7,1.5,0.3,Iris-setosa
|
| 532 |
+
5.1,3.5,1.5,0.3,Iris-setosa
|
| 533 |
+
5.8,4.0,1.3,0.2,Iris-setosa
|
| 534 |
+
5.2,3.8,1.5,0.3,Iris-setosa
|
| 535 |
+
4.4,3.0,1.3,0.2,Iris-setosa
|
| 536 |
+
5.3,4.2,1.5,0.1,Iris-setosa
|
| 537 |
+
4.8,3.1,1.6,0.2,Iris-setosa
|
| 538 |
+
5.0,3.2,1.1,0.2,Iris-setosa
|
| 539 |
+
5.5,4.3,1.5,0.3,Iris-setosa
|
| 540 |
+
5.1,3.8,1.5,0.3,Iris-setosa
|
| 541 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 542 |
+
5.4,3.9,1.5,0.4,Iris-setosa
|
| 543 |
+
5.1,3.8,1.6,0.4,Iris-setosa
|
| 544 |
+
5.0,3.2,1.3,0.2,Iris-setosa
|
| 545 |
+
4.8,3.0,1.5,0.1,Iris-setosa
|
| 546 |
+
4.8,3.0,1.5,0.1,Iris-setosa
|
| 547 |
+
5.6,4.4,1.5,0.4,Iris-setosa
|
| 548 |
+
4.8,3.0,1.3,0.1,Iris-setosa
|
| 549 |
+
5.1,3.5,1.5,0.2,Iris-setosa
|
| 550 |
+
5.1,3.7,1.5,0.4,Iris-setosa
|
| 551 |
+
5.4,3.4,1.5,0.4,Iris-setosa
|
| 552 |
+
4.7,3.2,1.3,0.2,Iris-setosa
|
| 553 |
+
4.8,3.1,1.6,0.2,Iris-setosa
|
| 554 |
+
5.1,3.8,1.5,0.3,Iris-setosa
|
| 555 |
+
4.5,2.9,1.5,0.2,Iris-setosa
|
| 556 |
+
4.4,3.2,1.3,0.2,Iris-setosa
|
| 557 |
+
5.4,3.4,1.6,0.2,Iris-setosa
|
| 558 |
+
4.6,3.4,1.3,0.3,Iris-setosa
|
| 559 |
+
5.5,3.7,1.6,0.3,Iris-setosa
|
| 560 |
+
5.0,3.4,1.6,0.4,Iris-setosa
|
| 561 |
+
5.1,3.4,1.5,0.2,Iris-setosa
|
| 562 |
+
5.5,3.7,1.6,0.2,Iris-setosa
|
| 563 |
+
5.3,4.0,1.3,0.3,Iris-setosa
|
| 564 |
+
5.1,3.8,1.5,0.3,Iris-setosa
|
| 565 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
| 566 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 567 |
+
5.2,3.7,1.8,0.3,Iris-setosa
|
| 568 |
+
5.1,3.8,1.5,0.3,Iris-setosa
|
| 569 |
+
5.7,3.8,1.6,0.3,Iris-setosa
|
| 570 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 571 |
+
5.0,3.5,1.3,0.3,Iris-setosa
|
| 572 |
+
4.6,3.2,1.3,0.2,Iris-setosa
|
| 573 |
+
4.9,3.6,1.3,0.2,Iris-setosa
|
| 574 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
| 575 |
+
5.6,4.0,1.5,0.3,Iris-setosa
|
| 576 |
+
5.1,3.5,1.5,0.2,Iris-setosa
|
| 577 |
+
5.5,3.9,1.5,0.4,Iris-setosa
|
| 578 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 579 |
+
4.9,3.4,1.6,0.3,Iris-setosa
|
| 580 |
+
5.0,3.6,1.5,0.2,Iris-setosa
|
| 581 |
+
5.2,3.8,1.5,0.3,Iris-setosa
|
| 582 |
+
4.6,3.3,1.5,0.3,Iris-setosa
|
| 583 |
+
5.1,3.5,1.5,0.3,Iris-setosa
|
| 584 |
+
4.4,3.1,1.3,0.2,Iris-setosa
|
| 585 |
+
4.7,3.2,1.5,0.2,Iris-setosa
|
| 586 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 587 |
+
5.1,3.5,1.5,0.2,Iris-setosa
|
| 588 |
+
5.1,3.8,1.6,0.2,Iris-setosa
|
| 589 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
| 590 |
+
5.3,3.4,1.6,0.2,Iris-setosa
|
| 591 |
+
4.7,3.4,1.5,0.3,Iris-setosa
|
| 592 |
+
5.0,3.5,1.5,0.3,Iris-setosa
|
| 593 |
+
5.0,3.0,1.6,0.2,Iris-setosa
|
| 594 |
+
4.8,3.0,1.5,0.1,Iris-setosa
|
| 595 |
+
5.0,3.5,1.3,0.3,Iris-setosa
|
| 596 |
+
5.2,3.4,1.5,0.2,Iris-setosa
|
| 597 |
+
5.0,3.4,1.6,0.4,Iris-setosa
|
| 598 |
+
5.1,3.4,1.5,0.3,Iris-setosa
|
| 599 |
+
5.1,3.6,1.5,0.2,Iris-setosa
|
| 600 |
+
5.1,3.5,1.5,0.3,Iris-setosa
|
| 601 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 602 |
+
5.1,3.5,1.5,0.2,Iris-setosa
|
| 603 |
+
4.7,3.5,1.3,0.2,Iris-setosa
|
| 604 |
+
4.8,3.1,1.5,0.1,Iris-setosa
|
| 605 |
+
5.0,3.6,1.5,0.2,Iris-setosa
|
| 606 |
+
4.8,3.6,1.1,0.2,Iris-setosa
|
| 607 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
| 608 |
+
5.3,3.4,1.5,0.3,Iris-setosa
|
| 609 |
+
4.6,3.3,1.5,0.3,Iris-setosa
|
| 610 |
+
4.8,3.1,1.5,0.2,Iris-setosa
|
| 611 |
+
5.1,3.5,1.5,0.4,Iris-setosa
|
| 612 |
+
5.0,3.4,1.5,0.3,Iris-setosa
|
| 613 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 614 |
+
5.3,3.8,1.5,0.4,Iris-setosa
|
| 615 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 616 |
+
5.4,3.4,1.3,0.3,Iris-setosa
|
| 617 |
+
5.0,3.6,1.5,0.2,Iris-setosa
|
| 618 |
+
5.5,4.2,1.5,0.2,Iris-setosa
|
| 619 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 620 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 621 |
+
4.8,3.0,1.5,0.2,Iris-setosa
|
| 622 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 623 |
+
4.8,3.4,1.6,0.2,Iris-setosa
|
| 624 |
+
5.2,3.8,1.6,0.2,Iris-setosa
|
| 625 |
+
5.3,4.1,1.5,0.1,Iris-setosa
|
| 626 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 627 |
+
5.3,3.5,1.3,0.2,Iris-setosa
|
| 628 |
+
4.5,3.2,1.3,0.2,Iris-setosa
|
| 629 |
+
5.5,3.9,1.6,0.4,Iris-setosa
|
| 630 |
+
5.3,3.9,1.8,0.4,Iris-setosa
|
| 631 |
+
5.1,3.4,1.5,0.4,Iris-setosa
|
| 632 |
+
4.9,3.0,1.5,0.1,Iris-setosa
|
| 633 |
+
4.9,3.1,1.6,0.2,Iris-setosa
|
| 634 |
+
5.1,3.5,1.5,0.2,Iris-setosa
|
| 635 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 636 |
+
4.5,3.1,1.5,0.2,Iris-setosa
|
| 637 |
+
5.3,3.4,1.5,0.3,Iris-setosa
|
| 638 |
+
4.8,3.1,1.5,0.2,Iris-setosa
|
| 639 |
+
5.2,3.8,1.6,0.2,Iris-setosa
|
| 640 |
+
4.9,3.0,1.5,0.1,Iris-setosa
|
| 641 |
+
5.5,3.5,1.3,0.2,Iris-setosa
|
| 642 |
+
4.8,3.1,1.6,0.2,Iris-setosa
|
| 643 |
+
5.0,3.0,1.6,0.2,Iris-setosa
|
| 644 |
+
5.0,3.4,1.6,0.4,Iris-setosa
|
| 645 |
+
5.2,3.4,1.5,0.2,Iris-setosa
|
| 646 |
+
4.6,3.2,1.5,0.2,Iris-setosa
|
| 647 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
| 648 |
+
5.1,3.5,1.5,0.4,Iris-setosa
|
| 649 |
+
4.5,3.1,1.5,0.2,Iris-setosa
|
| 650 |
+
5.0,3.4,1.6,0.5,Iris-setosa
|
| 651 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 652 |
+
5.1,3.8,1.6,0.2,Iris-setosa
|
| 653 |
+
4.7,2.8,1.3,0.3,Iris-setosa
|
| 654 |
+
5.4,4.2,1.5,0.1,Iris-setosa
|
| 655 |
+
4.6,3.4,1.5,0.3,Iris-setosa
|
| 656 |
+
4.4,3.2,1.3,0.2,Iris-setosa
|
| 657 |
+
5.0,3.4,1.5,0.4,Iris-setosa
|
| 658 |
+
5.8,4.0,1.3,0.2,Iris-setosa
|
| 659 |
+
5.3,3.4,1.6,0.2,Iris-setosa
|
| 660 |
+
4.6,3.3,1.5,0.3,Iris-setosa
|
| 661 |
+
5.0,3.4,1.6,0.4,Iris-setosa
|
| 662 |
+
5.3,3.7,1.6,0.3,Iris-setosa
|
| 663 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 664 |
+
4.4,3.2,1.3,0.2,Iris-setosa
|
| 665 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 666 |
+
4.7,3.2,1.5,0.2,Iris-setosa
|
| 667 |
+
5.0,3.6,1.5,0.2,Iris-setosa
|
| 668 |
+
4.6,3.4,1.5,0.3,Iris-setosa
|
| 669 |
+
4.6,3.6,0.9,0.2,Iris-setosa
|
| 670 |
+
4.7,3.0,1.5,0.1,Iris-setosa
|
| 671 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
| 672 |
+
5.4,4.2,1.5,0.1,Iris-setosa
|
| 673 |
+
5.1,3.5,1.5,0.3,Iris-setosa
|
| 674 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
| 675 |
+
4.8,3.0,1.5,0.2,Iris-setosa
|
| 676 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 677 |
+
4.8,3.0,1.5,0.3,Iris-setosa
|
| 678 |
+
4.8,3.1,1.5,0.2,Iris-setosa
|
| 679 |
+
4.7,3.0,1.5,0.1,Iris-setosa
|
| 680 |
+
5.1,3.6,1.5,0.2,Iris-setosa
|
| 681 |
+
5.2,3.8,1.5,0.3,Iris-setosa
|
| 682 |
+
4.8,3.0,1.5,0.1,Iris-setosa
|
| 683 |
+
5.1,3.7,1.5,0.4,Iris-setosa
|
| 684 |
+
4.9,3.0,1.5,0.1,Iris-setosa
|
| 685 |
+
5.2,3.7,1.5,0.3,Iris-setosa
|
| 686 |
+
5.7,4.4,1.5,0.4,Iris-setosa
|
| 687 |
+
5.2,4.0,1.5,0.1,Iris-setosa
|
| 688 |
+
5.0,3.6,1.5,0.5,Iris-setosa
|
| 689 |
+
5.7,4.1,1.3,0.2,Iris-setosa
|
| 690 |
+
5.1,3.4,1.5,0.2,Iris-setosa
|
| 691 |
+
4.6,3.5,1.3,0.3,Iris-setosa
|
| 692 |
+
5.1,3.5,1.5,0.2,Iris-setosa
|
| 693 |
+
4.9,3.1,1.3,0.1,Iris-setosa
|
| 694 |
+
4.4,3.1,1.3,0.2,Iris-setosa
|
| 695 |
+
5.0,3.3,1.3,0.2,Iris-setosa
|
| 696 |
+
5.2,3.4,1.5,0.2,Iris-setosa
|
| 697 |
+
4.5,3.2,1.3,0.2,Iris-setosa
|
| 698 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 699 |
+
5.1,3.5,1.5,0.3,Iris-setosa
|
| 700 |
+
4.6,3.2,1.5,0.2,Iris-setosa
|
| 701 |
+
4.7,3.2,1.3,0.2,Iris-setosa
|
| 702 |
+
4.9,3.0,1.5,0.1,Iris-setosa
|
| 703 |
+
4.9,3.0,1.5,0.2,Iris-setosa
|
| 704 |
+
5.0,3.4,1.5,0.4,Iris-setosa
|
| 705 |
+
5.3,3.5,1.3,0.2,Iris-setosa
|
| 706 |
+
4.6,2.5,1.3,0.3,Iris-setosa
|
| 707 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
| 708 |
+
4.4,2.9,1.5,0.2,Iris-setosa
|
| 709 |
+
5.0,3.2,1.3,0.2,Iris-setosa
|
| 710 |
+
5.0,3.4,1.5,0.4,Iris-setosa
|
| 711 |
+
5.0,3.5,1.3,0.3,Iris-setosa
|
| 712 |
+
4.6,3.5,1.1,0.2,Iris-setosa
|
| 713 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 714 |
+
4.4,3.2,1.3,0.2,Iris-setosa
|
| 715 |
+
4.8,3.0,1.5,0.1,Iris-setosa
|
| 716 |
+
5.1,3.5,1.5,0.4,Iris-setosa
|
| 717 |
+
5.1,3.7,1.5,0.4,Iris-setosa
|
| 718 |
+
4.8,3.4,1.6,0.2,Iris-setosa
|
| 719 |
+
5.1,3.5,1.5,0.3,Iris-setosa
|
| 720 |
+
5.2,3.5,1.5,0.2,Iris-setosa
|
| 721 |
+
4.9,3.4,1.6,0.2,Iris-setosa
|
| 722 |
+
5.1,3.8,1.5,0.3,Iris-setosa
|
| 723 |
+
5.2,3.7,1.6,0.3,Iris-setosa
|
| 724 |
+
5.4,3.4,1.5,0.4,Iris-setosa
|
| 725 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 726 |
+
5.1,3.8,1.5,0.3,Iris-setosa
|
| 727 |
+
5.5,3.9,1.5,0.4,Iris-setosa
|
| 728 |
+
4.9,3.4,1.5,0.2,Iris-setosa
|
| 729 |
+
5.4,3.9,1.5,0.4,Iris-setosa
|
| 730 |
+
4.6,3.4,1.5,0.3,Iris-setosa
|
| 731 |
+
5.3,3.5,1.5,0.2,Iris-setosa
|
| 732 |
+
4.9,3.0,1.5,0.2,Iris-setosa
|
| 733 |
+
4.9,3.0,1.5,0.2,Iris-setosa
|
| 734 |
+
5.2,3.4,1.5,0.2,Iris-setosa
|
| 735 |
+
5.1,3.4,1.5,0.2,Iris-setosa
|
| 736 |
+
5.1,3.8,1.8,0.4,Iris-setosa
|
| 737 |
+
5.3,4.2,1.5,0.1,Iris-setosa
|
| 738 |
+
4.6,3.3,1.5,0.3,Iris-setosa
|
| 739 |
+
4.8,3.6,1.1,0.2,Iris-setosa
|
| 740 |
+
4.9,3.0,1.5,0.1,Iris-setosa
|
| 741 |
+
4.9,3.0,1.5,0.2,Iris-setosa
|
| 742 |
+
5.1,3.5,1.5,0.2,Iris-setosa
|
| 743 |
+
4.6,3.2,1.3,0.2,Iris-setosa
|
| 744 |
+
4.8,3.6,1.1,0.2,Iris-setosa
|
| 745 |
+
5.0,3.5,1.3,0.3,Iris-setosa
|
| 746 |
+
5.2,3.4,1.5,0.3,Iris-setosa
|
| 747 |
+
5.0,3.3,1.5,0.2,Iris-setosa
|
| 748 |
+
5.3,3.9,1.5,0.3,Iris-setosa
|
| 749 |
+
4.4,2.9,1.5,0.2,Iris-setosa
|
| 750 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 751 |
+
5.3,3.4,1.6,0.2,Iris-setosa
|
| 752 |
+
4.4,3.0,1.3,0.1,Iris-setosa
|
| 753 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 754 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 755 |
+
5.4,3.9,1.6,0.4,Iris-setosa
|
| 756 |
+
5.0,3.6,1.5,0.5,Iris-setosa
|
| 757 |
+
4.9,3.0,1.5,0.2,Iris-setosa
|
| 758 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 759 |
+
4.6,3.4,1.5,0.3,Iris-setosa
|
| 760 |
+
5.1,3.8,1.6,0.2,Iris-setosa
|
| 761 |
+
4.9,3.1,1.6,0.2,Iris-setosa
|
| 762 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 763 |
+
4.5,3.2,1.3,0.2,Iris-setosa
|
| 764 |
+
5.1,3.5,1.5,0.3,Iris-setosa
|
| 765 |
+
5.1,3.4,1.5,0.2,Iris-setosa
|
| 766 |
+
5.0,3.3,1.3,0.2,Iris-setosa
|
| 767 |
+
5.5,3.5,1.3,0.2,Iris-setosa
|
| 768 |
+
5.4,3.9,1.3,0.4,Iris-setosa
|
| 769 |
+
5.1,3.8,1.6,0.3,Iris-setosa
|
| 770 |
+
4.4,3.2,1.3,0.2,Iris-setosa
|
| 771 |
+
5.8,4.0,1.3,0.2,Iris-setosa
|
| 772 |
+
4.9,3.0,1.5,0.2,Iris-setosa
|
| 773 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 774 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
| 775 |
+
5.1,3.7,1.6,0.4,Iris-setosa
|
| 776 |
+
5.4,3.4,1.6,0.2,Iris-setosa
|
| 777 |
+
5.7,3.8,1.6,0.3,Iris-setosa
|
| 778 |
+
4.7,3.2,1.5,0.2,Iris-setosa
|
| 779 |
+
4.4,3.1,1.3,0.2,Iris-setosa
|
| 780 |
+
4.4,3.0,1.3,0.1,Iris-setosa
|
| 781 |
+
5.4,4.0,1.5,0.1,Iris-setosa
|
| 782 |
+
5.0,3.3,1.5,0.2,Iris-setosa
|
| 783 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 784 |
+
5.1,3.7,1.5,0.4,Iris-setosa
|
| 785 |
+
4.6,3.1,1.5,0.2,Iris-setosa
|
| 786 |
+
5.7,3.8,1.6,0.3,Iris-setosa
|
| 787 |
+
5.3,3.4,1.5,0.2,Iris-setosa
|
| 788 |
+
4.4,3.2,1.3,0.2,Iris-setosa
|
| 789 |
+
4.7,3.2,1.3,0.2,Iris-setosa
|
| 790 |
+
5.1,3.5,1.5,0.4,Iris-setosa
|
| 791 |
+
5.4,3.4,1.6,0.2,Iris-setosa
|
| 792 |
+
5.1,3.4,1.5,0.3,Iris-setosa
|
| 793 |
+
5.5,3.5,1.3,0.2,Iris-setosa
|
| 794 |
+
5.4,3.9,1.6,0.4,Iris-setosa
|
| 795 |
+
5.3,4.0,1.6,0.2,Iris-setosa
|
| 796 |
+
5.2,4.0,1.5,0.1,Iris-setosa
|
| 797 |
+
4.4,3.1,1.1,0.1,Iris-setosa
|
| 798 |
+
5.4,4.0,1.6,0.4,Iris-setosa
|
| 799 |
+
4.8,3.1,1.6,0.2,Iris-setosa
|
| 800 |
+
5.0,3.3,1.3,0.2,Iris-setosa
|
| 801 |
+
4.6,3.4,1.5,0.3,Iris-setosa
|
| 802 |
+
4.4,3.0,1.3,0.2,Iris-setosa
|
| 803 |
+
4.8,3.1,1.6,0.2,Iris-setosa
|
| 804 |
+
5.3,3.7,1.5,0.3,Iris-setosa
|
| 805 |
+
5.5,3.9,1.6,0.4,Iris-setosa
|
| 806 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 807 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 808 |
+
4.7,3.2,1.3,0.2,Iris-setosa
|
| 809 |
+
4.8,3.4,1.8,0.2,Iris-setosa
|
| 810 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 811 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 812 |
+
5.2,3.5,1.5,0.2,Iris-setosa
|
| 813 |
+
5.1,3.4,1.5,0.2,Iris-setosa
|
| 814 |
+
4.9,3.4,1.6,0.2,Iris-setosa
|
| 815 |
+
5.0,3.5,1.3,0.3,Iris-setosa
|
| 816 |
+
5.3,3.7,1.5,0.3,Iris-setosa
|
| 817 |
+
5.4,3.9,1.5,0.4,Iris-setosa
|
| 818 |
+
4.4,3.0,1.3,0.2,Iris-setosa
|
| 819 |
+
5.0,3.5,1.3,0.3,Iris-setosa
|
| 820 |
+
4.5,2.4,1.3,0.3,Iris-setosa
|
| 821 |
+
4.5,2.3,1.3,0.3,Iris-setosa
|
| 822 |
+
4.7,3.2,1.3,0.2,Iris-setosa
|
| 823 |
+
4.9,3.0,1.5,0.2,Iris-setosa
|
| 824 |
+
5.3,3.5,1.3,0.2,Iris-setosa
|
| 825 |
+
4.8,3.0,1.5,0.3,Iris-setosa
|
| 826 |
+
5.5,4.2,1.5,0.2,Iris-setosa
|
| 827 |
+
4.4,2.6,1.3,0.2,Iris-setosa
|
| 828 |
+
5.0,3.4,1.5,0.2,Iris-setosa
|
| 829 |
+
5.0,3.4,1.5,0.2,Iris-setosa
|
| 830 |
+
4.6,3.1,1.5,0.2,Iris-setosa
|
| 831 |
+
5.1,3.5,1.5,0.3,Iris-setosa
|
| 832 |
+
5.2,3.5,1.5,0.2,Iris-setosa
|
| 833 |
+
5.0,3.5,1.3,0.3,Iris-setosa
|
| 834 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 835 |
+
4.9,3.5,1.3,0.2,Iris-setosa
|
| 836 |
+
4.4,2.9,1.5,0.2,Iris-setosa
|
| 837 |
+
5.1,3.5,1.5,0.3,Iris-setosa
|
| 838 |
+
5.4,4.2,1.5,0.1,Iris-setosa
|
| 839 |
+
4.9,3.0,1.5,0.3,Iris-setosa
|
| 840 |
+
5.0,3.5,1.5,0.5,Iris-setosa
|
| 841 |
+
5.1,3.8,1.5,0.3,Iris-setosa
|
| 842 |
+
5.0,3.5,1.6,0.6,Iris-setosa
|
| 843 |
+
5.0,3.4,1.5,0.2,Iris-setosa
|
| 844 |
+
4.9,3.4,1.8,0.2,Iris-setosa
|
| 845 |
+
5.1,3.3,1.6,0.4,Iris-setosa
|
| 846 |
+
4.6,3.5,1.1,0.2,Iris-setosa
|
| 847 |
+
5.0,3.6,1.5,0.2,Iris-setosa
|
| 848 |
+
5.3,3.8,1.5,0.4,Iris-setosa
|
| 849 |
+
5.1,3.5,1.5,0.2,Iris-setosa
|
| 850 |
+
5.1,3.4,1.5,0.2,Iris-setosa
|
| 851 |
+
5.5,4.2,1.5,0.2,Iris-setosa
|
| 852 |
+
5.3,3.9,1.6,0.4,Iris-setosa
|
| 853 |
+
4.9,3.4,1.8,0.3,Iris-setosa
|
| 854 |
+
5.2,3.4,1.5,0.2,Iris-setosa
|
| 855 |
+
4.6,2.5,1.3,0.3,Iris-setosa
|
| 856 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 857 |
+
4.9,3.0,1.5,0.2,Iris-setosa
|
| 858 |
+
4.8,3.4,1.6,0.2,Iris-setosa
|
| 859 |
+
5.7,3.8,1.6,0.3,Iris-setosa
|
| 860 |
+
4.4,3.2,1.3,0.2,Iris-setosa
|
| 861 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 862 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 863 |
+
5.1,3.4,1.5,0.2,Iris-setosa
|
| 864 |
+
5.1,3.5,1.5,0.3,Iris-setosa
|
| 865 |
+
5.4,3.4,1.5,0.3,Iris-setosa
|
| 866 |
+
4.9,3.5,1.3,0.3,Iris-setosa
|
| 867 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 868 |
+
4.8,3.1,1.6,0.2,Iris-setosa
|
| 869 |
+
4.7,3.4,1.5,0.3,Iris-setosa
|
| 870 |
+
5.1,3.8,1.5,0.3,Iris-setosa
|
| 871 |
+
5.0,3.4,1.5,0.2,Iris-setosa
|
| 872 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 873 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 874 |
+
4.7,3.5,1.3,0.2,Iris-setosa
|
| 875 |
+
5.1,3.5,1.5,0.4,Iris-setosa
|
| 876 |
+
5.3,4.0,1.5,0.1,Iris-setosa
|
| 877 |
+
5.7,3.8,1.6,0.3,Iris-setosa
|
| 878 |
+
5.3,3.9,1.3,0.4,Iris-setosa
|
| 879 |
+
5.4,4.0,1.6,0.4,Iris-setosa
|
| 880 |
+
5.1,3.5,1.5,0.3,Iris-setosa
|
| 881 |
+
4.9,3.2,1.3,0.2,Iris-setosa
|
| 882 |
+
4.4,3.2,1.3,0.2,Iris-setosa
|
| 883 |
+
4.4,3.0,1.3,0.2,Iris-setosa
|
| 884 |
+
4.6,3.5,1.3,0.3,Iris-setosa
|
| 885 |
+
5.0,3.6,1.5,0.2,Iris-setosa
|
| 886 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 887 |
+
5.1,3.3,1.6,0.4,Iris-setosa
|
| 888 |
+
5.4,3.4,1.5,0.4,Iris-setosa
|
| 889 |
+
5.0,3.4,1.6,0.5,Iris-setosa
|
| 890 |
+
4.8,3.4,1.6,0.2,Iris-setosa
|
| 891 |
+
5.0,3.6,1.5,0.2,Iris-setosa
|
| 892 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 893 |
+
5.0,3.5,1.3,0.3,Iris-setosa
|
| 894 |
+
4.6,2.5,1.3,0.3,Iris-setosa
|
| 895 |
+
4.9,3.6,1.3,0.2,Iris-setosa
|
| 896 |
+
5.2,3.5,1.5,0.2,Iris-setosa
|
| 897 |
+
4.4,3.1,1.3,0.2,Iris-setosa
|
| 898 |
+
4.9,3.0,1.5,0.2,Iris-setosa
|
| 899 |
+
5.1,3.5,1.5,0.2,Iris-setosa
|
| 900 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
| 901 |
+
4.7,3.2,1.6,0.2,Iris-setosa
|
| 902 |
+
5.0,3.5,1.5,0.5,Iris-setosa
|
| 903 |
+
5.1,3.4,1.5,0.2,Iris-setosa
|
| 904 |
+
4.7,3.4,1.5,0.3,Iris-setosa
|
| 905 |
+
5.1,3.7,1.5,0.4,Iris-setosa
|
| 906 |
+
4.8,3.1,1.6,0.2,Iris-setosa
|
| 907 |
+
5.1,3.8,1.6,0.3,Iris-setosa
|
| 908 |
+
4.7,3.6,1.1,0.2,Iris-setosa
|
| 909 |
+
5.3,3.9,1.6,0.3,Iris-setosa
|
| 910 |
+
4.9,3.0,1.5,0.2,Iris-setosa
|
| 911 |
+
5.0,3.5,1.6,0.6,Iris-setosa
|
| 912 |
+
4.8,3.1,1.5,0.2,Iris-setosa
|
| 913 |
+
5.4,3.9,1.6,0.4,Iris-setosa
|
| 914 |
+
5.0,3.6,1.5,0.2,Iris-setosa
|
| 915 |
+
4.8,3.0,1.5,0.1,Iris-setosa
|
| 916 |
+
5.5,4.3,1.5,0.3,Iris-setosa
|
| 917 |
+
4.7,3.2,1.5,0.2,Iris-setosa
|
| 918 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 919 |
+
4.9,3.6,1.3,0.2,Iris-setosa
|
| 920 |
+
5.0,3.4,1.5,0.2,Iris-setosa
|
| 921 |
+
4.5,2.9,1.5,0.1,Iris-setosa
|
| 922 |
+
4.9,3.1,1.6,0.2,Iris-setosa
|
| 923 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 924 |
+
4.8,3.0,1.5,0.2,Iris-setosa
|
| 925 |
+
5.6,3.8,1.6,0.4,Iris-setosa
|
| 926 |
+
5.1,3.4,1.5,0.2,Iris-setosa
|
| 927 |
+
5.0,3.6,1.5,0.2,Iris-setosa
|
| 928 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 929 |
+
5.0,3.4,1.5,0.2,Iris-setosa
|
| 930 |
+
5.1,3.6,1.5,0.2,Iris-setosa
|
| 931 |
+
5.3,3.4,1.5,0.3,Iris-setosa
|
| 932 |
+
5.3,3.4,1.6,0.2,Iris-setosa
|
| 933 |
+
5.2,3.5,1.5,0.2,Iris-setosa
|
| 934 |
+
5.1,3.8,1.6,0.2,Iris-setosa
|
| 935 |
+
5.4,3.4,1.6,0.2,Iris-setosa
|
| 936 |
+
5.2,3.7,1.8,0.3,Iris-setosa
|
| 937 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
| 938 |
+
5.1,3.5,1.5,0.2,Iris-setosa
|
| 939 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 940 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 941 |
+
4.4,3.1,1.1,0.1,Iris-setosa
|
| 942 |
+
5.1,3.8,1.6,0.4,Iris-setosa
|
| 943 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 944 |
+
4.7,3.2,1.3,0.2,Iris-setosa
|
| 945 |
+
5.0,3.0,1.6,0.2,Iris-setosa
|
| 946 |
+
4.8,3.0,1.3,0.1,Iris-setosa
|
| 947 |
+
4.8,3.4,1.6,0.2,Iris-setosa
|
| 948 |
+
5.2,4.1,1.5,0.1,Iris-setosa
|
| 949 |
+
4.8,3.4,1.6,0.2,Iris-setosa
|
| 950 |
+
5.3,3.4,1.3,0.2,Iris-setosa
|
| 951 |
+
5.0,3.3,1.3,0.2,Iris-setosa
|
| 952 |
+
5.0,3.4,1.5,0.2,Iris-setosa
|
| 953 |
+
4.7,3.2,1.3,0.2,Iris-setosa
|
| 954 |
+
5.1,3.5,1.5,0.3,Iris-setosa
|
| 955 |
+
4.8,3.0,1.5,0.1,Iris-setosa
|
| 956 |
+
5.1,3.5,1.5,0.3,Iris-setosa
|
| 957 |
+
5.4,3.4,1.5,0.4,Iris-setosa
|
| 958 |
+
4.4,3.1,1.1,0.1,Iris-setosa
|
| 959 |
+
5.0,3.4,1.5,0.2,Iris-setosa
|
| 960 |
+
5.2,3.7,1.5,0.3,Iris-setosa
|
| 961 |
+
5.0,3.5,1.5,0.5,Iris-setosa
|
| 962 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 963 |
+
4.9,3.4,1.5,0.2,Iris-setosa
|
| 964 |
+
4.8,3.4,1.6,0.2,Iris-setosa
|
| 965 |
+
5.5,3.7,1.6,0.3,Iris-setosa
|
| 966 |
+
5.2,3.7,1.5,0.2,Iris-setosa
|
| 967 |
+
4.7,3.2,1.3,0.2,Iris-setosa
|
| 968 |
+
5.1,3.7,1.6,0.4,Iris-setosa
|
| 969 |
+
5.1,3.5,1.5,0.2,Iris-setosa
|
| 970 |
+
4.4,3.0,1.3,0.1,Iris-setosa
|
| 971 |
+
5.0,3.5,1.3,0.3,Iris-setosa
|
| 972 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 973 |
+
5.1,3.5,1.5,0.2,Iris-setosa
|
| 974 |
+
5.7,4.4,1.5,0.4,Iris-setosa
|
| 975 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 976 |
+
4.5,2.9,1.5,0.2,Iris-setosa
|
| 977 |
+
5.1,3.8,1.8,0.4,Iris-setosa
|
| 978 |
+
4.9,3.4,1.6,0.2,Iris-setosa
|
| 979 |
+
4.9,3.0,1.5,0.2,Iris-setosa
|
| 980 |
+
5.0,3.3,1.5,0.2,Iris-setosa
|
| 981 |
+
4.4,3.0,1.1,0.1,Iris-setosa
|
| 982 |
+
5.1,3.5,1.5,0.2,Iris-setosa
|
| 983 |
+
5.0,3.2,1.3,0.2,Iris-setosa
|
| 984 |
+
5.1,3.5,1.3,0.2,Iris-setosa
|
| 985 |
+
5.1,3.5,1.5,0.2,Iris-setosa
|
| 986 |
+
4.8,3.1,1.6,0.2,Iris-setosa
|
| 987 |
+
4.7,3.5,1.3,0.2,Iris-setosa
|
| 988 |
+
5.1,3.8,1.5,0.3,Iris-setosa
|
| 989 |
+
5.5,4.2,1.5,0.2,Iris-setosa
|
| 990 |
+
4.8,3.4,1.8,0.2,Iris-setosa
|
| 991 |
+
5.6,4.4,1.5,0.4,Iris-setosa
|
| 992 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 993 |
+
4.9,3.4,1.5,0.2,Iris-setosa
|
| 994 |
+
5.0,3.4,1.5,0.2,Iris-setosa
|
| 995 |
+
5.1,3.7,1.5,0.3,Iris-setosa
|
| 996 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 997 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 998 |
+
5.3,3.9,1.6,0.3,Iris-setosa
|
| 999 |
+
5.4,3.4,1.6,0.2,Iris-setosa
|
| 1000 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 1001 |
+
4.9,3.0,1.5,0.3,Iris-setosa
|
| 1002 |
+
5.4,2.4,3.6,1.1,Iris-versicolor
|
| 1003 |
+
5.8,2.7,3.9,1.2,Iris-versicolor
|
| 1004 |
+
5.7,3.0,4.5,1.4,Iris-versicolor
|
| 1005 |
+
5.3,2.5,3.4,1.2,Iris-versicolor
|
| 1006 |
+
5.7,3.0,3.9,1.3,Iris-versicolor
|
| 1007 |
+
5.4,2.3,3.9,1.3,Iris-versicolor
|
| 1008 |
+
5.3,2.4,3.6,1.1,Iris-versicolor
|
| 1009 |
+
5.9,3.2,4.8,1.8,Iris-versicolor
|
| 1010 |
+
6.3,2.3,4.5,1.3,Iris-versicolor
|
| 1011 |
+
5.3,2.2,3.8,1.2,Iris-versicolor
|
| 1012 |
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
| 1013 |
+
4.9,2.4,3.2,1.0,Iris-versicolor
|
| 1014 |
+
5.5,3.0,4.5,1.5,Iris-versicolor
|
| 1015 |
+
5.6,3.0,4.5,1.4,Iris-versicolor
|
| 1016 |
+
5.3,2.7,3.9,1.4,Iris-versicolor
|
| 1017 |
+
6.2,2.9,4.6,1.4,Iris-versicolor
|
| 1018 |
+
5.0,2.1,3.4,1.0,Iris-versicolor
|
| 1019 |
+
6.1,3.0,4.6,1.4,Iris-versicolor
|
| 1020 |
+
6.2,3.0,4.5,1.4,Iris-versicolor
|
| 1021 |
+
5.8,3.0,4.3,1.5,Iris-versicolor
|
| 1022 |
+
6.5,2.9,4.5,1.3,Iris-versicolor
|
| 1023 |
+
5.5,2.4,3.9,1.1,Iris-versicolor
|
| 1024 |
+
5.1,2.5,3.1,1.1,Iris-versicolor
|
| 1025 |
+
6.7,3.1,4.5,1.4,Iris-versicolor
|
| 1026 |
+
5.7,3.0,4.1,1.2,Iris-versicolor
|
| 1027 |
+
6.8,3.1,4.6,1.4,Iris-versicolor
|
| 1028 |
+
4.9,2.4,3.2,1.0,Iris-versicolor
|
| 1029 |
+
5.7,2.5,3.9,1.3,Iris-versicolor
|
| 1030 |
+
5.4,3.0,4.5,1.5,Iris-versicolor
|
| 1031 |
+
6.2,2.8,4.5,1.3,Iris-versicolor
|
| 1032 |
+
5.7,3.0,4.5,1.4,Iris-versicolor
|
| 1033 |
+
5.8,2.8,4.1,1.3,Iris-versicolor
|
| 1034 |
+
5.8,2.6,3.9,1.2,Iris-versicolor
|
| 1035 |
+
5.6,2.5,3.9,1.1,Iris-versicolor
|
| 1036 |
+
6.1,2.8,3.9,1.3,Iris-versicolor
|
| 1037 |
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
| 1038 |
+
6.4,2.9,4.3,1.4,Iris-versicolor
|
| 1039 |
+
6.2,2.9,4.3,1.3,Iris-versicolor
|
| 1040 |
+
6.9,3.1,5.0,1.5,Iris-versicolor
|
| 1041 |
+
6.3,3.3,4.6,1.6,Iris-versicolor
|
| 1042 |
+
5.9,3.1,4.5,1.7,Iris-versicolor
|
| 1043 |
+
5.5,2.4,3.9,1.1,Iris-versicolor
|
| 1044 |
+
6.2,2.2,4.5,1.5,Iris-versicolor
|
| 1045 |
+
5.6,2.6,4.3,1.2,Iris-versicolor
|
| 1046 |
+
5.8,2.3,4.1,1.3,Iris-versicolor
|
| 1047 |
+
5.6,2.5,3.8,1.0,Iris-versicolor
|
| 1048 |
+
6.7,3.0,5.0,1.7,Iris-versicolor
|
| 1049 |
+
6.7,3.1,4.6,1.5,Iris-versicolor
|
| 1050 |
+
5.6,3.0,4.5,1.5,Iris-versicolor
|
| 1051 |
+
6.1,2.9,4.5,1.4,Iris-versicolor
|
| 1052 |
+
5.6,3.0,4.5,1.5,Iris-versicolor
|
| 1053 |
+
5.7,2.8,4.3,1.3,Iris-versicolor
|
| 1054 |
+
5.8,2.7,3.9,1.2,Iris-versicolor
|
| 1055 |
+
5.7,2.8,4.5,1.3,Iris-versicolor
|
| 1056 |
+
5.5,2.4,3.8,1.1,Iris-versicolor
|
| 1057 |
+
6.1,2.9,4.6,1.4,Iris-versicolor
|
| 1058 |
+
6.3,3.3,4.6,1.6,Iris-versicolor
|
| 1059 |
+
5.8,3.0,4.3,1.5,Iris-versicolor
|
| 1060 |
+
5.8,3.0,4.3,1.4,Iris-versicolor
|
| 1061 |
+
6.8,3.1,4.8,1.5,Iris-versicolor
|
| 1062 |
+
6.3,2.4,4.8,1.5,Iris-versicolor
|
| 1063 |
+
5.9,3.2,4.8,1.8,Iris-versicolor
|
| 1064 |
+
6.7,3.1,4.5,1.4,Iris-versicolor
|
| 1065 |
+
5.6,3.0,4.5,1.5,Iris-versicolor
|
| 1066 |
+
5.7,2.8,4.5,1.3,Iris-versicolor
|
| 1067 |
+
5.6,3.0,4.1,1.3,Iris-versicolor
|
| 1068 |
+
5.7,2.3,3.9,1.2,Iris-versicolor
|
| 1069 |
+
5.7,3.0,4.1,1.3,Iris-versicolor
|
| 1070 |
+
6.1,2.9,4.6,1.4,Iris-versicolor
|
| 1071 |
+
5.9,3.1,4.3,1.5,Iris-versicolor
|
| 1072 |
+
5.5,2.4,3.8,1.1,Iris-versicolor
|
| 1073 |
+
5.1,2.1,3.6,1.0,Iris-versicolor
|
| 1074 |
+
5.3,2.4,3.6,1.0,Iris-versicolor
|
| 1075 |
+
6.5,2.9,4.5,1.3,Iris-versicolor
|
| 1076 |
+
5.7,2.7,4.1,1.3,Iris-versicolor
|
| 1077 |
+
5.4,2.4,3.8,1.1,Iris-versicolor
|
| 1078 |
+
6.1,2.8,4.6,1.2,Iris-versicolor
|
| 1079 |
+
6.2,2.8,4.5,1.3,Iris-versicolor
|
| 1080 |
+
5.8,2.8,3.9,1.3,Iris-versicolor
|
| 1081 |
+
6.8,2.8,4.8,1.4,Iris-versicolor
|
| 1082 |
+
5.4,3.0,4.5,1.4,Iris-versicolor
|
| 1083 |
+
6.0,2.2,4.1,1.1,Iris-versicolor
|
| 1084 |
+
6.1,2.9,4.8,1.4,Iris-versicolor
|
| 1085 |
+
5.4,3.0,4.5,1.5,Iris-versicolor
|
| 1086 |
+
5.6,3.0,3.8,1.3,Iris-versicolor
|
| 1087 |
+
6.5,2.8,4.6,1.4,Iris-versicolor
|
| 1088 |
+
6.0,2.9,4.5,1.5,Iris-versicolor
|
| 1089 |
+
6.5,2.8,4.6,1.4,Iris-versicolor
|
| 1090 |
+
6.1,3.0,4.6,1.4,Iris-versicolor
|
| 1091 |
+
5.6,3.0,4.1,1.3,Iris-versicolor
|
| 1092 |
+
6.4,3.2,4.5,1.5,Iris-versicolor
|
| 1093 |
+
6.0,2.7,5.2,1.6,Iris-versicolor
|
| 1094 |
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
| 1095 |
+
6.8,2.8,4.8,1.4,Iris-versicolor
|
| 1096 |
+
5.8,2.6,3.8,1.1,Iris-versicolor
|
| 1097 |
+
5.8,2.6,3.9,1.2,Iris-versicolor
|
| 1098 |
+
6.3,2.5,4.8,1.5,Iris-versicolor
|
| 1099 |
+
5.8,2.6,4.1,1.2,Iris-versicolor
|
| 1100 |
+
5.5,2.5,3.9,1.3,Iris-versicolor
|
| 1101 |
+
6.1,2.9,4.6,1.4,Iris-versicolor
|
| 1102 |
+
6.5,2.8,4.6,1.5,Iris-versicolor
|
| 1103 |
+
6.3,2.3,4.5,1.3,Iris-versicolor
|
| 1104 |
+
6.6,2.9,4.6,1.3,Iris-versicolor
|
| 1105 |
+
5.6,3.0,4.5,1.5,Iris-versicolor
|
| 1106 |
+
5.5,2.5,3.9,1.3,Iris-versicolor
|
| 1107 |
+
6.7,3.1,4.6,1.5,Iris-versicolor
|
| 1108 |
+
5.5,2.4,3.8,1.0,Iris-versicolor
|
| 1109 |
+
6.9,3.1,4.8,1.5,Iris-versicolor
|
| 1110 |
+
5.3,2.5,3.4,1.2,Iris-versicolor
|
| 1111 |
+
6.2,3.0,4.5,1.4,Iris-versicolor
|
| 1112 |
+
5.9,3.2,4.8,1.8,Iris-versicolor
|
| 1113 |
+
5.6,2.5,3.9,1.1,Iris-versicolor
|
| 1114 |
+
5.5,2.4,3.8,1.0,Iris-versicolor
|
| 1115 |
+
5.5,2.5,4.3,1.3,Iris-versicolor
|
| 1116 |
+
5.6,3.0,4.1,1.3,Iris-versicolor
|
| 1117 |
+
5.8,2.6,3.8,1.1,Iris-versicolor
|
| 1118 |
+
6.3,3.3,4.6,1.6,Iris-versicolor
|
| 1119 |
+
6.0,3.2,4.8,1.7,Iris-versicolor
|
| 1120 |
+
5.8,2.7,4.1,1.0,Iris-versicolor
|
| 1121 |
+
5.7,2.9,3.8,1.3,Iris-versicolor
|
| 1122 |
+
6.1,2.2,4.1,1.2,Iris-versicolor
|
| 1123 |
+
5.8,2.7,3.9,1.2,Iris-versicolor
|
| 1124 |
+
6.8,3.1,4.8,1.5,Iris-versicolor
|
| 1125 |
+
5.6,3.0,4.1,1.4,Iris-versicolor
|
| 1126 |
+
6.1,2.9,4.6,1.4,Iris-versicolor
|
| 1127 |
+
5.0,2.3,3.2,1.0,Iris-versicolor
|
| 1128 |
+
5.8,2.6,3.9,1.1,Iris-versicolor
|
| 1129 |
+
6.6,2.9,4.6,1.4,Iris-versicolor
|
| 1130 |
+
5.5,2.6,4.5,1.2,Iris-versicolor
|
| 1131 |
+
6.8,3.1,4.6,1.4,Iris-versicolor
|
| 1132 |
+
5.6,2.9,3.6,1.3,Iris-versicolor
|
| 1133 |
+
5.8,2.3,4.1,1.3,Iris-versicolor
|
| 1134 |
+
5.8,2.7,3.9,1.0,Iris-versicolor
|
| 1135 |
+
6.2,2.9,4.3,1.3,Iris-versicolor
|
| 1136 |
+
5.7,3.0,4.1,1.3,Iris-versicolor
|
| 1137 |
+
6.0,2.2,4.1,1.1,Iris-versicolor
|
| 1138 |
+
6.7,3.1,4.5,1.4,Iris-versicolor
|
| 1139 |
+
5.5,3.0,4.3,1.4,Iris-versicolor
|
| 1140 |
+
5.8,3.0,4.3,1.5,Iris-versicolor
|
| 1141 |
+
6.0,2.9,4.3,1.4,Iris-versicolor
|
| 1142 |
+
5.8,2.8,3.8,1.3,Iris-versicolor
|
| 1143 |
+
7.0,3.2,4.6,1.4,Iris-versicolor
|
| 1144 |
+
5.7,2.7,4.1,1.3,Iris-versicolor
|
| 1145 |
+
6.1,2.9,4.6,1.4,Iris-versicolor
|
| 1146 |
+
5.0,2.4,3.4,1.0,Iris-versicolor
|
| 1147 |
+
5.5,2.4,3.8,1.1,Iris-versicolor
|
| 1148 |
+
4.9,2.4,3.2,1.0,Iris-versicolor
|
| 1149 |
+
6.4,2.9,4.3,1.4,Iris-versicolor
|
| 1150 |
+
5.8,2.7,3.9,1.2,Iris-versicolor
|
| 1151 |
+
5.4,3.0,4.5,1.5,Iris-versicolor
|
| 1152 |
+
5.7,2.9,4.3,1.3,Iris-versicolor
|
| 1153 |
+
5.7,2.9,4.1,1.3,Iris-versicolor
|
| 1154 |
+
5.5,2.6,4.5,1.2,Iris-versicolor
|
| 1155 |
+
6.7,3.0,5.0,1.7,Iris-versicolor
|
| 1156 |
+
5.7,2.7,4.1,1.3,Iris-versicolor
|
| 1157 |
+
5.6,2.9,3.8,1.3,Iris-versicolor
|
| 1158 |
+
5.8,2.6,3.6,1.0,Iris-versicolor
|
| 1159 |
+
5.8,2.7,4.1,1.0,Iris-versicolor
|
| 1160 |
+
5.5,3.0,4.3,1.4,Iris-versicolor
|
| 1161 |
+
5.8,2.7,3.9,1.2,Iris-versicolor
|
| 1162 |
+
6.2,2.9,4.3,1.3,Iris-versicolor
|
| 1163 |
+
5.8,2.6,3.9,1.1,Iris-versicolor
|
| 1164 |
+
6.0,2.9,4.5,1.4,Iris-versicolor
|
| 1165 |
+
6.8,3.1,4.6,1.4,Iris-versicolor
|
| 1166 |
+
7.0,3.2,4.8,1.4,Iris-versicolor
|
| 1167 |
+
6.1,2.8,4.6,1.2,Iris-versicolor
|
| 1168 |
+
6.1,2.3,4.3,1.3,Iris-versicolor
|
| 1169 |
+
5.4,3.0,4.5,1.5,Iris-versicolor
|
| 1170 |
+
6.1,3.0,4.6,1.4,Iris-versicolor
|
| 1171 |
+
6.3,2.2,4.5,1.4,Iris-versicolor
|
| 1172 |
+
6.9,3.2,4.6,1.4,Iris-versicolor
|
| 1173 |
+
6.4,2.6,4.8,1.5,Iris-versicolor
|
| 1174 |
+
5.6,2.5,3.6,1.0,Iris-versicolor
|
| 1175 |
+
5.2,2.4,3.6,1.0,Iris-versicolor
|
| 1176 |
+
5.0,2.0,3.6,1.0,Iris-versicolor
|
| 1177 |
+
6.1,2.9,4.8,1.4,Iris-versicolor
|
| 1178 |
+
5.9,3.2,4.8,1.8,Iris-versicolor
|
| 1179 |
+
6.1,2.8,4.1,1.4,Iris-versicolor
|
| 1180 |
+
5.5,2.4,3.6,1.0,Iris-versicolor
|
| 1181 |
+
6.5,2.8,4.6,1.5,Iris-versicolor
|
| 1182 |
+
5.7,3.1,4.6,1.7,Iris-versicolor
|
| 1183 |
+
5.8,2.6,3.9,1.1,Iris-versicolor
|
| 1184 |
+
5.3,2.7,3.9,1.4,Iris-versicolor
|
| 1185 |
+
6.6,3.1,4.6,1.5,Iris-versicolor
|
| 1186 |
+
6.1,2.8,4.8,1.5,Iris-versicolor
|
| 1187 |
+
5.8,2.8,3.9,1.3,Iris-versicolor
|
| 1188 |
+
5.6,3.0,4.3,1.4,Iris-versicolor
|
| 1189 |
+
6.9,3.1,4.8,1.4,Iris-versicolor
|
| 1190 |
+
5.6,2.9,3.6,1.3,Iris-versicolor
|
| 1191 |
+
6.0,3.4,4.5,1.6,Iris-versicolor
|
| 1192 |
+
5.6,2.4,3.8,1.0,Iris-versicolor
|
| 1193 |
+
6.0,2.9,4.6,1.5,Iris-versicolor
|
| 1194 |
+
6.1,2.9,4.6,1.4,Iris-versicolor
|
| 1195 |
+
6.5,3.1,4.6,1.5,Iris-versicolor
|
| 1196 |
+
5.6,3.0,4.1,1.3,Iris-versicolor
|
| 1197 |
+
6.2,2.9,4.3,1.4,Iris-versicolor
|
| 1198 |
+
5.7,2.9,4.3,1.4,Iris-versicolor
|
| 1199 |
+
5.7,2.7,4.1,1.2,Iris-versicolor
|
| 1200 |
+
6.3,3.3,4.6,1.6,Iris-versicolor
|
| 1201 |
+
6.0,2.3,4.3,1.3,Iris-versicolor
|
| 1202 |
+
6.8,3.0,5.0,1.7,Iris-versicolor
|
| 1203 |
+
6.5,2.8,4.6,1.5,Iris-versicolor
|
| 1204 |
+
5.8,3.0,4.3,1.4,Iris-versicolor
|
| 1205 |
+
6.0,2.9,4.5,1.4,Iris-versicolor
|
| 1206 |
+
5.7,2.9,4.1,1.3,Iris-versicolor
|
| 1207 |
+
6.0,3.2,4.8,1.7,Iris-versicolor
|
| 1208 |
+
6.4,2.8,4.5,1.4,Iris-versicolor
|
| 1209 |
+
5.5,2.4,3.9,1.2,Iris-versicolor
|
| 1210 |
+
5.3,2.2,3.6,1.0,Iris-versicolor
|
| 1211 |
+
6.0,3.4,4.5,1.6,Iris-versicolor
|
| 1212 |
+
5.8,2.6,4.1,1.2,Iris-versicolor
|
| 1213 |
+
5.8,2.6,3.8,1.1,Iris-versicolor
|
| 1214 |
+
5.7,3.0,4.1,1.3,Iris-versicolor
|
| 1215 |
+
6.1,2.8,4.1,1.3,Iris-versicolor
|
| 1216 |
+
5.6,2.3,3.9,1.3,Iris-versicolor
|
| 1217 |
+
6.3,2.9,4.3,1.3,Iris-versicolor
|
| 1218 |
+
5.7,2.7,4.1,1.3,Iris-versicolor
|
| 1219 |
+
5.9,3.0,4.3,1.5,Iris-versicolor
|
| 1220 |
+
6.2,2.2,4.5,1.5,Iris-versicolor
|
| 1221 |
+
5.4,2.4,3.6,1.0,Iris-versicolor
|
| 1222 |
+
6.8,3.1,4.6,1.4,Iris-versicolor
|
| 1223 |
+
5.9,3.0,4.3,1.5,Iris-versicolor
|
| 1224 |
+
5.6,2.5,3.9,1.1,Iris-versicolor
|
| 1225 |
+
5.7,2.7,4.1,1.3,Iris-versicolor
|
| 1226 |
+
6.7,3.0,5.0,1.7,Iris-versicolor
|
| 1227 |
+
5.8,3.0,4.1,1.4,Iris-versicolor
|
| 1228 |
+
6.5,2.8,4.6,1.5,Iris-versicolor
|
| 1229 |
+
5.7,2.7,4.1,1.3,Iris-versicolor
|
| 1230 |
+
5.9,3.2,4.8,1.7,Iris-versicolor
|
| 1231 |
+
5.6,3.0,4.5,1.5,Iris-versicolor
|
| 1232 |
+
5.5,3.0,4.5,1.5,Iris-versicolor
|
| 1233 |
+
6.1,2.8,4.1,1.3,Iris-versicolor
|
| 1234 |
+
5.6,3.0,4.1,1.3,Iris-versicolor
|
| 1235 |
+
5.2,2.3,3.4,1.0,Iris-versicolor
|
| 1236 |
+
6.7,3.1,4.6,1.5,Iris-versicolor
|
| 1237 |
+
5.7,2.9,4.1,1.3,Iris-versicolor
|
| 1238 |
+
6.7,3.1,4.6,1.5,Iris-versicolor
|
| 1239 |
+
5.6,3.0,4.5,1.5,Iris-versicolor
|
| 1240 |
+
5.5,2.4,3.8,1.1,Iris-versicolor
|
| 1241 |
+
5.8,2.6,3.8,1.0,Iris-versicolor
|
| 1242 |
+
5.7,2.9,4.1,1.3,Iris-versicolor
|
| 1243 |
+
5.6,3.0,4.5,1.5,Iris-versicolor
|
| 1244 |
+
5.4,2.4,3.8,1.1,Iris-versicolor
|
| 1245 |
+
5.7,2.7,4.1,1.3,Iris-versicolor
|
| 1246 |
+
5.7,2.6,3.6,1.0,Iris-versicolor
|
| 1247 |
+
6.7,3.0,5.0,1.7,Iris-versicolor
|
| 1248 |
+
6.8,3.1,4.8,1.5,Iris-versicolor
|
| 1249 |
+
4.9,2.4,3.2,1.0,Iris-versicolor
|
| 1250 |
+
5.6,2.5,3.8,1.0,Iris-versicolor
|
| 1251 |
+
6.2,3.0,4.5,1.4,Iris-versicolor
|
| 1252 |
+
5.3,2.4,3.4,1.1,Iris-versicolor
|
| 1253 |
+
6.7,3.1,4.6,1.4,Iris-versicolor
|
| 1254 |
+
6.3,2.3,4.6,1.5,Iris-versicolor
|
| 1255 |
+
5.7,2.9,4.1,1.3,Iris-versicolor
|
| 1256 |
+
5.6,3.0,4.5,1.5,Iris-versicolor
|
| 1257 |
+
6.8,3.1,4.8,1.5,Iris-versicolor
|
| 1258 |
+
5.7,2.9,4.3,1.3,Iris-versicolor
|
| 1259 |
+
5.4,3.0,4.5,1.5,Iris-versicolor
|
| 1260 |
+
6.2,3.0,4.5,1.4,Iris-versicolor
|
| 1261 |
+
6.7,3.1,4.6,1.5,Iris-versicolor
|
| 1262 |
+
6.2,2.2,4.5,1.5,Iris-versicolor
|
| 1263 |
+
6.1,3.0,4.5,1.4,Iris-versicolor
|
| 1264 |
+
6.1,2.9,4.6,1.4,Iris-versicolor
|
| 1265 |
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
| 1266 |
+
6.0,2.9,4.3,1.4,Iris-versicolor
|
| 1267 |
+
5.9,3.2,4.8,1.8,Iris-versicolor
|
| 1268 |
+
5.8,2.7,3.9,1.2,Iris-versicolor
|
| 1269 |
+
5.5,2.3,3.9,1.3,Iris-versicolor
|
| 1270 |
+
5.1,2.4,3.1,1.0,Iris-versicolor
|
| 1271 |
+
6.3,2.4,4.6,1.4,Iris-versicolor
|
| 1272 |
+
5.7,2.9,4.3,1.4,Iris-versicolor
|
| 1273 |
+
6.3,3.3,4.6,1.6,Iris-versicolor
|
| 1274 |
+
6.6,2.9,4.6,1.4,Iris-versicolor
|
| 1275 |
+
5.3,2.4,3.6,1.0,Iris-versicolor
|
| 1276 |
+
6.3,2.9,4.3,1.3,Iris-versicolor
|
| 1277 |
+
5.7,2.5,3.9,1.3,Iris-versicolor
|
| 1278 |
+
4.9,2.2,3.4,1.0,Iris-versicolor
|
| 1279 |
+
5.5,2.3,3.9,1.3,Iris-versicolor
|
| 1280 |
+
5.0,2.0,3.6,1.0,Iris-versicolor
|
| 1281 |
+
5.6,2.5,3.9,1.1,Iris-versicolor
|
| 1282 |
+
5.5,2.4,3.9,1.2,Iris-versicolor
|
| 1283 |
+
6.5,2.8,4.6,1.4,Iris-versicolor
|
| 1284 |
+
6.1,2.8,4.1,1.3,Iris-versicolor
|
| 1285 |
+
5.5,2.3,3.9,1.3,Iris-versicolor
|
| 1286 |
+
6.4,3.2,4.5,1.5,Iris-versicolor
|
| 1287 |
+
5.8,2.6,3.9,1.2,Iris-versicolor
|
| 1288 |
+
5.0,2.1,3.4,1.0,Iris-versicolor
|
| 1289 |
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
| 1290 |
+
5.6,2.5,3.9,1.1,Iris-versicolor
|
| 1291 |
+
6.3,3.3,4.6,1.6,Iris-versicolor
|
| 1292 |
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
| 1293 |
+
5.6,3.0,4.5,1.5,Iris-versicolor
|
| 1294 |
+
5.5,2.4,3.8,1.1,Iris-versicolor
|
| 1295 |
+
5.7,2.8,4.3,1.3,Iris-versicolor
|
| 1296 |
+
6.5,2.8,4.6,1.5,Iris-versicolor
|
| 1297 |
+
6.5,3.1,4.5,1.4,Iris-versicolor
|
| 1298 |
+
6.1,2.2,4.1,1.2,Iris-versicolor
|
| 1299 |
+
5.4,3.0,4.5,1.5,Iris-versicolor
|
| 1300 |
+
6.1,2.9,4.6,1.4,Iris-versicolor
|
| 1301 |
+
6.1,2.9,4.6,1.4,Iris-versicolor
|
| 1302 |
+
5.6,2.5,3.8,1.0,Iris-versicolor
|
| 1303 |
+
5.3,2.6,3.9,1.4,Iris-versicolor
|
| 1304 |
+
4.9,2.3,3.4,1.0,Iris-versicolor
|
| 1305 |
+
5.6,2.5,3.9,1.1,Iris-versicolor
|
| 1306 |
+
5.8,2.7,3.9,1.2,Iris-versicolor
|
| 1307 |
+
5.7,2.8,4.3,1.3,Iris-versicolor
|
| 1308 |
+
5.8,2.6,3.6,1.0,Iris-versicolor
|
| 1309 |
+
6.5,2.8,4.6,1.5,Iris-versicolor
|
| 1310 |
+
5.5,2.4,3.8,1.0,Iris-versicolor
|
| 1311 |
+
5.3,2.7,3.9,1.4,Iris-versicolor
|
| 1312 |
+
6.1,2.8,4.6,1.3,Iris-versicolor
|
| 1313 |
+
5.7,2.8,3.6,1.3,Iris-versicolor
|
| 1314 |
+
6.6,2.9,4.8,1.6,Iris-versicolor
|
| 1315 |
+
6.5,3.1,4.5,1.4,Iris-versicolor
|
| 1316 |
+
5.9,2.7,5.0,1.6,Iris-versicolor
|
| 1317 |
+
6.8,3.1,5.0,1.7,Iris-versicolor
|
| 1318 |
+
5.5,2.4,3.9,1.2,Iris-versicolor
|
| 1319 |
+
6.3,2.9,4.3,1.3,Iris-versicolor
|
| 1320 |
+
5.5,2.4,3.9,1.1,Iris-versicolor
|
| 1321 |
+
6.0,3.4,4.5,1.6,Iris-versicolor
|
| 1322 |
+
5.3,2.2,3.6,1.0,Iris-versicolor
|
| 1323 |
+
6.0,3.4,4.5,1.6,Iris-versicolor
|
| 1324 |
+
5.6,2.9,3.8,1.3,Iris-versicolor
|
| 1325 |
+
5.7,2.9,4.3,1.4,Iris-versicolor
|
| 1326 |
+
6.7,3.0,5.0,1.7,Iris-versicolor
|
| 1327 |
+
6.7,2.8,4.6,1.4,Iris-versicolor
|
| 1328 |
+
6.6,2.9,4.6,1.4,Iris-versicolor
|
| 1329 |
+
5.6,2.5,3.6,1.0,Iris-versicolor
|
| 1330 |
+
6.7,3.1,4.5,1.4,Iris-versicolor
|
| 1331 |
+
6.5,2.9,4.3,1.4,Iris-versicolor
|
| 1332 |
+
6.1,2.9,4.6,1.4,Iris-versicolor
|
| 1333 |
+
6.0,2.7,5.0,1.6,Iris-versicolor
|
| 1334 |
+
6.0,2.9,4.5,1.5,Iris-versicolor
|
| 1335 |
+
5.7,2.8,4.3,1.3,Iris-versicolor
|
| 1336 |
+
5.1,2.1,3.6,1.0,Iris-versicolor
|
| 1337 |
+
6.1,2.2,4.1,1.1,Iris-versicolor
|
| 1338 |
+
5.5,2.4,3.9,1.1,Iris-versicolor
|
| 1339 |
+
5.7,2.5,3.8,1.0,Iris-versicolor
|
| 1340 |
+
5.3,2.4,3.6,1.0,Iris-versicolor
|
| 1341 |
+
6.2,2.9,4.3,1.4,Iris-versicolor
|
| 1342 |
+
6.2,3.3,4.6,1.7,Iris-versicolor
|
| 1343 |
+
6.4,2.8,4.5,1.4,Iris-versicolor
|
| 1344 |
+
6.5,3.2,4.5,1.5,Iris-versicolor
|
| 1345 |
+
6.7,3.1,4.5,1.4,Iris-versicolor
|
| 1346 |
+
5.8,3.0,4.5,1.5,Iris-versicolor
|
| 1347 |
+
6.1,2.8,4.1,1.3,Iris-versicolor
|
| 1348 |
+
5.5,2.4,3.8,1.0,Iris-versicolor
|
| 1349 |
+
5.8,2.7,4.1,1.0,Iris-versicolor
|
| 1350 |
+
6.1,3.0,4.6,1.4,Iris-versicolor
|
| 1351 |
+
5.5,2.4,3.9,1.2,Iris-versicolor
|
| 1352 |
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
| 1353 |
+
6.2,2.9,4.3,1.3,Iris-versicolor
|
| 1354 |
+
5.9,3.0,4.3,1.5,Iris-versicolor
|
| 1355 |
+
6.7,3.1,4.6,1.5,Iris-versicolor
|
| 1356 |
+
5.7,2.7,4.1,1.2,Iris-versicolor
|
| 1357 |
+
5.5,2.6,4.3,1.2,Iris-versicolor
|
| 1358 |
+
6.5,2.9,4.3,1.4,Iris-versicolor
|
| 1359 |
+
6.6,3.1,4.6,1.5,Iris-versicolor
|
| 1360 |
+
5.9,3.1,4.3,1.6,Iris-versicolor
|
| 1361 |
+
6.3,2.9,4.5,1.4,Iris-versicolor
|
| 1362 |
+
5.3,2.4,3.4,1.0,Iris-versicolor
|
| 1363 |
+
6.1,2.9,4.6,1.4,Iris-versicolor
|
| 1364 |
+
5.3,2.2,3.6,1.0,Iris-versicolor
|
| 1365 |
+
5.1,2.1,3.6,1.0,Iris-versicolor
|
| 1366 |
+
5.9,3.1,4.5,1.7,Iris-versicolor
|
| 1367 |
+
5.5,2.3,3.9,1.2,Iris-versicolor
|
| 1368 |
+
5.7,2.5,3.8,1.0,Iris-versicolor
|
| 1369 |
+
6.4,3.2,4.5,1.5,Iris-versicolor
|
| 1370 |
+
5.7,2.8,4.5,1.3,Iris-versicolor
|
| 1371 |
+
5.8,2.7,3.8,1.1,Iris-versicolor
|
| 1372 |
+
6.1,2.9,4.6,1.4,Iris-versicolor
|
| 1373 |
+
5.4,2.4,3.6,1.0,Iris-versicolor
|
| 1374 |
+
5.6,2.9,3.6,1.3,Iris-versicolor
|
| 1375 |
+
6.7,3.1,4.6,1.5,Iris-versicolor
|
| 1376 |
+
5.8,2.6,3.8,1.1,Iris-versicolor
|
| 1377 |
+
6.6,2.9,4.6,1.3,Iris-versicolor
|
| 1378 |
+
5.9,3.2,4.8,1.8,Iris-versicolor
|
| 1379 |
+
6.1,2.3,4.3,1.3,Iris-versicolor
|
| 1380 |
+
5.4,2.5,3.8,1.3,Iris-versicolor
|
| 1381 |
+
6.9,3.1,4.8,1.5,Iris-versicolor
|
| 1382 |
+
5.8,2.7,4.1,1.0,Iris-versicolor
|
| 1383 |
+
5.8,3.0,4.3,1.5,Iris-versicolor
|
| 1384 |
+
6.5,2.9,4.5,1.3,Iris-versicolor
|
| 1385 |
+
5.8,2.3,4.1,1.3,Iris-versicolor
|
| 1386 |
+
6.8,3.1,4.6,1.4,Iris-versicolor
|
| 1387 |
+
6.6,3.1,4.5,1.4,Iris-versicolor
|
| 1388 |
+
6.1,2.8,4.6,1.2,Iris-versicolor
|
| 1389 |
+
6.1,2.4,4.3,1.3,Iris-versicolor
|
| 1390 |
+
5.7,2.7,4.1,1.3,Iris-versicolor
|
| 1391 |
+
5.6,2.6,4.3,1.2,Iris-versicolor
|
| 1392 |
+
5.6,2.5,3.9,1.1,Iris-versicolor
|
| 1393 |
+
5.6,2.5,3.9,1.1,Iris-versicolor
|
| 1394 |
+
5.7,2.5,3.6,1.0,Iris-versicolor
|
| 1395 |
+
6.5,3.1,4.5,1.4,Iris-versicolor
|
| 1396 |
+
6.0,2.2,3.9,1.0,Iris-versicolor
|
| 1397 |
+
6.0,2.9,4.5,1.4,Iris-versicolor
|
| 1398 |
+
6.1,2.9,4.6,1.4,Iris-versicolor
|
| 1399 |
+
6.7,2.9,4.6,1.4,Iris-versicolor
|
| 1400 |
+
6.1,2.9,4.6,1.4,Iris-versicolor
|
| 1401 |
+
5.3,2.4,3.6,1.0,Iris-versicolor
|
| 1402 |
+
6.7,3.1,4.6,1.5,Iris-versicolor
|
| 1403 |
+
6.1,2.3,4.3,1.3,Iris-versicolor
|
| 1404 |
+
5.7,3.0,4.3,1.4,Iris-versicolor
|
| 1405 |
+
5.7,3.0,4.5,1.4,Iris-versicolor
|
| 1406 |
+
6.7,3.0,4.5,1.4,Iris-versicolor
|
| 1407 |
+
6.2,3.3,4.5,1.6,Iris-versicolor
|
| 1408 |
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
| 1409 |
+
5.8,2.7,4.1,1.0,Iris-versicolor
|
| 1410 |
+
5.4,2.4,3.6,1.0,Iris-versicolor
|
| 1411 |
+
5.8,2.6,3.9,1.2,Iris-versicolor
|
| 1412 |
+
4.9,2.2,3.4,1.0,Iris-versicolor
|
| 1413 |
+
6.3,3.3,4.6,1.6,Iris-versicolor
|
| 1414 |
+
6.6,2.8,4.5,1.4,Iris-versicolor
|
| 1415 |
+
6.8,2.8,4.8,1.4,Iris-versicolor
|
| 1416 |
+
5.5,2.5,3.9,1.3,Iris-versicolor
|
| 1417 |
+
5.8,2.8,4.1,1.3,Iris-versicolor
|
| 1418 |
+
5.6,2.9,4.3,1.4,Iris-versicolor
|
| 1419 |
+
5.6,3.0,4.1,1.3,Iris-versicolor
|
| 1420 |
+
6.6,3.1,4.6,1.5,Iris-versicolor
|
| 1421 |
+
5.7,3.0,4.5,1.4,Iris-versicolor
|
| 1422 |
+
6.9,3.1,4.8,1.5,Iris-versicolor
|
| 1423 |
+
5.0,2.3,3.2,1.0,Iris-versicolor
|
| 1424 |
+
6.9,3.2,4.6,1.4,Iris-versicolor
|
| 1425 |
+
6.2,3.3,4.5,1.6,Iris-versicolor
|
| 1426 |
+
5.0,2.4,3.4,1.0,Iris-versicolor
|
| 1427 |
+
5.7,2.7,4.1,1.3,Iris-versicolor
|
| 1428 |
+
5.8,2.8,3.9,1.2,Iris-versicolor
|
| 1429 |
+
5.5,2.4,3.8,1.0,Iris-versicolor
|
| 1430 |
+
6.1,2.8,4.1,1.3,Iris-versicolor
|
| 1431 |
+
5.8,2.7,3.9,1.2,Iris-versicolor
|
| 1432 |
+
6.0,3.4,4.5,1.6,Iris-versicolor
|
| 1433 |
+
5.8,2.6,3.9,1.2,Iris-versicolor
|
| 1434 |
+
6.0,2.7,5.0,1.6,Iris-versicolor
|
| 1435 |
+
6.7,3.1,4.5,1.4,Iris-versicolor
|
| 1436 |
+
6.8,2.8,4.8,1.4,Iris-versicolor
|
| 1437 |
+
6.2,2.2,4.5,1.4,Iris-versicolor
|
| 1438 |
+
6.1,2.8,3.9,1.3,Iris-versicolor
|
| 1439 |
+
5.8,2.6,3.9,1.2,Iris-versicolor
|
| 1440 |
+
5.7,2.7,4.1,1.1,Iris-versicolor
|
| 1441 |
+
6.3,2.3,4.5,1.3,Iris-versicolor
|
| 1442 |
+
5.0,2.3,3.4,1.0,Iris-versicolor
|
| 1443 |
+
5.8,2.6,3.9,1.2,Iris-versicolor
|
| 1444 |
+
5.7,2.8,4.3,1.3,Iris-versicolor
|
| 1445 |
+
5.5,2.4,3.9,1.3,Iris-versicolor
|
| 1446 |
+
6.0,2.2,4.1,1.1,Iris-versicolor
|
| 1447 |
+
5.7,2.9,4.1,1.3,Iris-versicolor
|
| 1448 |
+
6.8,2.8,4.8,1.4,Iris-versicolor
|
| 1449 |
+
6.1,3.0,4.6,1.4,Iris-versicolor
|
| 1450 |
+
5.7,3.0,4.5,1.4,Iris-versicolor
|
| 1451 |
+
5.9,3.2,4.8,1.7,Iris-versicolor
|
| 1452 |
+
6.0,3.4,4.5,1.6,Iris-versicolor
|
| 1453 |
+
6.2,2.2,4.5,1.5,Iris-versicolor
|
| 1454 |
+
5.7,2.9,3.8,1.3,Iris-versicolor
|
| 1455 |
+
5.5,3.0,4.5,1.4,Iris-versicolor
|
| 1456 |
+
6.8,2.8,4.8,1.4,Iris-versicolor
|
| 1457 |
+
5.6,2.9,3.6,1.3,Iris-versicolor
|
| 1458 |
+
6.1,2.6,5.0,1.6,Iris-versicolor
|
| 1459 |
+
6.9,3.1,4.8,1.5,Iris-versicolor
|
| 1460 |
+
5.4,2.5,3.8,1.3,Iris-versicolor
|
| 1461 |
+
5.7,2.5,3.9,1.1,Iris-versicolor
|
| 1462 |
+
6.4,2.6,4.8,1.5,Iris-versicolor
|
| 1463 |
+
5.4,3.0,4.5,1.5,Iris-versicolor
|
| 1464 |
+
5.1,2.5,3.1,1.1,Iris-versicolor
|
| 1465 |
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
| 1466 |
+
5.6,3.0,4.5,1.5,Iris-versicolor
|
| 1467 |
+
5.1,2.4,3.1,1.0,Iris-versicolor
|
| 1468 |
+
5.0,2.1,3.4,1.0,Iris-versicolor
|
| 1469 |
+
5.5,2.4,3.9,1.3,Iris-versicolor
|
| 1470 |
+
6.3,2.5,4.8,1.5,Iris-versicolor
|
| 1471 |
+
5.7,3.0,4.3,1.2,Iris-versicolor
|
| 1472 |
+
6.2,2.9,4.6,1.4,Iris-versicolor
|
| 1473 |
+
5.6,3.0,4.1,1.3,Iris-versicolor
|
| 1474 |
+
6.1,2.3,4.3,1.3,Iris-versicolor
|
| 1475 |
+
6.0,2.9,4.6,1.5,Iris-versicolor
|
| 1476 |
+
6.7,3.0,5.0,1.7,Iris-versicolor
|
| 1477 |
+
6.7,3.1,4.6,1.5,Iris-versicolor
|
| 1478 |
+
5.7,2.8,3.6,1.3,Iris-versicolor
|
| 1479 |
+
5.6,2.5,3.6,1.0,Iris-versicolor
|
| 1480 |
+
6.3,2.4,4.6,1.4,Iris-versicolor
|
| 1481 |
+
6.8,3.1,5.0,1.6,Iris-versicolor
|
| 1482 |
+
5.7,2.7,4.1,1.2,Iris-versicolor
|
| 1483 |
+
5.8,2.7,3.9,1.1,Iris-versicolor
|
| 1484 |
+
6.1,2.3,4.3,1.3,Iris-versicolor
|
| 1485 |
+
5.8,2.3,4.1,1.3,Iris-versicolor
|
| 1486 |
+
5.7,3.0,3.9,1.3,Iris-versicolor
|
| 1487 |
+
5.8,3.0,4.1,1.4,Iris-versicolor
|
| 1488 |
+
5.4,2.4,3.6,1.0,Iris-versicolor
|
| 1489 |
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
| 1490 |
+
5.9,3.0,4.3,1.5,Iris-versicolor
|
| 1491 |
+
5.3,2.4,3.6,1.0,Iris-versicolor
|
| 1492 |
+
7.0,3.1,4.8,1.4,Iris-versicolor
|
| 1493 |
+
5.8,2.8,4.1,1.3,Iris-versicolor
|
| 1494 |
+
5.4,3.0,4.5,1.5,Iris-versicolor
|
| 1495 |
+
6.9,3.1,4.8,1.5,Iris-versicolor
|
| 1496 |
+
5.7,2.6,3.9,1.2,Iris-versicolor
|
| 1497 |
+
5.8,2.7,4.1,1.0,Iris-versicolor
|
| 1498 |
+
5.1,2.5,3.1,1.1,Iris-versicolor
|
| 1499 |
+
6.9,3.2,4.6,1.4,Iris-versicolor
|
| 1500 |
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
| 1501 |
+
5.8,2.6,3.9,1.2,Iris-versicolor
|
| 1502 |
+
6.9,3.1,4.8,1.5,Iris-versicolor
|
| 1503 |
+
6.1,3.0,4.6,1.4,Iris-versicolor
|
| 1504 |
+
5.5,2.4,3.9,1.1,Iris-versicolor
|
| 1505 |
+
5.8,2.7,3.9,1.2,Iris-versicolor
|
| 1506 |
+
6.4,3.2,4.5,1.5,Iris-versicolor
|
| 1507 |
+
5.8,2.6,4.1,1.2,Iris-versicolor
|
| 1508 |
+
6.1,2.9,4.8,1.4,Iris-versicolor
|
| 1509 |
+
6.1,2.8,4.6,1.2,Iris-versicolor
|
| 1510 |
+
6.9,3.1,4.8,1.4,Iris-versicolor
|
| 1511 |
+
5.6,2.9,4.3,1.4,Iris-versicolor
|
| 1512 |
+
6.5,2.8,4.5,1.4,Iris-versicolor
|
| 1513 |
+
6.0,2.4,4.3,1.4,Iris-versicolor
|
| 1514 |
+
5.7,2.9,4.3,1.3,Iris-versicolor
|
| 1515 |
+
5.7,2.5,3.9,1.3,Iris-versicolor
|
| 1516 |
+
6.1,2.8,4.6,1.2,Iris-versicolor
|
| 1517 |
+
5.6,3.0,4.5,1.5,Iris-versicolor
|
| 1518 |
+
6.0,2.2,3.9,1.0,Iris-versicolor
|
| 1519 |
+
6.7,3.1,4.5,1.4,Iris-versicolor
|
| 1520 |
+
5.6,3.0,4.3,1.4,Iris-versicolor
|
| 1521 |
+
5.5,2.4,3.8,1.1,Iris-versicolor
|
| 1522 |
+
5.0,2.4,3.1,1.0,Iris-versicolor
|
| 1523 |
+
6.6,2.9,4.6,1.3,Iris-versicolor
|
| 1524 |
+
5.6,3.0,4.1,1.3,Iris-versicolor
|
| 1525 |
+
6.3,2.5,4.8,1.5,Iris-versicolor
|
| 1526 |
+
6.2,2.2,4.5,1.5,Iris-versicolor
|
| 1527 |
+
6.2,2.6,5.0,1.5,Iris-versicolor
|
| 1528 |
+
6.2,2.9,4.3,1.3,Iris-versicolor
|
| 1529 |
+
6.3,2.9,4.3,1.3,Iris-versicolor
|
| 1530 |
+
6.7,3.1,4.5,1.4,Iris-versicolor
|
| 1531 |
+
6.0,2.8,3.9,1.3,Iris-versicolor
|
| 1532 |
+
5.8,2.8,4.1,1.1,Iris-versicolor
|
| 1533 |
+
5.8,2.6,4.1,1.2,Iris-versicolor
|
| 1534 |
+
5.7,2.9,4.3,1.4,Iris-versicolor
|
| 1535 |
+
5.6,3.0,4.1,1.3,Iris-versicolor
|
| 1536 |
+
6.0,2.8,4.8,1.6,Iris-versicolor
|
| 1537 |
+
5.5,2.4,3.9,1.3,Iris-versicolor
|
| 1538 |
+
6.0,3.4,4.5,1.6,Iris-versicolor
|
| 1539 |
+
6.7,3.1,4.6,1.5,Iris-versicolor
|
| 1540 |
+
5.6,2.5,3.9,1.1,Iris-versicolor
|
| 1541 |
+
6.3,2.2,4.5,1.4,Iris-versicolor
|
| 1542 |
+
6.0,2.2,4.1,1.1,Iris-versicolor
|
| 1543 |
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
| 1544 |
+
6.1,3.4,4.5,1.6,Iris-versicolor
|
| 1545 |
+
6.0,2.2,4.1,1.0,Iris-versicolor
|
| 1546 |
+
5.7,2.9,4.3,1.3,Iris-versicolor
|
| 1547 |
+
6.7,3.1,4.5,1.4,Iris-versicolor
|
| 1548 |
+
5.4,3.0,4.5,1.5,Iris-versicolor
|
| 1549 |
+
6.9,3.1,4.6,1.4,Iris-versicolor
|
| 1550 |
+
5.4,2.4,3.8,1.1,Iris-versicolor
|
| 1551 |
+
6.7,3.0,4.5,1.4,Iris-versicolor
|
| 1552 |
+
5.6,2.4,3.9,1.1,Iris-versicolor
|
| 1553 |
+
5.5,2.4,3.8,1.1,Iris-versicolor
|
| 1554 |
+
5.6,2.5,3.9,1.1,Iris-versicolor
|
| 1555 |
+
6.7,2.9,4.6,1.4,Iris-versicolor
|
| 1556 |
+
6.1,2.8,4.6,1.2,Iris-versicolor
|
| 1557 |
+
5.9,3.1,4.6,1.7,Iris-versicolor
|
| 1558 |
+
6.4,3.2,4.6,1.6,Iris-versicolor
|
| 1559 |
+
5.8,2.2,4.3,1.4,Iris-versicolor
|
| 1560 |
+
5.6,3.0,4.1,1.3,Iris-versicolor
|
| 1561 |
+
6.7,3.1,4.6,1.5,Iris-versicolor
|
| 1562 |
+
6.3,2.4,4.8,1.5,Iris-versicolor
|
| 1563 |
+
5.8,2.7,4.1,1.0,Iris-versicolor
|
| 1564 |
+
5.6,2.5,3.9,1.1,Iris-versicolor
|
| 1565 |
+
5.8,2.6,3.9,1.2,Iris-versicolor
|
| 1566 |
+
6.5,2.9,4.3,1.4,Iris-versicolor
|
| 1567 |
+
5.7,2.7,4.1,1.3,Iris-versicolor
|
| 1568 |
+
5.8,2.7,3.9,1.2,Iris-versicolor
|
| 1569 |
+
6.2,2.2,4.5,1.5,Iris-versicolor
|
| 1570 |
+
6.3,2.3,4.5,1.3,Iris-versicolor
|
| 1571 |
+
6.7,3.0,5.0,1.7,Iris-versicolor
|
| 1572 |
+
6.8,3.1,4.6,1.4,Iris-versicolor
|
| 1573 |
+
6.1,2.6,5.0,1.6,Iris-versicolor
|
| 1574 |
+
5.0,2.0,3.6,1.0,Iris-versicolor
|
| 1575 |
+
5.7,3.0,3.9,1.3,Iris-versicolor
|
| 1576 |
+
5.8,2.7,3.9,1.1,Iris-versicolor
|
| 1577 |
+
6.1,2.2,4.1,1.2,Iris-versicolor
|
| 1578 |
+
5.5,2.3,3.9,1.2,Iris-versicolor
|
| 1579 |
+
5.8,3.0,4.1,1.4,Iris-versicolor
|
| 1580 |
+
6.5,2.8,4.6,1.5,Iris-versicolor
|
| 1581 |
+
5.4,2.4,3.6,1.1,Iris-versicolor
|
| 1582 |
+
6.2,3.3,4.8,1.7,Iris-versicolor
|
| 1583 |
+
5.8,2.7,4.1,1.1,Iris-versicolor
|
| 1584 |
+
5.8,2.6,3.8,1.1,Iris-versicolor
|
| 1585 |
+
6.9,3.1,4.8,1.5,Iris-versicolor
|
| 1586 |
+
6.5,3.1,4.5,1.4,Iris-versicolor
|
| 1587 |
+
5.5,2.4,3.8,1.1,Iris-versicolor
|
| 1588 |
+
5.7,2.9,4.3,1.3,Iris-versicolor
|
| 1589 |
+
6.3,2.9,4.3,1.3,Iris-versicolor
|
| 1590 |
+
6.0,3.2,4.8,1.7,Iris-versicolor
|
| 1591 |
+
5.8,3.0,4.5,1.5,Iris-versicolor
|
| 1592 |
+
6.4,2.8,4.5,1.4,Iris-versicolor
|
| 1593 |
+
6.6,3.0,4.5,1.4,Iris-versicolor
|
| 1594 |
+
6.0,2.2,3.9,1.0,Iris-versicolor
|
| 1595 |
+
5.5,2.6,4.3,1.2,Iris-versicolor
|
| 1596 |
+
6.1,2.9,4.5,1.4,Iris-versicolor
|
| 1597 |
+
6.8,2.8,4.8,1.4,Iris-versicolor
|
| 1598 |
+
5.7,2.7,4.1,1.1,Iris-versicolor
|
| 1599 |
+
5.4,2.5,3.8,1.3,Iris-versicolor
|
| 1600 |
+
6.9,3.1,5.0,1.5,Iris-versicolor
|
| 1601 |
+
6.6,3.1,4.5,1.4,Iris-versicolor
|
| 1602 |
+
5.8,2.7,3.9,1.2,Iris-versicolor
|
| 1603 |
+
6.4,2.6,4.8,1.5,Iris-versicolor
|
| 1604 |
+
5.6,2.5,3.6,1.0,Iris-versicolor
|
| 1605 |
+
6.5,2.8,4.6,1.4,Iris-versicolor
|
| 1606 |
+
6.3,2.4,4.6,1.5,Iris-versicolor
|
| 1607 |
+
5.1,2.1,3.6,1.0,Iris-versicolor
|
| 1608 |
+
5.6,2.5,3.6,1.0,Iris-versicolor
|
| 1609 |
+
6.2,3.3,4.8,1.7,Iris-versicolor
|
| 1610 |
+
6.8,3.1,5.0,1.6,Iris-versicolor
|
| 1611 |
+
5.1,2.4,3.1,1.0,Iris-versicolor
|
| 1612 |
+
6.3,2.9,4.5,1.3,Iris-versicolor
|
| 1613 |
+
6.3,2.3,4.3,1.3,Iris-versicolor
|
| 1614 |
+
5.6,3.0,4.3,1.4,Iris-versicolor
|
| 1615 |
+
5.8,2.3,3.9,1.0,Iris-versicolor
|
| 1616 |
+
5.5,2.4,3.9,1.2,Iris-versicolor
|
| 1617 |
+
6.5,2.8,4.6,1.4,Iris-versicolor
|
| 1618 |
+
6.0,2.7,5.2,1.6,Iris-versicolor
|
| 1619 |
+
5.5,2.7,4.1,1.4,Iris-versicolor
|
| 1620 |
+
6.1,2.4,4.3,1.3,Iris-versicolor
|
| 1621 |
+
5.7,3.0,4.3,1.3,Iris-versicolor
|
| 1622 |
+
6.0,2.3,4.3,1.3,Iris-versicolor
|
| 1623 |
+
6.5,2.8,4.6,1.5,Iris-versicolor
|
| 1624 |
+
5.0,2.4,3.2,1.0,Iris-versicolor
|
| 1625 |
+
5.8,2.7,3.9,1.2,Iris-versicolor
|
| 1626 |
+
5.7,2.3,3.9,1.2,Iris-versicolor
|
| 1627 |
+
6.8,3.1,4.8,1.5,Iris-versicolor
|
| 1628 |
+
6.8,3.1,4.6,1.4,Iris-versicolor
|
| 1629 |
+
5.7,3.0,4.1,1.2,Iris-versicolor
|
| 1630 |
+
5.7,2.8,4.5,1.3,Iris-versicolor
|
| 1631 |
+
6.6,2.9,4.5,1.4,Iris-versicolor
|
| 1632 |
+
5.9,2.2,3.9,1.0,Iris-versicolor
|
| 1633 |
+
5.5,2.4,3.8,1.1,Iris-versicolor
|
| 1634 |
+
6.2,2.9,4.3,1.4,Iris-versicolor
|
| 1635 |
+
5.5,2.3,3.9,1.3,Iris-versicolor
|
| 1636 |
+
5.5,2.4,4.1,1.3,Iris-versicolor
|
| 1637 |
+
5.6,2.5,3.8,1.0,Iris-versicolor
|
| 1638 |
+
5.7,3.0,4.5,1.4,Iris-versicolor
|
| 1639 |
+
4.9,2.3,3.4,1.0,Iris-versicolor
|
| 1640 |
+
6.1,2.2,4.1,1.1,Iris-versicolor
|
| 1641 |
+
5.5,2.3,3.9,1.2,Iris-versicolor
|
| 1642 |
+
6.8,3.0,5.0,1.7,Iris-versicolor
|
| 1643 |
+
6.6,3.0,4.5,1.4,Iris-versicolor
|
| 1644 |
+
6.1,2.9,4.6,1.4,Iris-versicolor
|
| 1645 |
+
6.3,3.3,4.6,1.6,Iris-versicolor
|
| 1646 |
+
6.3,2.9,4.3,1.3,Iris-versicolor
|
| 1647 |
+
4.9,2.4,3.2,1.0,Iris-versicolor
|
| 1648 |
+
5.1,2.4,3.1,1.0,Iris-versicolor
|
| 1649 |
+
5.5,2.4,4.1,1.3,Iris-versicolor
|
| 1650 |
+
5.0,2.1,3.4,1.0,Iris-versicolor
|
| 1651 |
+
5.6,2.4,3.9,1.1,Iris-versicolor
|
| 1652 |
+
5.7,2.9,4.3,1.3,Iris-versicolor
|
| 1653 |
+
6.2,2.9,4.5,1.4,Iris-versicolor
|
| 1654 |
+
5.8,2.6,3.9,1.2,Iris-versicolor
|
| 1655 |
+
5.6,3.0,4.5,1.5,Iris-versicolor
|
| 1656 |
+
5.6,2.9,3.6,1.3,Iris-versicolor
|
| 1657 |
+
6.8,2.8,4.8,1.5,Iris-versicolor
|
| 1658 |
+
5.6,2.9,3.6,1.3,Iris-versicolor
|
| 1659 |
+
5.7,3.1,4.6,1.7,Iris-versicolor
|
| 1660 |
+
6.2,3.3,4.8,1.7,Iris-versicolor
|
| 1661 |
+
6.3,2.8,4.5,1.3,Iris-versicolor
|
| 1662 |
+
5.8,2.6,4.1,1.2,Iris-versicolor
|
| 1663 |
+
5.5,2.4,3.8,1.0,Iris-versicolor
|
| 1664 |
+
6.6,3.0,4.5,1.4,Iris-versicolor
|
| 1665 |
+
6.4,2.9,4.3,1.4,Iris-versicolor
|
| 1666 |
+
6.1,2.9,4.6,1.4,Iris-versicolor
|
| 1667 |
+
6.5,2.8,4.6,1.5,Iris-versicolor
|
| 1668 |
+
6.6,3.0,4.5,1.4,Iris-versicolor
|
| 1669 |
+
6.3,2.5,4.8,1.5,Iris-versicolor
|
| 1670 |
+
6.8,2.8,4.8,1.4,Iris-versicolor
|
| 1671 |
+
5.1,2.5,3.1,1.1,Iris-versicolor
|
| 1672 |
+
5.8,2.6,3.9,1.2,Iris-versicolor
|
| 1673 |
+
6.6,2.9,4.8,1.6,Iris-versicolor
|
| 1674 |
+
5.0,2.1,3.4,1.0,Iris-versicolor
|
| 1675 |
+
5.7,3.0,4.3,1.3,Iris-versicolor
|
| 1676 |
+
5.5,2.4,3.8,1.1,Iris-versicolor
|
| 1677 |
+
5.7,3.0,4.3,1.2,Iris-versicolor
|
| 1678 |
+
6.1,2.8,4.6,1.2,Iris-versicolor
|
| 1679 |
+
6.8,2.8,4.8,1.4,Iris-versicolor
|
| 1680 |
+
5.4,2.5,3.8,1.3,Iris-versicolor
|
| 1681 |
+
5.7,2.9,4.3,1.4,Iris-versicolor
|
| 1682 |
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
| 1683 |
+
5.5,2.4,3.6,1.0,Iris-versicolor
|
| 1684 |
+
6.5,2.8,4.5,1.5,Iris-versicolor
|
| 1685 |
+
5.7,2.5,3.9,1.1,Iris-versicolor
|
| 1686 |
+
6.7,3.1,4.5,1.4,Iris-versicolor
|
| 1687 |
+
5.8,2.7,3.9,1.2,Iris-versicolor
|
| 1688 |
+
5.2,2.3,3.6,1.0,Iris-versicolor
|
| 1689 |
+
6.2,2.6,5.0,1.5,Iris-versicolor
|
| 1690 |
+
5.0,2.3,3.2,1.0,Iris-versicolor
|
| 1691 |
+
6.3,2.4,4.6,1.4,Iris-versicolor
|
| 1692 |
+
6.2,2.9,4.3,1.3,Iris-versicolor
|
| 1693 |
+
6.2,3.3,4.5,1.6,Iris-versicolor
|
| 1694 |
+
5.8,2.6,3.8,1.1,Iris-versicolor
|
| 1695 |
+
6.3,3.3,4.6,1.6,Iris-versicolor
|
| 1696 |
+
6.0,2.9,4.5,1.4,Iris-versicolor
|
| 1697 |
+
6.2,3.0,4.5,1.4,Iris-versicolor
|
| 1698 |
+
5.8,2.3,3.9,1.0,Iris-versicolor
|
| 1699 |
+
5.8,2.7,4.1,1.0,Iris-versicolor
|
| 1700 |
+
5.5,2.4,3.8,1.1,Iris-versicolor
|
| 1701 |
+
5.8,2.6,3.9,1.1,Iris-versicolor
|
| 1702 |
+
5.6,3.0,4.3,1.3,Iris-versicolor
|
| 1703 |
+
6.7,3.1,4.5,1.4,Iris-versicolor
|
| 1704 |
+
6.6,2.8,4.5,1.4,Iris-versicolor
|
| 1705 |
+
6.5,3.1,4.6,1.5,Iris-versicolor
|
| 1706 |
+
6.2,3.0,4.5,1.4,Iris-versicolor
|
| 1707 |
+
5.0,2.0,3.6,1.0,Iris-versicolor
|
| 1708 |
+
6.6,2.9,4.6,1.4,Iris-versicolor
|
| 1709 |
+
6.0,3.4,4.5,1.7,Iris-versicolor
|
| 1710 |
+
6.8,2.9,4.8,1.6,Iris-versicolor
|
| 1711 |
+
6.5,2.8,4.6,1.5,Iris-versicolor
|
| 1712 |
+
6.3,2.4,4.8,1.4,Iris-versicolor
|
| 1713 |
+
6.6,3.1,4.5,1.4,Iris-versicolor
|
| 1714 |
+
5.8,2.6,3.9,1.2,Iris-versicolor
|
| 1715 |
+
6.5,2.8,4.6,1.5,Iris-versicolor
|
| 1716 |
+
5.1,2.4,3.1,1.0,Iris-versicolor
|
| 1717 |
+
5.4,2.4,3.8,1.0,Iris-versicolor
|
| 1718 |
+
5.9,3.0,4.3,1.5,Iris-versicolor
|
| 1719 |
+
5.8,2.7,3.9,1.1,Iris-versicolor
|
| 1720 |
+
6.8,3.1,5.0,1.6,Iris-versicolor
|
| 1721 |
+
6.5,2.9,4.5,1.3,Iris-versicolor
|
| 1722 |
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
| 1723 |
+
5.7,2.7,4.1,1.3,Iris-versicolor
|
| 1724 |
+
6.0,3.4,4.5,1.7,Iris-versicolor
|
| 1725 |
+
5.4,3.0,4.5,1.5,Iris-versicolor
|
| 1726 |
+
5.6,2.5,3.9,1.1,Iris-versicolor
|
| 1727 |
+
5.7,3.0,4.5,1.5,Iris-versicolor
|
| 1728 |
+
5.8,3.0,4.3,1.4,Iris-versicolor
|
| 1729 |
+
6.0,2.2,4.1,1.1,Iris-versicolor
|
| 1730 |
+
5.6,3.0,4.5,1.5,Iris-versicolor
|
| 1731 |
+
6.8,3.1,4.8,1.5,Iris-versicolor
|
| 1732 |
+
5.7,3.0,3.9,1.3,Iris-versicolor
|
| 1733 |
+
5.7,2.3,4.1,1.3,Iris-versicolor
|
| 1734 |
+
5.5,2.6,4.3,1.3,Iris-versicolor
|
| 1735 |
+
5.7,2.7,4.1,1.2,Iris-versicolor
|
| 1736 |
+
5.6,2.7,4.1,1.3,Iris-versicolor
|
| 1737 |
+
6.0,2.8,4.8,1.6,Iris-versicolor
|
| 1738 |
+
6.2,3.3,4.8,1.7,Iris-versicolor
|
| 1739 |
+
6.3,2.4,4.8,1.5,Iris-versicolor
|
| 1740 |
+
6.1,2.2,4.1,1.1,Iris-versicolor
|
| 1741 |
+
6.4,3.2,4.5,1.5,Iris-versicolor
|
| 1742 |
+
6.6,2.9,4.6,1.4,Iris-versicolor
|
| 1743 |
+
6.3,2.9,4.3,1.3,Iris-versicolor
|
| 1744 |
+
6.3,2.4,4.8,1.5,Iris-versicolor
|
| 1745 |
+
6.8,3.1,4.5,1.4,Iris-versicolor
|
| 1746 |
+
5.7,2.5,3.6,1.0,Iris-versicolor
|
| 1747 |
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
| 1748 |
+
5.7,3.0,4.5,1.4,Iris-versicolor
|
| 1749 |
+
6.6,2.9,4.6,1.4,Iris-versicolor
|
| 1750 |
+
6.1,2.4,4.3,1.3,Iris-versicolor
|
| 1751 |
+
5.8,3.2,4.8,1.7,Iris-versicolor
|
| 1752 |
+
6.5,2.9,4.5,1.3,Iris-versicolor
|
| 1753 |
+
6.3,2.3,4.3,1.3,Iris-versicolor
|
| 1754 |
+
6.1,2.4,4.3,1.3,Iris-versicolor
|
| 1755 |
+
5.4,3.0,4.5,1.5,Iris-versicolor
|
| 1756 |
+
5.2,2.4,3.6,1.0,Iris-versicolor
|
| 1757 |
+
5.6,2.9,3.8,1.3,Iris-versicolor
|
| 1758 |
+
6.1,2.3,4.3,1.3,Iris-versicolor
|
| 1759 |
+
6.3,3.3,4.6,1.6,Iris-versicolor
|
| 1760 |
+
5.7,2.9,4.1,1.3,Iris-versicolor
|
| 1761 |
+
5.5,2.4,3.8,1.1,Iris-versicolor
|
| 1762 |
+
6.0,2.3,4.3,1.3,Iris-versicolor
|
| 1763 |
+
6.2,3.0,4.5,1.4,Iris-versicolor
|
| 1764 |
+
6.9,3.1,4.8,1.4,Iris-versicolor
|
| 1765 |
+
6.7,3.1,4.6,1.5,Iris-versicolor
|
| 1766 |
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
| 1767 |
+
6.7,3.1,4.6,1.5,Iris-versicolor
|
| 1768 |
+
5.8,2.7,4.1,1.0,Iris-versicolor
|
| 1769 |
+
5.6,2.5,3.9,1.1,Iris-versicolor
|
| 1770 |
+
6.1,2.8,4.6,1.2,Iris-versicolor
|
| 1771 |
+
5.8,2.6,4.1,1.2,Iris-versicolor
|
| 1772 |
+
5.5,2.3,3.9,1.3,Iris-versicolor
|
| 1773 |
+
5.6,3.0,4.1,1.4,Iris-versicolor
|
| 1774 |
+
6.3,2.9,4.3,1.3,Iris-versicolor
|
| 1775 |
+
5.5,2.6,4.3,1.2,Iris-versicolor
|
| 1776 |
+
5.9,3.2,4.8,1.7,Iris-versicolor
|
| 1777 |
+
5.6,2.7,4.3,1.3,Iris-versicolor
|
| 1778 |
+
5.7,2.5,3.8,1.0,Iris-versicolor
|
| 1779 |
+
5.8,2.6,3.8,1.1,Iris-versicolor
|
| 1780 |
+
5.7,3.0,4.1,1.3,Iris-versicolor
|
| 1781 |
+
5.8,2.8,3.8,1.2,Iris-versicolor
|
| 1782 |
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
| 1783 |
+
6.5,2.9,4.3,1.4,Iris-versicolor
|
| 1784 |
+
5.4,2.4,3.8,1.0,Iris-versicolor
|
| 1785 |
+
6.1,2.8,4.1,1.3,Iris-versicolor
|
| 1786 |
+
6.2,2.2,4.5,1.5,Iris-versicolor
|
| 1787 |
+
5.6,2.5,3.9,1.1,Iris-versicolor
|
| 1788 |
+
6.6,3.0,4.5,1.4,Iris-versicolor
|
| 1789 |
+
6.8,3.1,4.8,1.5,Iris-versicolor
|
| 1790 |
+
5.1,2.5,3.1,1.1,Iris-versicolor
|
| 1791 |
+
5.9,3.2,4.8,1.8,Iris-versicolor
|
| 1792 |
+
6.6,2.8,4.6,1.4,Iris-versicolor
|
| 1793 |
+
5.5,2.3,3.9,1.2,Iris-versicolor
|
| 1794 |
+
5.7,2.8,4.5,1.3,Iris-versicolor
|
| 1795 |
+
5.8,2.8,3.9,1.3,Iris-versicolor
|
| 1796 |
+
5.7,2.7,4.1,1.3,Iris-versicolor
|
| 1797 |
+
6.1,2.8,4.6,1.3,Iris-versicolor
|
| 1798 |
+
6.9,3.2,4.6,1.4,Iris-versicolor
|
| 1799 |
+
5.8,2.7,3.9,1.0,Iris-versicolor
|
| 1800 |
+
6.3,3.3,4.6,1.6,Iris-versicolor
|
| 1801 |
+
6.3,2.3,4.5,1.3,Iris-versicolor
|
| 1802 |
+
5.6,3.0,4.1,1.3,Iris-versicolor
|
| 1803 |
+
6.1,2.8,4.6,1.2,Iris-versicolor
|
| 1804 |
+
5.3,2.2,3.6,1.0,Iris-versicolor
|
| 1805 |
+
5.7,3.0,4.1,1.2,Iris-versicolor
|
| 1806 |
+
5.6,2.4,3.9,1.1,Iris-versicolor
|
| 1807 |
+
6.1,2.3,4.3,1.3,Iris-versicolor
|
| 1808 |
+
6.8,3.1,4.8,1.5,Iris-versicolor
|
| 1809 |
+
6.4,2.9,4.3,1.3,Iris-versicolor
|
| 1810 |
+
6.1,2.3,4.3,1.3,Iris-versicolor
|
| 1811 |
+
5.6,3.0,4.3,1.3,Iris-versicolor
|
| 1812 |
+
6.7,3.1,4.8,1.7,Iris-versicolor
|
| 1813 |
+
5.2,2.4,3.4,1.0,Iris-versicolor
|
| 1814 |
+
5.3,2.4,3.6,1.0,Iris-versicolor
|
| 1815 |
+
5.5,2.6,4.3,1.2,Iris-versicolor
|
| 1816 |
+
5.3,2.2,3.6,1.0,Iris-versicolor
|
| 1817 |
+
5.7,2.8,4.3,1.3,Iris-versicolor
|
| 1818 |
+
5.6,3.0,4.1,1.3,Iris-versicolor
|
| 1819 |
+
6.8,3.0,5.0,1.7,Iris-versicolor
|
| 1820 |
+
6.1,3.0,4.6,1.4,Iris-versicolor
|
| 1821 |
+
6.1,3.0,4.6,1.4,Iris-versicolor
|
| 1822 |
+
6.3,2.9,4.3,1.3,Iris-versicolor
|
| 1823 |
+
6.7,3.1,4.5,1.4,Iris-versicolor
|
| 1824 |
+
6.6,3.1,4.6,1.5,Iris-versicolor
|
| 1825 |
+
5.7,3.0,4.3,1.2,Iris-versicolor
|
| 1826 |
+
6.0,2.7,5.2,1.6,Iris-versicolor
|
| 1827 |
+
6.1,3.0,4.6,1.4,Iris-versicolor
|
| 1828 |
+
4.9,2.2,3.4,1.0,Iris-versicolor
|
| 1829 |
+
4.9,2.4,3.2,1.0,Iris-versicolor
|
| 1830 |
+
5.5,2.3,3.9,1.2,Iris-versicolor
|
| 1831 |
+
6.9,3.1,4.8,1.5,Iris-versicolor
|
| 1832 |
+
5.8,2.6,3.9,1.2,Iris-versicolor
|
| 1833 |
+
6.5,2.8,4.6,1.5,Iris-versicolor
|
| 1834 |
+
6.1,2.4,4.3,1.3,Iris-versicolor
|
| 1835 |
+
6.2,2.7,4.8,1.4,Iris-versicolor
|
| 1836 |
+
6.6,2.9,4.6,1.3,Iris-versicolor
|
| 1837 |
+
5.8,2.7,3.9,1.0,Iris-versicolor
|
| 1838 |
+
5.8,2.6,3.9,1.2,Iris-versicolor
|
| 1839 |
+
5.7,3.0,4.1,1.2,Iris-versicolor
|
| 1840 |
+
5.0,2.4,3.2,1.0,Iris-versicolor
|
| 1841 |
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
| 1842 |
+
5.0,2.3,3.4,1.0,Iris-versicolor
|
| 1843 |
+
4.9,2.4,3.2,1.0,Iris-versicolor
|
| 1844 |
+
6.4,2.9,4.3,1.4,Iris-versicolor
|
| 1845 |
+
6.1,2.8,4.6,1.2,Iris-versicolor
|
| 1846 |
+
6.3,2.4,4.8,1.4,Iris-versicolor
|
| 1847 |
+
6.5,2.8,4.6,1.5,Iris-versicolor
|
| 1848 |
+
5.6,3.0,4.3,1.4,Iris-versicolor
|
| 1849 |
+
5.7,2.7,4.1,1.2,Iris-versicolor
|
| 1850 |
+
5.8,2.8,3.9,1.3,Iris-versicolor
|
| 1851 |
+
6.0,2.7,5.2,1.6,Iris-versicolor
|
| 1852 |
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
| 1853 |
+
6.4,2.9,4.5,1.4,Iris-versicolor
|
| 1854 |
+
6.0,2.9,4.5,1.5,Iris-versicolor
|
| 1855 |
+
6.2,3.0,4.5,1.4,Iris-versicolor
|
| 1856 |
+
6.5,3.1,4.5,1.4,Iris-versicolor
|
| 1857 |
+
5.7,2.9,3.8,1.3,Iris-versicolor
|
| 1858 |
+
5.8,3.0,4.3,1.5,Iris-versicolor
|
| 1859 |
+
5.6,2.7,4.3,1.3,Iris-versicolor
|
| 1860 |
+
5.8,2.6,3.9,1.2,Iris-versicolor
|
| 1861 |
+
6.3,2.4,4.8,1.4,Iris-versicolor
|
| 1862 |
+
6.5,2.9,4.3,1.4,Iris-versicolor
|
| 1863 |
+
5.5,2.5,4.1,1.3,Iris-versicolor
|
| 1864 |
+
6.9,3.1,5.0,1.5,Iris-versicolor
|
| 1865 |
+
5.5,2.4,3.9,1.1,Iris-versicolor
|
| 1866 |
+
6.3,2.3,4.6,1.5,Iris-versicolor
|
| 1867 |
+
5.6,3.0,4.1,1.4,Iris-versicolor
|
| 1868 |
+
5.6,2.5,3.6,1.0,Iris-versicolor
|
| 1869 |
+
6.4,3.2,4.6,1.5,Iris-versicolor
|
| 1870 |
+
5.6,2.5,3.9,1.1,Iris-versicolor
|
| 1871 |
+
6.6,2.9,4.6,1.3,Iris-versicolor
|
| 1872 |
+
5.5,2.4,3.8,1.0,Iris-versicolor
|
| 1873 |
+
6.5,2.9,4.3,1.4,Iris-versicolor
|
| 1874 |
+
6.4,2.6,4.8,1.5,Iris-versicolor
|
| 1875 |
+
5.1,2.5,3.1,1.1,Iris-versicolor
|
| 1876 |
+
5.8,2.7,3.9,1.2,Iris-versicolor
|
| 1877 |
+
5.7,2.9,4.1,1.3,Iris-versicolor
|
| 1878 |
+
5.6,3.0,4.5,1.5,Iris-versicolor
|
| 1879 |
+
5.8,2.8,4.6,1.4,Iris-versicolor
|
| 1880 |
+
6.4,2.9,4.5,1.4,Iris-versicolor
|
| 1881 |
+
6.0,3.4,4.5,1.6,Iris-versicolor
|
| 1882 |
+
5.8,2.6,3.9,1.2,Iris-versicolor
|
| 1883 |
+
5.6,3.0,4.1,1.3,Iris-versicolor
|
| 1884 |
+
6.3,2.4,4.6,1.4,Iris-versicolor
|
| 1885 |
+
6.0,2.9,4.5,1.4,Iris-versicolor
|
| 1886 |
+
6.2,2.2,4.1,1.1,Iris-versicolor
|
| 1887 |
+
6.1,2.8,4.6,1.2,Iris-versicolor
|
| 1888 |
+
6.0,3.4,4.5,1.7,Iris-versicolor
|
| 1889 |
+
5.0,2.1,3.4,1.0,Iris-versicolor
|
| 1890 |
+
6.5,2.8,4.6,1.5,Iris-versicolor
|
| 1891 |
+
6.5,2.8,4.6,1.4,Iris-versicolor
|
| 1892 |
+
6.5,2.9,4.3,1.4,Iris-versicolor
|
| 1893 |
+
5.6,2.6,4.3,1.2,Iris-versicolor
|
| 1894 |
+
6.2,3.0,4.5,1.4,Iris-versicolor
|
| 1895 |
+
6.1,2.6,5.0,1.6,Iris-versicolor
|
| 1896 |
+
6.8,3.0,5.0,1.7,Iris-versicolor
|
| 1897 |
+
6.1,2.8,4.6,1.3,Iris-versicolor
|
| 1898 |
+
6.7,3.1,4.5,1.4,Iris-versicolor
|
| 1899 |
+
7.0,3.2,4.6,1.4,Iris-versicolor
|
| 1900 |
+
4.9,2.2,3.4,1.0,Iris-versicolor
|
| 1901 |
+
5.7,2.6,3.6,1.0,Iris-versicolor
|
| 1902 |
+
5.2,2.3,3.4,1.0,Iris-versicolor
|
| 1903 |
+
6.7,3.1,4.6,1.5,Iris-versicolor
|
| 1904 |
+
6.3,3.3,4.6,1.6,Iris-versicolor
|
| 1905 |
+
5.4,2.4,3.6,1.0,Iris-versicolor
|
| 1906 |
+
5.5,2.4,3.9,1.3,Iris-versicolor
|
| 1907 |
+
5.6,2.5,3.9,1.1,Iris-versicolor
|
| 1908 |
+
6.2,2.6,5.0,1.5,Iris-versicolor
|
| 1909 |
+
5.8,2.8,4.5,1.4,Iris-versicolor
|
| 1910 |
+
6.7,3.1,4.5,1.4,Iris-versicolor
|
| 1911 |
+
5.0,2.3,3.4,1.0,Iris-versicolor
|
| 1912 |
+
6.8,3.1,5.0,1.6,Iris-versicolor
|
| 1913 |
+
5.4,3.0,4.5,1.5,Iris-versicolor
|
| 1914 |
+
6.5,2.8,4.6,1.4,Iris-versicolor
|
| 1915 |
+
6.5,2.8,4.6,1.5,Iris-versicolor
|
| 1916 |
+
6.7,3.1,4.6,1.5,Iris-versicolor
|
| 1917 |
+
6.1,2.9,4.6,1.4,Iris-versicolor
|
| 1918 |
+
6.2,2.2,4.1,1.1,Iris-versicolor
|
| 1919 |
+
6.1,2.6,5.0,1.6,Iris-versicolor
|
| 1920 |
+
5.0,2.4,3.1,1.0,Iris-versicolor
|
| 1921 |
+
6.7,2.9,4.6,1.4,Iris-versicolor
|
| 1922 |
+
6.1,2.2,4.1,1.0,Iris-versicolor
|
| 1923 |
+
6.2,2.2,4.5,1.5,Iris-versicolor
|
| 1924 |
+
6.1,2.2,4.3,1.3,Iris-versicolor
|
| 1925 |
+
5.7,2.8,4.3,1.3,Iris-versicolor
|
| 1926 |
+
6.1,2.9,4.6,1.4,Iris-versicolor
|
| 1927 |
+
6.8,3.1,5.0,1.7,Iris-versicolor
|
| 1928 |
+
6.1,2.4,4.3,1.3,Iris-versicolor
|
| 1929 |
+
6.7,2.9,4.6,1.4,Iris-versicolor
|
| 1930 |
+
5.4,2.5,3.8,1.3,Iris-versicolor
|
| 1931 |
+
5.6,2.5,3.6,1.0,Iris-versicolor
|
| 1932 |
+
5.8,3.1,4.6,1.7,Iris-versicolor
|
| 1933 |
+
5.5,2.5,3.9,1.3,Iris-versicolor
|
| 1934 |
+
5.7,2.9,4.3,1.3,Iris-versicolor
|
| 1935 |
+
5.9,3.2,4.8,1.8,Iris-versicolor
|
| 1936 |
+
5.7,2.7,4.1,1.3,Iris-versicolor
|
| 1937 |
+
5.8,2.6,3.9,1.2,Iris-versicolor
|
| 1938 |
+
6.9,3.1,4.6,1.4,Iris-versicolor
|
| 1939 |
+
6.5,2.9,4.3,1.4,Iris-versicolor
|
| 1940 |
+
5.5,2.7,4.1,1.4,Iris-versicolor
|
| 1941 |
+
6.2,2.9,4.6,1.4,Iris-versicolor
|
| 1942 |
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
| 1943 |
+
6.2,2.2,4.5,1.5,Iris-versicolor
|
| 1944 |
+
6.8,3.1,4.8,1.5,Iris-versicolor
|
| 1945 |
+
6.6,3.0,4.5,1.4,Iris-versicolor
|
| 1946 |
+
5.4,3.0,4.5,1.5,Iris-versicolor
|
| 1947 |
+
5.9,3.0,4.3,1.5,Iris-versicolor
|
| 1948 |
+
5.8,2.7,3.9,1.2,Iris-versicolor
|
| 1949 |
+
5.9,3.0,4.3,1.5,Iris-versicolor
|
| 1950 |
+
6.7,3.1,4.8,1.6,Iris-versicolor
|
| 1951 |
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
| 1952 |
+
5.6,2.5,3.9,1.1,Iris-versicolor
|
| 1953 |
+
5.6,2.5,3.9,1.1,Iris-versicolor
|
| 1954 |
+
6.1,2.8,4.1,1.4,Iris-versicolor
|
| 1955 |
+
5.7,2.9,4.3,1.3,Iris-versicolor
|
| 1956 |
+
5.8,2.8,4.1,1.1,Iris-versicolor
|
| 1957 |
+
6.1,2.8,3.9,1.3,Iris-versicolor
|
| 1958 |
+
6.2,2.9,4.6,1.4,Iris-versicolor
|
| 1959 |
+
4.9,2.4,3.2,1.0,Iris-versicolor
|
| 1960 |
+
5.3,2.2,3.8,1.2,Iris-versicolor
|
| 1961 |
+
5.2,2.3,3.4,1.0,Iris-versicolor
|
| 1962 |
+
6.1,2.4,4.3,1.3,Iris-versicolor
|
| 1963 |
+
5.8,3.0,4.3,1.4,Iris-versicolor
|
| 1964 |
+
5.8,3.0,4.3,1.5,Iris-versicolor
|
| 1965 |
+
5.8,2.2,4.3,1.4,Iris-versicolor
|
| 1966 |
+
5.7,3.0,4.1,1.3,Iris-versicolor
|
| 1967 |
+
6.8,3.1,4.8,1.5,Iris-versicolor
|
| 1968 |
+
5.5,2.6,4.3,1.3,Iris-versicolor
|
| 1969 |
+
6.9,3.2,4.6,1.4,Iris-versicolor
|
| 1970 |
+
6.5,2.9,4.5,1.3,Iris-versicolor
|
| 1971 |
+
5.5,2.6,4.5,1.2,Iris-versicolor
|
| 1972 |
+
6.7,3.1,4.6,1.5,Iris-versicolor
|
| 1973 |
+
6.2,2.9,4.3,1.4,Iris-versicolor
|
| 1974 |
+
6.1,2.9,4.8,1.4,Iris-versicolor
|
| 1975 |
+
5.3,2.6,3.9,1.4,Iris-versicolor
|
| 1976 |
+
6.7,2.9,4.6,1.4,Iris-versicolor
|
| 1977 |
+
5.6,2.8,4.1,1.3,Iris-versicolor
|
| 1978 |
+
5.6,2.9,3.8,1.3,Iris-versicolor
|
| 1979 |
+
6.7,3.1,4.5,1.4,Iris-versicolor
|
| 1980 |
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
| 1981 |
+
6.1,2.9,4.6,1.4,Iris-versicolor
|
| 1982 |
+
6.9,3.2,4.6,1.4,Iris-versicolor
|
| 1983 |
+
6.0,3.4,4.5,1.6,Iris-versicolor
|
| 1984 |
+
5.5,2.5,4.1,1.3,Iris-versicolor
|
| 1985 |
+
5.8,2.7,3.9,1.1,Iris-versicolor
|
| 1986 |
+
5.5,2.4,3.9,1.3,Iris-versicolor
|
| 1987 |
+
6.4,2.6,4.8,1.5,Iris-versicolor
|
| 1988 |
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
| 1989 |
+
6.0,2.7,5.2,1.6,Iris-versicolor
|
| 1990 |
+
6.0,3.4,4.5,1.6,Iris-versicolor
|
| 1991 |
+
6.7,3.1,4.5,1.4,Iris-versicolor
|
| 1992 |
+
5.4,3.0,4.5,1.5,Iris-versicolor
|
| 1993 |
+
5.0,2.4,3.4,1.0,Iris-versicolor
|
| 1994 |
+
5.0,2.4,3.1,1.0,Iris-versicolor
|
| 1995 |
+
6.0,2.8,3.9,1.3,Iris-versicolor
|
| 1996 |
+
6.7,3.1,4.6,1.4,Iris-versicolor
|
| 1997 |
+
5.2,2.7,3.9,1.4,Iris-versicolor
|
| 1998 |
+
5.8,2.8,4.5,1.4,Iris-versicolor
|
| 1999 |
+
5.9,3.2,4.8,1.7,Iris-versicolor
|
| 2000 |
+
5.9,3.1,4.3,1.5,Iris-versicolor
|
| 2001 |
+
5.7,3.0,4.1,1.2,Iris-versicolor
|
| 2002 |
+
6.6,3.3,5.7,2.1,Iris-virginica
|
| 2003 |
+
6.3,2.8,5.5,2.1,Iris-virginica
|
| 2004 |
+
6.7,3.1,5.5,2.3,Iris-virginica
|
| 2005 |
+
6.4,3.4,5.5,2.4,Iris-virginica
|
| 2006 |
+
6.6,3.0,5.5,2.3,Iris-virginica
|
| 2007 |
+
6.5,3.0,5.2,2.0,Iris-virginica
|
| 2008 |
+
6.5,3.3,5.5,2.2,Iris-virginica
|
| 2009 |
+
6.9,3.2,5.7,2.3,Iris-virginica
|
| 2010 |
+
6.4,3.1,5.5,1.8,Iris-virginica
|
| 2011 |
+
6.5,3.1,5.2,2.0,Iris-virginica
|
| 2012 |
+
6.0,3.0,5.3,1.8,Iris-virginica
|
| 2013 |
+
7.2,2.9,6.0,1.7,Iris-virginica
|
| 2014 |
+
6.4,3.1,5.5,1.8,Iris-virginica
|
| 2015 |
+
6.7,3.1,5.5,2.3,Iris-virginica
|
| 2016 |
+
7.2,3.6,6.0,2.5,Iris-virginica
|
| 2017 |
+
5.8,2.6,5.0,2.1,Iris-virginica
|
| 2018 |
+
6.5,3.2,5.2,2.1,Iris-virginica
|
| 2019 |
+
6.4,2.8,5.3,2.0,Iris-virginica
|
| 2020 |
+
6.5,3.0,5.5,2.1,Iris-virginica
|
| 2021 |
+
5.8,2.7,5.2,1.9,Iris-virginica
|
| 2022 |
+
6.8,3.2,5.7,2.2,Iris-virginica
|
| 2023 |
+
7.6,2.8,6.4,2.0,Iris-virginica
|
| 2024 |
+
6.2,3.4,5.5,2.3,Iris-virginica
|
| 2025 |
+
7.2,3.0,5.9,1.6,Iris-virginica
|
| 2026 |
+
6.8,3.0,5.2,2.3,Iris-virginica
|
| 2027 |
+
6.3,3.4,5.7,2.4,Iris-virginica
|
| 2028 |
+
7.3,2.9,6.2,1.8,Iris-virginica
|
| 2029 |
+
7.0,3.1,5.7,2.1,Iris-virginica
|
| 2030 |
+
6.4,3.1,5.5,1.8,Iris-virginica
|
| 2031 |
+
6.3,2.7,5.2,1.8,Iris-virginica
|
| 2032 |
+
6.6,3.0,5.5,2.0,Iris-virginica
|
| 2033 |
+
6.0,2.9,5.0,1.8,Iris-virginica
|
| 2034 |
+
6.4,2.8,5.5,2.1,Iris-virginica
|
| 2035 |
+
6.1,2.2,5.0,1.6,Iris-virginica
|
| 2036 |
+
5.6,2.8,4.8,2.0,Iris-virginica
|
| 2037 |
+
6.3,2.6,5.0,1.9,Iris-virginica
|
| 2038 |
+
6.7,3.3,5.7,2.2,Iris-virginica
|
| 2039 |
+
6.4,2.8,5.7,2.2,Iris-virginica
|
| 2040 |
+
5.9,3.0,5.2,1.8,Iris-virginica
|
| 2041 |
+
7.6,3.0,6.6,2.1,Iris-virginica
|
| 2042 |
+
6.9,3.1,5.5,2.2,Iris-virginica
|
| 2043 |
+
7.6,3.5,6.2,1.9,Iris-virginica
|
| 2044 |
+
7.7,2.6,6.9,2.3,Iris-virginica
|
| 2045 |
+
6.8,3.1,5.5,2.4,Iris-virginica
|
| 2046 |
+
6.3,3.1,5.2,1.8,Iris-virginica
|
| 2047 |
+
7.2,2.9,6.0,1.7,Iris-virginica
|
| 2048 |
+
6.0,3.0,4.8,1.8,Iris-virginica
|
| 2049 |
+
6.3,2.9,5.3,1.8,Iris-virginica
|
| 2050 |
+
6.2,2.8,4.8,1.8,Iris-virginica
|
| 2051 |
+
6.4,2.8,5.7,2.1,Iris-virginica
|
| 2052 |
+
6.2,2.8,4.8,1.8,Iris-virginica
|
| 2053 |
+
5.9,3.0,5.0,1.8,Iris-virginica
|
| 2054 |
+
6.4,2.8,5.7,2.2,Iris-virginica
|
| 2055 |
+
6.1,2.6,5.5,1.4,Iris-virginica
|
| 2056 |
+
6.3,2.4,5.0,1.8,Iris-virginica
|
| 2057 |
+
6.4,2.8,5.5,2.2,Iris-virginica
|
| 2058 |
+
5.0,2.4,4.6,1.7,Iris-virginica
|
| 2059 |
+
5.8,2.7,5.2,1.9,Iris-virginica
|
| 2060 |
+
6.8,3.1,5.3,2.2,Iris-virginica
|
| 2061 |
+
7.2,3.0,6.0,2.0,Iris-virginica
|
| 2062 |
+
7.5,2.8,6.2,2.0,Iris-virginica
|
| 2063 |
+
6.9,3.2,5.7,2.3,Iris-virginica
|
| 2064 |
+
6.4,3.2,5.2,2.2,Iris-virginica
|
| 2065 |
+
6.5,3.0,5.5,1.8,Iris-virginica
|
| 2066 |
+
7.6,3.0,6.6,2.0,Iris-virginica
|
| 2067 |
+
6.7,2.5,5.7,1.8,Iris-virginica
|
| 2068 |
+
6.6,3.0,5.7,2.2,Iris-virginica
|
| 2069 |
+
6.5,2.5,5.3,1.9,Iris-virginica
|
| 2070 |
+
5.7,2.5,5.0,2.0,Iris-virginica
|
| 2071 |
+
7.5,2.8,6.0,2.0,Iris-virginica
|
| 2072 |
+
7.3,2.8,6.0,2.0,Iris-virginica
|
| 2073 |
+
6.5,3.1,5.2,2.0,Iris-virginica
|
| 2074 |
+
7.5,3.0,6.6,2.0,Iris-virginica
|
| 2075 |
+
6.8,3.3,5.7,2.2,Iris-virginica
|
| 2076 |
+
6.5,3.3,5.9,2.5,Iris-virginica
|
| 2077 |
+
6.9,3.1,5.5,2.1,Iris-virginica
|
| 2078 |
+
6.7,3.0,5.2,2.3,Iris-virginica
|
| 2079 |
+
6.3,2.7,5.2,1.8,Iris-virginica
|
| 2080 |
+
6.4,2.9,5.7,2.2,Iris-virginica
|
| 2081 |
+
6.2,2.8,4.8,1.8,Iris-virginica
|
| 2082 |
+
6.2,2.6,5.3,1.5,Iris-virginica
|
| 2083 |
+
7.7,2.9,6.7,2.1,Iris-virginica
|
| 2084 |
+
6.3,2.7,5.0,1.7,Iris-virginica
|
| 2085 |
+
6.1,2.6,5.5,1.4,Iris-virginica
|
| 2086 |
+
5.8,2.8,5.2,2.2,Iris-virginica
|
| 2087 |
+
6.6,3.0,5.7,2.2,Iris-virginica
|
| 2088 |
+
6.4,2.8,5.5,2.1,Iris-virginica
|
| 2089 |
+
6.4,2.7,5.2,1.8,Iris-virginica
|
| 2090 |
+
6.4,2.8,5.3,2.0,Iris-virginica
|
| 2091 |
+
6.7,2.5,5.7,1.8,Iris-virginica
|
| 2092 |
+
5.8,2.7,5.2,1.9,Iris-virginica
|
| 2093 |
+
6.3,2.8,5.2,1.5,Iris-virginica
|
| 2094 |
+
6.8,3.2,5.9,2.3,Iris-virginica
|
| 2095 |
+
6.2,2.8,4.8,1.8,Iris-virginica
|
| 2096 |
+
6.1,2.7,5.0,1.9,Iris-virginica
|
| 2097 |
+
6.7,2.5,5.9,1.8,Iris-virginica
|
| 2098 |
+
6.5,3.0,5.2,2.0,Iris-virginica
|
| 2099 |
+
6.8,3.1,5.2,2.3,Iris-virginica
|
| 2100 |
+
7.6,3.0,6.6,2.1,Iris-virginica
|
| 2101 |
+
5.9,2.5,5.0,2.0,Iris-virginica
|
| 2102 |
+
6.9,3.2,5.7,2.3,Iris-virginica
|
| 2103 |
+
6.4,3.1,5.5,1.8,Iris-virginica
|
| 2104 |
+
6.7,2.5,5.7,1.8,Iris-virginica
|
| 2105 |
+
6.2,2.8,4.8,1.8,Iris-virginica
|
| 2106 |
+
6.8,3.1,5.3,2.1,Iris-virginica
|
| 2107 |
+
6.3,3.4,5.7,2.3,Iris-virginica
|
| 2108 |
+
7.3,2.8,6.2,1.9,Iris-virginica
|
| 2109 |
+
7.1,3.0,5.9,2.1,Iris-virginica
|
| 2110 |
+
6.4,3.4,5.5,2.4,Iris-virginica
|
| 2111 |
+
6.8,3.1,5.3,2.3,Iris-virginica
|
| 2112 |
+
5.7,2.7,5.0,1.9,Iris-virginica
|
| 2113 |
+
6.1,2.3,5.0,1.6,Iris-virginica
|
| 2114 |
+
7.3,2.9,6.2,1.8,Iris-virginica
|
| 2115 |
+
6.9,3.1,5.2,2.2,Iris-virginica
|
| 2116 |
+
6.6,2.5,5.5,1.8,Iris-virginica
|
| 2117 |
+
7.2,3.1,5.9,1.7,Iris-virginica
|
| 2118 |
+
4.9,2.5,4.5,1.7,Iris-virginica
|
| 2119 |
+
5.6,2.7,5.0,1.9,Iris-virginica
|
| 2120 |
+
7.7,3.8,6.7,2.2,Iris-virginica
|
| 2121 |
+
5.9,2.5,5.0,2.0,Iris-virginica
|
| 2122 |
+
7.7,2.8,6.7,2.2,Iris-virginica
|
| 2123 |
+
6.4,2.8,5.5,2.1,Iris-virginica
|
| 2124 |
+
6.3,3.4,5.9,2.4,Iris-virginica
|
| 2125 |
+
6.3,2.7,5.0,1.7,Iris-virginica
|
| 2126 |
+
6.4,2.8,5.5,2.2,Iris-virginica
|
| 2127 |
+
6.8,3.2,5.9,2.3,Iris-virginica
|
| 2128 |
+
7.2,3.1,6.0,1.7,Iris-virginica
|
| 2129 |
+
6.8,3.0,5.5,2.1,Iris-virginica
|
| 2130 |
+
6.7,3.1,5.5,2.4,Iris-virginica
|
| 2131 |
+
7.2,3.1,6.0,1.9,Iris-virginica
|
| 2132 |
+
5.8,2.8,5.2,2.4,Iris-virginica
|
| 2133 |
+
6.3,3.1,5.2,1.8,Iris-virginica
|
| 2134 |
+
7.7,3.7,6.6,2.1,Iris-virginica
|
| 2135 |
+
6.4,2.8,5.7,2.2,Iris-virginica
|
| 2136 |
+
6.5,2.5,5.3,1.9,Iris-virginica
|
| 2137 |
+
7.7,2.9,6.7,2.1,Iris-virginica
|
| 2138 |
+
7.2,3.0,5.9,1.6,Iris-virginica
|
| 2139 |
+
6.2,2.7,5.2,1.7,Iris-virginica
|
| 2140 |
+
6.4,2.7,5.3,1.9,Iris-virginica
|
| 2141 |
+
6.4,2.9,5.5,2.0,Iris-virginica
|
| 2142 |
+
6.2,2.8,5.3,2.2,Iris-virginica
|
| 2143 |
+
6.3,3.3,6.0,2.5,Iris-virginica
|
| 2144 |
+
6.7,3.3,5.7,2.3,Iris-virginica
|
| 2145 |
+
5.8,2.6,5.0,2.0,Iris-virginica
|
| 2146 |
+
7.4,2.9,6.4,1.9,Iris-virginica
|
| 2147 |
+
6.5,3.0,5.5,1.8,Iris-virginica
|
| 2148 |
+
7.2,2.9,6.2,1.7,Iris-virginica
|
| 2149 |
+
7.2,3.0,6.2,1.8,Iris-virginica
|
| 2150 |
+
6.3,2.8,5.5,2.1,Iris-virginica
|
| 2151 |
+
6.4,3.1,5.5,1.8,Iris-virginica
|
| 2152 |
+
7.7,2.9,6.7,2.0,Iris-virginica
|
| 2153 |
+
6.1,3.0,5.0,1.8,Iris-virginica
|
| 2154 |
+
6.7,3.1,5.5,2.4,Iris-virginica
|
| 2155 |
+
6.1,3.0,4.8,1.8,Iris-virginica
|
| 2156 |
+
6.3,2.9,5.5,1.9,Iris-virginica
|
| 2157 |
+
5.7,2.8,5.0,2.0,Iris-virginica
|
| 2158 |
+
7.2,3.1,5.9,1.7,Iris-virginica
|
| 2159 |
+
6.4,2.7,5.3,1.9,Iris-virginica
|
| 2160 |
+
6.2,3.1,5.2,1.8,Iris-virginica
|
| 2161 |
+
6.4,2.8,5.5,2.2,Iris-virginica
|
| 2162 |
+
6.5,3.0,5.2,2.0,Iris-virginica
|
| 2163 |
+
7.2,3.1,5.9,1.7,Iris-virginica
|
| 2164 |
+
6.4,2.8,5.7,2.1,Iris-virginica
|
| 2165 |
+
7.2,2.9,6.2,2.0,Iris-virginica
|
| 2166 |
+
6.3,3.3,5.9,2.5,Iris-virginica
|
| 2167 |
+
6.7,3.0,5.2,2.3,Iris-virginica
|
| 2168 |
+
6.3,3.1,5.3,1.8,Iris-virginica
|
| 2169 |
+
6.3,3.1,5.5,1.8,Iris-virginica
|
| 2170 |
+
6.4,2.8,5.3,2.0,Iris-virginica
|
| 2171 |
+
6.5,3.0,5.5,1.8,Iris-virginica
|
| 2172 |
+
6.4,3.3,5.9,2.5,Iris-virginica
|
| 2173 |
+
7.5,2.8,6.6,1.9,Iris-virginica
|
| 2174 |
+
7.4,3.6,6.2,2.0,Iris-virginica
|
| 2175 |
+
6.8,3.1,5.7,2.2,Iris-virginica
|
| 2176 |
+
6.5,3.2,5.2,2.0,Iris-virginica
|
| 2177 |
+
6.3,2.7,5.0,1.7,Iris-virginica
|
| 2178 |
+
5.7,2.7,5.0,1.9,Iris-virginica
|
| 2179 |
+
6.5,3.0,5.2,2.0,Iris-virginica
|
| 2180 |
+
6.4,3.2,5.3,2.3,Iris-virginica
|
| 2181 |
+
6.5,3.0,5.9,2.2,Iris-virginica
|
| 2182 |
+
6.9,3.1,5.3,2.3,Iris-virginica
|
| 2183 |
+
7.2,3.1,5.9,1.7,Iris-virginica
|
| 2184 |
+
7.2,3.6,6.2,2.4,Iris-virginica
|
| 2185 |
+
6.4,3.4,5.7,2.3,Iris-virginica
|
| 2186 |
+
6.3,2.8,5.0,1.7,Iris-virginica
|
| 2187 |
+
6.1,2.9,5.0,1.8,Iris-virginica
|
| 2188 |
+
6.5,3.0,5.3,1.9,Iris-virginica
|
| 2189 |
+
7.0,3.1,5.7,2.1,Iris-virginica
|
| 2190 |
+
5.8,2.8,5.2,2.4,Iris-virginica
|
| 2191 |
+
7.7,3.0,6.0,2.3,Iris-virginica
|
| 2192 |
+
7.3,2.9,6.0,1.8,Iris-virginica
|
| 2193 |
+
6.4,2.8,5.5,2.1,Iris-virginica
|
| 2194 |
+
5.7,2.5,5.0,2.0,Iris-virginica
|
| 2195 |
+
6.5,3.4,5.7,2.3,Iris-virginica
|
| 2196 |
+
6.3,2.5,5.0,1.9,Iris-virginica
|
| 2197 |
+
6.5,3.0,5.9,2.2,Iris-virginica
|
| 2198 |
+
6.8,3.0,5.5,2.0,Iris-virginica
|
| 2199 |
+
6.6,3.1,5.7,2.3,Iris-virginica
|
| 2200 |
+
7.7,3.0,6.4,2.1,Iris-virginica
|
| 2201 |
+
6.3,3.1,5.3,1.8,Iris-virginica
|
| 2202 |
+
6.8,3.2,5.9,2.3,Iris-virginica
|
| 2203 |
+
6.5,3.0,5.9,2.2,Iris-virginica
|
| 2204 |
+
6.8,3.1,5.3,2.2,Iris-virginica
|
| 2205 |
+
6.4,2.8,5.7,2.1,Iris-virginica
|
| 2206 |
+
6.1,3.0,5.0,1.8,Iris-virginica
|
| 2207 |
+
5.6,2.7,5.0,1.9,Iris-virginica
|
| 2208 |
+
6.6,3.0,5.5,2.3,Iris-virginica
|
| 2209 |
+
7.2,2.9,6.0,2.0,Iris-virginica
|
| 2210 |
+
6.6,3.2,5.3,2.0,Iris-virginica
|
| 2211 |
+
7.7,3.0,6.0,2.3,Iris-virginica
|
| 2212 |
+
7.3,2.9,6.4,1.8,Iris-virginica
|
| 2213 |
+
6.0,2.7,5.0,1.9,Iris-virginica
|
| 2214 |
+
6.5,2.5,5.3,1.9,Iris-virginica
|
| 2215 |
+
6.8,3.0,5.5,2.1,Iris-virginica
|
| 2216 |
+
6.6,3.0,5.7,2.2,Iris-virginica
|
| 2217 |
+
6.5,3.0,5.2,2.0,Iris-virginica
|
| 2218 |
+
6.3,2.8,5.5,2.0,Iris-virginica
|
| 2219 |
+
6.4,2.8,5.3,2.0,Iris-virginica
|
| 2220 |
+
7.7,2.6,6.9,2.3,Iris-virginica
|
| 2221 |
+
6.8,3.3,5.7,2.1,Iris-virginica
|
| 2222 |
+
7.2,2.9,6.2,2.0,Iris-virginica
|
| 2223 |
+
6.3,2.7,5.2,1.9,Iris-virginica
|
| 2224 |
+
6.5,3.0,5.2,2.0,Iris-virginica
|
| 2225 |
+
6.3,2.8,5.5,2.0,Iris-virginica
|
| 2226 |
+
6.1,3.0,4.8,1.8,Iris-virginica
|
| 2227 |
+
6.3,2.7,5.2,1.9,Iris-virginica
|
| 2228 |
+
6.9,3.2,5.7,2.3,Iris-virginica
|
| 2229 |
+
6.5,3.3,5.9,2.5,Iris-virginica
|
| 2230 |
+
6.9,3.2,5.7,2.3,Iris-virginica
|
| 2231 |
+
6.2,2.8,4.8,1.8,Iris-virginica
|
| 2232 |
+
6.4,3.1,5.5,1.8,Iris-virginica
|
| 2233 |
+
5.7,2.8,5.0,2.0,Iris-virginica
|
| 2234 |
+
6.0,3.0,4.8,1.8,Iris-virginica
|
| 2235 |
+
6.8,3.2,5.9,2.3,Iris-virginica
|
| 2236 |
+
7.0,3.1,5.5,2.0,Iris-virginica
|
| 2237 |
+
6.1,3.0,5.0,1.8,Iris-virginica
|
| 2238 |
+
6.3,2.9,5.3,1.8,Iris-virginica
|
| 2239 |
+
6.0,2.6,5.3,1.6,Iris-virginica
|
| 2240 |
+
6.3,2.5,5.0,1.9,Iris-virginica
|
| 2241 |
+
7.2,3.0,5.9,1.8,Iris-virginica
|
| 2242 |
+
6.0,3.0,5.0,1.8,Iris-virginica
|
| 2243 |
+
6.2,2.8,4.8,1.8,Iris-virginica
|
| 2244 |
+
6.8,3.1,5.3,2.1,Iris-virginica
|
| 2245 |
+
6.6,3.3,5.9,2.5,Iris-virginica
|
| 2246 |
+
7.2,3.0,5.9,1.7,Iris-virginica
|
| 2247 |
+
6.2,3.0,5.0,1.8,Iris-virginica
|
| 2248 |
+
7.2,3.0,6.0,2.0,Iris-virginica
|
| 2249 |
+
7.3,2.9,6.2,1.8,Iris-virginica
|
| 2250 |
+
6.1,2.4,5.0,1.6,Iris-virginica
|
| 2251 |
+
6.8,3.1,5.3,2.3,Iris-virginica
|
| 2252 |
+
6.4,3.4,5.5,2.2,Iris-virginica
|
| 2253 |
+
6.3,3.3,5.5,2.3,Iris-virginica
|
| 2254 |
+
7.7,2.7,6.7,2.2,Iris-virginica
|
| 2255 |
+
6.3,2.6,5.0,1.9,Iris-virginica
|
| 2256 |
+
6.0,2.6,5.3,1.6,Iris-virginica
|
| 2257 |
+
7.2,3.0,6.0,2.0,Iris-virginica
|
| 2258 |
+
7.7,2.9,6.7,2.0,Iris-virginica
|
| 2259 |
+
6.3,3.1,5.5,1.8,Iris-virginica
|
| 2260 |
+
6.5,3.0,5.5,2.1,Iris-virginica
|
| 2261 |
+
6.3,3.4,5.7,2.4,Iris-virginica
|
| 2262 |
+
6.7,3.0,5.2,2.3,Iris-virginica
|
| 2263 |
+
6.8,3.1,5.3,2.3,Iris-virginica
|
| 2264 |
+
6.4,3.1,5.3,1.9,Iris-virginica
|
| 2265 |
+
6.8,3.2,5.9,2.3,Iris-virginica
|
| 2266 |
+
6.4,2.9,5.5,2.0,Iris-virginica
|
| 2267 |
+
6.9,3.2,5.7,2.3,Iris-virginica
|
| 2268 |
+
7.4,2.8,6.0,1.9,Iris-virginica
|
| 2269 |
+
6.3,2.9,5.5,1.8,Iris-virginica
|
| 2270 |
+
6.8,3.1,5.7,2.3,Iris-virginica
|
| 2271 |
+
7.7,2.9,6.6,2.0,Iris-virginica
|
| 2272 |
+
6.7,3.0,5.5,2.0,Iris-virginica
|
| 2273 |
+
7.7,3.0,6.4,2.1,Iris-virginica
|
| 2274 |
+
6.6,2.5,5.7,1.7,Iris-virginica
|
| 2275 |
+
6.8,3.1,5.5,2.2,Iris-virginica
|
| 2276 |
+
6.8,3.0,5.5,2.1,Iris-virginica
|
| 2277 |
+
7.0,3.1,5.7,2.1,Iris-virginica
|
| 2278 |
+
6.4,3.1,5.3,1.9,Iris-virginica
|
| 2279 |
+
6.3,2.9,5.5,1.8,Iris-virginica
|
| 2280 |
+
6.5,3.2,5.2,2.0,Iris-virginica
|
| 2281 |
+
6.8,3.0,5.5,2.1,Iris-virginica
|
| 2282 |
+
7.5,2.9,6.2,2.0,Iris-virginica
|
| 2283 |
+
6.6,3.0,5.7,2.2,Iris-virginica
|
| 2284 |
+
6.8,3.0,5.5,2.1,Iris-virginica
|
| 2285 |
+
6.3,2.9,5.5,1.8,Iris-virginica
|
| 2286 |
+
5.8,2.7,5.2,1.9,Iris-virginica
|
| 2287 |
+
7.2,3.2,6.0,1.8,Iris-virginica
|
| 2288 |
+
6.8,3.3,5.9,2.4,Iris-virginica
|
| 2289 |
+
6.8,3.2,5.9,2.3,Iris-virginica
|
| 2290 |
+
6.0,2.2,5.0,1.5,Iris-virginica
|
| 2291 |
+
6.8,3.1,5.7,2.4,Iris-virginica
|
| 2292 |
+
5.9,3.0,5.0,1.8,Iris-virginica
|
| 2293 |
+
6.0,2.6,5.3,1.6,Iris-virginica
|
| 2294 |
+
6.3,2.5,5.0,1.9,Iris-virginica
|
| 2295 |
+
6.8,3.3,5.7,2.4,Iris-virginica
|
| 2296 |
+
7.3,2.9,6.4,1.8,Iris-virginica
|
| 2297 |
+
5.8,2.6,5.0,2.0,Iris-virginica
|
| 2298 |
+
7.7,2.8,6.7,2.2,Iris-virginica
|
| 2299 |
+
6.3,3.1,5.5,1.8,Iris-virginica
|
| 2300 |
+
5.9,2.5,5.0,2.0,Iris-virginica
|
| 2301 |
+
6.4,3.1,5.3,1.9,Iris-virginica
|
| 2302 |
+
6.1,2.4,5.0,1.6,Iris-virginica
|
| 2303 |
+
7.1,3.4,5.9,2.4,Iris-virginica
|
| 2304 |
+
6.4,3.1,5.5,1.8,Iris-virginica
|
| 2305 |
+
6.0,2.2,5.0,1.5,Iris-virginica
|
| 2306 |
+
6.3,2.8,5.5,2.1,Iris-virginica
|
| 2307 |
+
7.4,3.0,6.4,2.0,Iris-virginica
|
| 2308 |
+
7.3,3.4,6.2,1.9,Iris-virginica
|
| 2309 |
+
6.9,3.2,5.7,2.3,Iris-virginica
|
| 2310 |
+
7.3,2.8,6.2,1.9,Iris-virginica
|
| 2311 |
+
7.2,3.6,6.2,2.4,Iris-virginica
|
| 2312 |
+
6.3,2.8,4.8,1.8,Iris-virginica
|
| 2313 |
+
5.9,2.8,5.2,2.3,Iris-virginica
|
| 2314 |
+
6.3,3.1,5.2,1.8,Iris-virginica
|
| 2315 |
+
6.0,2.8,5.0,1.9,Iris-virginica
|
| 2316 |
+
6.3,2.8,5.2,1.5,Iris-virginica
|
| 2317 |
+
6.7,3.2,5.9,2.3,Iris-virginica
|
| 2318 |
+
7.7,3.3,6.6,2.0,Iris-virginica
|
| 2319 |
+
5.8,3.0,5.0,1.9,Iris-virginica
|
| 2320 |
+
7.6,3.5,6.2,1.9,Iris-virginica
|
| 2321 |
+
7.7,3.0,6.0,2.3,Iris-virginica
|
| 2322 |
+
6.6,3.3,5.5,2.0,Iris-virginica
|
| 2323 |
+
7.7,3.0,6.0,2.3,Iris-virginica
|
| 2324 |
+
5.7,2.8,5.0,2.0,Iris-virginica
|
| 2325 |
+
6.7,3.0,5.5,2.0,Iris-virginica
|
| 2326 |
+
6.1,3.0,4.8,1.8,Iris-virginica
|
| 2327 |
+
6.3,2.8,4.8,1.8,Iris-virginica
|
| 2328 |
+
6.8,3.0,5.5,2.1,Iris-virginica
|
| 2329 |
+
7.2,3.5,6.0,2.0,Iris-virginica
|
| 2330 |
+
5.8,2.2,5.0,1.5,Iris-virginica
|
| 2331 |
+
7.2,3.0,6.2,1.8,Iris-virginica
|
| 2332 |
+
6.4,2.8,5.5,2.2,Iris-virginica
|
| 2333 |
+
6.3,2.8,5.0,1.6,Iris-virginica
|
| 2334 |
+
6.4,2.8,5.5,2.1,Iris-virginica
|
| 2335 |
+
6.8,3.3,5.7,2.4,Iris-virginica
|
| 2336 |
+
6.5,3.1,5.2,2.0,Iris-virginica
|
| 2337 |
+
6.8,3.1,5.5,2.1,Iris-virginica
|
| 2338 |
+
7.6,3.5,6.2,1.9,Iris-virginica
|
| 2339 |
+
7.2,3.0,6.0,1.7,Iris-virginica
|
| 2340 |
+
6.8,3.3,5.9,2.2,Iris-virginica
|
| 2341 |
+
6.5,3.0,5.9,2.2,Iris-virginica
|
| 2342 |
+
5.1,2.5,4.6,1.7,Iris-virginica
|
| 2343 |
+
6.6,3.0,5.5,2.3,Iris-virginica
|
| 2344 |
+
5.8,2.7,5.2,2.0,Iris-virginica
|
| 2345 |
+
7.2,3.1,5.9,1.7,Iris-virginica
|
| 2346 |
+
6.3,2.8,5.0,1.8,Iris-virginica
|
| 2347 |
+
5.7,2.8,5.0,2.0,Iris-virginica
|
| 2348 |
+
7.3,2.9,6.2,1.8,Iris-virginica
|
| 2349 |
+
7.7,3.8,6.7,2.2,Iris-virginica
|
| 2350 |
+
6.4,2.8,5.3,2.0,Iris-virginica
|
| 2351 |
+
7.5,3.4,6.2,1.9,Iris-virginica
|
| 2352 |
+
7.0,3.3,5.9,2.3,Iris-virginica
|
| 2353 |
+
6.5,3.0,5.9,2.2,Iris-virginica
|
| 2354 |
+
6.3,2.7,5.2,1.9,Iris-virginica
|
| 2355 |
+
7.0,3.1,5.5,2.0,Iris-virginica
|
| 2356 |
+
6.6,3.1,5.7,2.3,Iris-virginica
|
| 2357 |
+
6.7,3.1,5.5,2.4,Iris-virginica
|
| 2358 |
+
7.2,3.0,6.2,1.8,Iris-virginica
|
| 2359 |
+
6.4,3.4,5.7,2.3,Iris-virginica
|
| 2360 |
+
6.9,3.1,5.5,2.2,Iris-virginica
|
| 2361 |
+
5.8,2.6,5.0,2.2,Iris-virginica
|
| 2362 |
+
6.3,3.3,5.3,2.3,Iris-virginica
|
| 2363 |
+
6.4,2.8,5.5,2.2,Iris-virginica
|
| 2364 |
+
6.6,3.3,5.5,2.0,Iris-virginica
|
| 2365 |
+
6.5,3.1,5.2,2.0,Iris-virginica
|
| 2366 |
+
6.9,3.1,5.5,2.2,Iris-virginica
|
| 2367 |
+
7.5,2.9,6.4,2.0,Iris-virginica
|
| 2368 |
+
7.2,3.0,6.0,1.7,Iris-virginica
|
| 2369 |
+
5.8,2.7,5.2,1.9,Iris-virginica
|
| 2370 |
+
7.7,3.0,6.6,2.1,Iris-virginica
|
| 2371 |
+
6.4,2.9,5.5,2.1,Iris-virginica
|
| 2372 |
+
6.4,3.1,5.3,1.9,Iris-virginica
|
| 2373 |
+
6.8,3.3,5.7,2.1,Iris-virginica
|
| 2374 |
+
6.3,2.9,5.5,1.8,Iris-virginica
|
| 2375 |
+
6.3,3.4,5.5,2.4,Iris-virginica
|
| 2376 |
+
6.0,2.7,5.0,1.9,Iris-virginica
|
| 2377 |
+
6.7,2.5,5.9,1.8,Iris-virginica
|
| 2378 |
+
6.9,3.2,5.7,2.3,Iris-virginica
|
| 2379 |
+
6.3,3.1,5.3,1.8,Iris-virginica
|
| 2380 |
+
6.6,3.3,5.7,2.5,Iris-virginica
|
| 2381 |
+
7.1,3.0,5.9,2.1,Iris-virginica
|
| 2382 |
+
6.4,2.8,5.3,2.0,Iris-virginica
|
| 2383 |
+
5.8,2.7,5.2,1.9,Iris-virginica
|
| 2384 |
+
6.5,2.5,5.3,1.9,Iris-virginica
|
| 2385 |
+
6.2,3.0,5.2,1.8,Iris-virginica
|
| 2386 |
+
7.2,3.1,5.9,2.0,Iris-virginica
|
| 2387 |
+
6.1,2.8,4.8,1.8,Iris-virginica
|
| 2388 |
+
6.3,2.7,5.0,1.8,Iris-virginica
|
| 2389 |
+
6.3,3.0,5.5,1.8,Iris-virginica
|
| 2390 |
+
6.6,3.3,5.9,2.5,Iris-virginica
|
| 2391 |
+
6.8,3.1,5.3,2.3,Iris-virginica
|
| 2392 |
+
6.8,3.0,5.5,2.1,Iris-virginica
|
| 2393 |
+
5.7,2.5,5.0,2.0,Iris-virginica
|
| 2394 |
+
7.1,3.4,5.9,2.0,Iris-virginica
|
| 2395 |
+
6.0,2.8,5.0,1.9,Iris-virginica
|
| 2396 |
+
6.8,3.0,5.5,2.1,Iris-virginica
|
| 2397 |
+
6.4,2.8,5.7,2.1,Iris-virginica
|
| 2398 |
+
6.4,3.1,5.3,1.9,Iris-virginica
|
| 2399 |
+
6.3,2.7,4.8,1.8,Iris-virginica
|
| 2400 |
+
6.3,2.7,5.0,1.8,Iris-virginica
|
| 2401 |
+
6.8,3.1,5.5,2.2,Iris-virginica
|
| 2402 |
+
7.0,3.1,5.5,2.0,Iris-virginica
|
| 2403 |
+
6.3,3.1,5.3,1.8,Iris-virginica
|
| 2404 |
+
6.7,3.1,5.3,2.3,Iris-virginica
|
| 2405 |
+
6.7,3.1,5.5,2.3,Iris-virginica
|
| 2406 |
+
6.3,2.6,5.7,1.6,Iris-virginica
|
| 2407 |
+
7.5,3.0,6.0,2.2,Iris-virginica
|
| 2408 |
+
6.8,3.2,5.9,2.3,Iris-virginica
|
| 2409 |
+
7.7,3.8,6.7,2.2,Iris-virginica
|
| 2410 |
+
6.8,3.3,5.7,2.1,Iris-virginica
|
| 2411 |
+
6.7,2.5,5.9,1.8,Iris-virginica
|
| 2412 |
+
7.5,2.8,6.6,1.9,Iris-virginica
|
| 2413 |
+
4.9,2.5,4.5,1.7,Iris-virginica
|
| 2414 |
+
6.2,2.9,4.8,1.8,Iris-virginica
|
| 2415 |
+
6.5,3.0,5.3,2.0,Iris-virginica
|
| 2416 |
+
6.8,3.1,5.3,2.1,Iris-virginica
|
| 2417 |
+
6.0,2.9,5.0,1.8,Iris-virginica
|
| 2418 |
+
6.3,2.7,5.3,1.7,Iris-virginica
|
| 2419 |
+
6.0,3.0,4.8,1.8,Iris-virginica
|
| 2420 |
+
6.4,3.4,5.7,2.3,Iris-virginica
|
| 2421 |
+
6.6,3.0,5.5,2.0,Iris-virginica
|
| 2422 |
+
7.1,3.0,5.9,2.1,Iris-virginica
|
| 2423 |
+
7.4,2.8,6.2,1.9,Iris-virginica
|
| 2424 |
+
6.3,3.3,5.9,2.5,Iris-virginica
|
| 2425 |
+
7.5,3.0,6.0,2.2,Iris-virginica
|
| 2426 |
+
7.4,2.9,6.4,1.9,Iris-virginica
|
| 2427 |
+
6.3,2.9,5.5,1.9,Iris-virginica
|
| 2428 |
+
6.4,2.9,5.7,2.2,Iris-virginica
|
| 2429 |
+
7.3,2.8,6.2,1.9,Iris-virginica
|
| 2430 |
+
5.7,2.8,5.0,2.0,Iris-virginica
|
| 2431 |
+
6.4,2.8,5.5,2.2,Iris-virginica
|
| 2432 |
+
7.7,3.0,6.0,2.3,Iris-virginica
|
| 2433 |
+
6.4,2.8,5.5,2.1,Iris-virginica
|
| 2434 |
+
6.3,2.8,5.0,1.6,Iris-virginica
|
| 2435 |
+
6.4,3.2,5.2,2.2,Iris-virginica
|
| 2436 |
+
6.2,2.8,4.8,1.8,Iris-virginica
|
| 2437 |
+
7.7,2.7,6.7,2.3,Iris-virginica
|
| 2438 |
+
5.6,2.8,4.8,2.0,Iris-virginica
|
| 2439 |
+
6.4,2.8,5.5,2.1,Iris-virginica
|
| 2440 |
+
7.2,3.6,6.2,2.2,Iris-virginica
|
| 2441 |
+
6.4,3.1,5.5,1.8,Iris-virginica
|
| 2442 |
+
6.8,3.2,5.9,2.3,Iris-virginica
|
| 2443 |
+
5.8,2.7,5.0,1.9,Iris-virginica
|
| 2444 |
+
5.9,3.0,5.0,1.8,Iris-virginica
|
| 2445 |
+
6.8,3.1,5.3,2.2,Iris-virginica
|
| 2446 |
+
7.7,2.9,6.7,2.1,Iris-virginica
|
| 2447 |
+
6.0,3.0,5.0,1.8,Iris-virginica
|
| 2448 |
+
6.2,2.8,4.8,1.8,Iris-virginica
|
| 2449 |
+
6.9,3.1,5.2,2.2,Iris-virginica
|
| 2450 |
+
6.6,3.0,5.5,2.0,Iris-virginica
|
| 2451 |
+
6.9,3.2,5.7,2.3,Iris-virginica
|
| 2452 |
+
7.7,3.0,6.0,2.3,Iris-virginica
|
| 2453 |
+
7.7,2.6,6.9,2.3,Iris-virginica
|
| 2454 |
+
5.9,2.5,5.0,2.0,Iris-virginica
|
| 2455 |
+
6.2,2.6,5.5,1.6,Iris-virginica
|
| 2456 |
+
6.5,3.0,5.2,2.0,Iris-virginica
|
| 2457 |
+
6.3,2.9,5.5,1.8,Iris-virginica
|
| 2458 |
+
7.5,2.8,6.2,2.0,Iris-virginica
|
| 2459 |
+
7.1,3.0,5.9,2.1,Iris-virginica
|
| 2460 |
+
6.6,3.3,5.7,2.5,Iris-virginica
|
| 2461 |
+
6.3,2.3,5.3,1.7,Iris-virginica
|
| 2462 |
+
7.5,2.8,6.6,1.9,Iris-virginica
|
| 2463 |
+
6.4,3.1,5.5,1.8,Iris-virginica
|
| 2464 |
+
6.2,3.4,5.3,2.3,Iris-virginica
|
| 2465 |
+
6.8,3.2,5.9,2.4,Iris-virginica
|
| 2466 |
+
6.5,3.0,5.5,1.8,Iris-virginica
|
| 2467 |
+
6.8,3.1,5.7,2.3,Iris-virginica
|
| 2468 |
+
6.8,3.3,5.9,2.4,Iris-virginica
|
| 2469 |
+
6.8,3.1,5.3,2.1,Iris-virginica
|
| 2470 |
+
6.5,3.0,5.2,2.0,Iris-virginica
|
| 2471 |
+
6.7,3.0,5.2,2.3,Iris-virginica
|
| 2472 |
+
5.8,2.6,5.0,2.1,Iris-virginica
|
| 2473 |
+
6.7,2.5,5.7,1.8,Iris-virginica
|
| 2474 |
+
6.3,3.1,5.3,1.8,Iris-virginica
|
| 2475 |
+
6.4,2.8,5.5,2.1,Iris-virginica
|
| 2476 |
+
6.2,3.0,5.0,1.8,Iris-virginica
|
| 2477 |
+
6.3,3.4,5.5,2.4,Iris-virginica
|
| 2478 |
+
5.9,2.8,5.2,2.3,Iris-virginica
|
| 2479 |
+
7.2,3.5,6.0,2.0,Iris-virginica
|
| 2480 |
+
7.7,2.9,6.6,2.0,Iris-virginica
|
| 2481 |
+
6.0,3.0,5.0,1.8,Iris-virginica
|
| 2482 |
+
7.2,3.5,6.2,2.1,Iris-virginica
|
| 2483 |
+
7.8,3.8,6.6,2.1,Iris-virginica
|
| 2484 |
+
6.3,3.1,5.3,1.8,Iris-virginica
|
| 2485 |
+
6.3,3.1,5.2,1.8,Iris-virginica
|
| 2486 |
+
6.1,2.8,5.3,2.3,Iris-virginica
|
| 2487 |
+
6.3,2.6,5.2,1.9,Iris-virginica
|
| 2488 |
+
6.3,3.2,5.3,2.3,Iris-virginica
|
| 2489 |
+
6.3,2.6,5.0,1.9,Iris-virginica
|
| 2490 |
+
6.3,2.8,5.5,2.0,Iris-virginica
|
| 2491 |
+
7.5,3.0,6.6,2.0,Iris-virginica
|
| 2492 |
+
6.3,3.4,5.9,2.5,Iris-virginica
|
| 2493 |
+
6.0,2.9,5.0,1.8,Iris-virginica
|
| 2494 |
+
6.1,2.6,5.5,1.4,Iris-virginica
|
| 2495 |
+
7.1,3.0,5.9,2.1,Iris-virginica
|
| 2496 |
+
7.1,3.0,5.7,2.1,Iris-virginica
|
| 2497 |
+
7.7,3.8,6.7,2.2,Iris-virginica
|
| 2498 |
+
6.8,3.1,5.7,2.4,Iris-virginica
|
| 2499 |
+
6.3,3.3,5.9,2.5,Iris-virginica
|
| 2500 |
+
6.8,3.2,5.9,2.3,Iris-virginica
|
| 2501 |
+
6.5,2.4,5.5,1.7,Iris-virginica
|
| 2502 |
+
7.1,3.0,5.9,2.1,Iris-virginica
|
| 2503 |
+
6.4,2.8,5.3,2.0,Iris-virginica
|
| 2504 |
+
7.3,2.8,6.0,2.0,Iris-virginica
|
| 2505 |
+
6.4,2.8,5.5,2.1,Iris-virginica
|
| 2506 |
+
5.8,2.7,5.2,1.9,Iris-virginica
|
| 2507 |
+
6.7,3.3,5.7,2.2,Iris-virginica
|
| 2508 |
+
6.3,2.7,5.0,1.7,Iris-virginica
|
| 2509 |
+
6.2,2.5,5.0,1.9,Iris-virginica
|
| 2510 |
+
6.3,3.4,5.7,2.4,Iris-virginica
|
| 2511 |
+
6.3,2.7,5.3,1.7,Iris-virginica
|
| 2512 |
+
6.7,3.3,5.7,2.4,Iris-virginica
|
| 2513 |
+
7.5,2.8,6.6,2.0,Iris-virginica
|
| 2514 |
+
7.7,2.9,6.7,2.0,Iris-virginica
|
| 2515 |
+
7.0,3.1,5.7,2.1,Iris-virginica
|
| 2516 |
+
6.3,2.7,5.0,1.8,Iris-virginica
|
| 2517 |
+
6.2,2.8,4.8,1.8,Iris-virginica
|
| 2518 |
+
6.8,3.0,5.5,2.1,Iris-virginica
|
| 2519 |
+
7.2,3.1,5.9,1.7,Iris-virginica
|
| 2520 |
+
6.5,3.0,5.3,1.9,Iris-virginica
|
| 2521 |
+
7.4,2.8,6.0,1.9,Iris-virginica
|
| 2522 |
+
6.3,3.4,5.5,2.3,Iris-virginica
|
| 2523 |
+
6.7,2.5,5.9,1.8,Iris-virginica
|
| 2524 |
+
6.0,3.0,4.8,1.8,Iris-virginica
|
| 2525 |
+
6.5,3.0,5.2,2.0,Iris-virginica
|
| 2526 |
+
7.7,2.6,6.9,2.3,Iris-virginica
|
| 2527 |
+
6.3,2.8,5.3,1.7,Iris-virginica
|
| 2528 |
+
6.4,2.8,5.7,2.2,Iris-virginica
|
| 2529 |
+
5.8,3.0,5.0,1.8,Iris-virginica
|
| 2530 |
+
6.3,3.3,5.3,2.3,Iris-virginica
|
| 2531 |
+
5.7,2.8,5.0,2.2,Iris-virginica
|
| 2532 |
+
7.5,3.6,6.4,2.3,Iris-virginica
|
| 2533 |
+
7.3,2.9,6.4,1.8,Iris-virginica
|
| 2534 |
+
6.8,3.0,5.5,2.0,Iris-virginica
|
| 2535 |
+
6.0,3.0,4.8,1.8,Iris-virginica
|
| 2536 |
+
6.3,2.8,5.0,1.7,Iris-virginica
|
| 2537 |
+
6.3,2.8,5.5,2.0,Iris-virginica
|
| 2538 |
+
7.7,3.0,6.0,2.3,Iris-virginica
|
| 2539 |
+
6.5,3.2,5.2,2.1,Iris-virginica
|
| 2540 |
+
6.0,2.2,5.0,1.5,Iris-virginica
|
| 2541 |
+
6.5,3.0,5.5,1.8,Iris-virginica
|
| 2542 |
+
7.7,2.9,6.7,2.1,Iris-virginica
|
| 2543 |
+
6.8,3.2,5.9,2.4,Iris-virginica
|
| 2544 |
+
7.6,3.0,6.0,2.3,Iris-virginica
|
| 2545 |
+
6.8,3.0,5.5,2.1,Iris-virginica
|
| 2546 |
+
6.9,3.1,5.2,2.3,Iris-virginica
|
| 2547 |
+
6.4,3.2,5.2,2.2,Iris-virginica
|
| 2548 |
+
6.3,3.1,5.3,1.8,Iris-virginica
|
| 2549 |
+
6.3,3.3,5.9,2.5,Iris-virginica
|
| 2550 |
+
6.9,3.1,5.5,2.1,Iris-virginica
|
| 2551 |
+
6.3,3.3,5.3,2.3,Iris-virginica
|
| 2552 |
+
6.4,3.0,5.3,2.0,Iris-virginica
|
| 2553 |
+
7.4,2.8,6.2,1.9,Iris-virginica
|
| 2554 |
+
6.1,2.3,5.0,1.6,Iris-virginica
|
| 2555 |
+
6.6,2.6,5.7,1.9,Iris-virginica
|
| 2556 |
+
6.2,2.5,5.0,1.9,Iris-virginica
|
| 2557 |
+
6.9,3.2,5.5,2.3,Iris-virginica
|
| 2558 |
+
5.1,2.5,4.6,1.7,Iris-virginica
|
| 2559 |
+
7.7,2.8,6.6,2.3,Iris-virginica
|
| 2560 |
+
6.3,2.5,5.0,1.9,Iris-virginica
|
| 2561 |
+
6.3,2.9,5.3,1.8,Iris-virginica
|
| 2562 |
+
7.5,2.7,6.4,2.0,Iris-virginica
|
| 2563 |
+
6.4,2.8,5.3,2.0,Iris-virginica
|
| 2564 |
+
6.1,2.2,5.0,1.6,Iris-virginica
|
| 2565 |
+
6.5,2.4,5.5,1.7,Iris-virginica
|
| 2566 |
+
7.2,3.0,6.2,1.8,Iris-virginica
|
| 2567 |
+
6.7,3.3,5.7,2.3,Iris-virginica
|
| 2568 |
+
7.4,2.8,6.0,1.9,Iris-virginica
|
| 2569 |
+
7.7,2.6,6.9,2.3,Iris-virginica
|
| 2570 |
+
6.4,3.1,5.5,1.8,Iris-virginica
|
| 2571 |
+
6.0,3.0,4.8,1.8,Iris-virginica
|
| 2572 |
+
7.2,3.1,5.9,2.0,Iris-virginica
|
| 2573 |
+
7.5,2.8,6.4,2.0,Iris-virginica
|
| 2574 |
+
6.5,3.2,5.2,2.0,Iris-virginica
|
| 2575 |
+
6.1,2.8,5.3,2.3,Iris-virginica
|
| 2576 |
+
7.8,3.8,6.6,2.1,Iris-virginica
|
| 2577 |
+
7.7,2.8,6.7,2.2,Iris-virginica
|
| 2578 |
+
7.5,2.9,6.4,2.0,Iris-virginica
|
| 2579 |
+
6.3,2.7,5.2,1.9,Iris-virginica
|
| 2580 |
+
6.5,3.0,5.9,2.2,Iris-virginica
|
| 2581 |
+
6.6,3.3,5.7,2.1,Iris-virginica
|
| 2582 |
+
5.3,2.6,4.8,1.8,Iris-virginica
|
| 2583 |
+
7.5,3.6,6.4,2.3,Iris-virginica
|
| 2584 |
+
6.0,2.7,5.0,1.9,Iris-virginica
|
| 2585 |
+
7.0,3.1,5.7,2.1,Iris-virginica
|
| 2586 |
+
6.0,2.8,5.0,1.9,Iris-virginica
|
| 2587 |
+
6.9,3.2,5.7,2.3,Iris-virginica
|
| 2588 |
+
6.3,2.5,5.0,1.9,Iris-virginica
|
| 2589 |
+
5.8,3.0,5.0,1.8,Iris-virginica
|
| 2590 |
+
6.8,3.2,5.7,2.3,Iris-virginica
|
| 2591 |
+
6.3,2.8,5.0,1.8,Iris-virginica
|
| 2592 |
+
6.6,3.0,5.5,2.3,Iris-virginica
|
| 2593 |
+
7.2,3.2,6.0,1.8,Iris-virginica
|
| 2594 |
+
6.8,3.0,5.5,2.1,Iris-virginica
|
| 2595 |
+
6.8,3.1,5.7,2.4,Iris-virginica
|
| 2596 |
+
6.4,2.9,5.7,2.1,Iris-virginica
|
| 2597 |
+
6.2,2.8,4.8,1.8,Iris-virginica
|
| 2598 |
+
7.2,3.6,6.2,2.2,Iris-virginica
|
| 2599 |
+
6.6,3.3,5.7,2.5,Iris-virginica
|
| 2600 |
+
5.9,3.0,5.2,1.8,Iris-virginica
|
| 2601 |
+
6.1,2.8,4.8,1.8,Iris-virginica
|
| 2602 |
+
7.9,3.8,6.4,2.0,Iris-virginica
|
| 2603 |
+
7.5,2.8,6.6,1.9,Iris-virginica
|
| 2604 |
+
7.1,3.1,5.7,1.8,Iris-virginica
|
| 2605 |
+
6.6,3.0,5.7,2.2,Iris-virginica
|
| 2606 |
+
7.7,2.7,6.7,2.1,Iris-virginica
|
| 2607 |
+
6.5,3.1,5.2,2.0,Iris-virginica
|
| 2608 |
+
7.4,3.6,6.0,2.0,Iris-virginica
|
| 2609 |
+
5.3,2.6,4.6,1.8,Iris-virginica
|
| 2610 |
+
7.0,3.1,5.9,2.2,Iris-virginica
|
| 2611 |
+
6.8,3.1,5.7,2.3,Iris-virginica
|
| 2612 |
+
6.3,2.8,5.3,1.8,Iris-virginica
|
| 2613 |
+
6.4,3.1,5.5,1.8,Iris-virginica
|
| 2614 |
+
6.5,3.0,5.3,1.9,Iris-virginica
|
| 2615 |
+
6.9,3.0,5.7,2.1,Iris-virginica
|
| 2616 |
+
7.5,3.4,6.2,1.9,Iris-virginica
|
| 2617 |
+
6.6,3.0,5.7,2.2,Iris-virginica
|
| 2618 |
+
6.3,2.8,5.2,1.5,Iris-virginica
|
| 2619 |
+
7.7,3.8,6.6,2.3,Iris-virginica
|
| 2620 |
+
6.3,3.0,5.5,1.8,Iris-virginica
|
| 2621 |
+
6.8,3.1,5.2,2.3,Iris-virginica
|
| 2622 |
+
6.3,3.1,5.3,1.8,Iris-virginica
|
| 2623 |
+
7.3,2.9,6.4,1.8,Iris-virginica
|
| 2624 |
+
6.3,3.3,5.9,2.5,Iris-virginica
|
| 2625 |
+
6.4,2.8,5.5,2.2,Iris-virginica
|
| 2626 |
+
6.6,3.0,5.7,2.2,Iris-virginica
|
| 2627 |
+
6.3,3.4,5.7,2.4,Iris-virginica
|
| 2628 |
+
7.2,3.1,6.0,2.0,Iris-virginica
|
| 2629 |
+
6.3,2.8,5.5,2.3,Iris-virginica
|
| 2630 |
+
7.7,3.0,6.6,2.1,Iris-virginica
|
| 2631 |
+
6.2,2.9,4.8,1.8,Iris-virginica
|
| 2632 |
+
6.8,3.0,5.5,2.1,Iris-virginica
|
| 2633 |
+
7.4,2.8,6.2,1.9,Iris-virginica
|
| 2634 |
+
6.5,3.0,5.7,2.2,Iris-virginica
|
| 2635 |
+
7.6,2.9,6.4,2.0,Iris-virginica
|
| 2636 |
+
6.3,2.9,5.5,1.8,Iris-virginica
|
| 2637 |
+
7.4,3.7,6.2,2.3,Iris-virginica
|
| 2638 |
+
6.7,3.1,5.5,2.3,Iris-virginica
|
| 2639 |
+
6.4,3.1,5.5,1.8,Iris-virginica
|
| 2640 |
+
6.8,3.1,5.5,2.1,Iris-virginica
|
| 2641 |
+
7.3,3.3,6.0,1.8,Iris-virginica
|
| 2642 |
+
6.9,3.2,5.7,2.3,Iris-virginica
|
| 2643 |
+
7.2,3.2,6.0,1.8,Iris-virginica
|
| 2644 |
+
6.3,2.8,4.8,1.8,Iris-virginica
|
| 2645 |
+
6.8,3.1,5.7,2.4,Iris-virginica
|
| 2646 |
+
6.5,3.0,5.2,2.0,Iris-virginica
|
| 2647 |
+
6.3,3.4,5.5,2.4,Iris-virginica
|
| 2648 |
+
6.8,3.1,5.7,2.4,Iris-virginica
|
| 2649 |
+
6.3,2.9,5.5,1.8,Iris-virginica
|
| 2650 |
+
6.8,3.3,5.9,2.4,Iris-virginica
|
| 2651 |
+
7.6,2.8,6.4,2.0,Iris-virginica
|
| 2652 |
+
6.3,2.5,5.0,1.9,Iris-virginica
|
| 2653 |
+
6.8,3.1,5.5,2.3,Iris-virginica
|
| 2654 |
+
6.4,2.8,5.5,2.1,Iris-virginica
|
| 2655 |
+
6.2,2.8,4.8,1.8,Iris-virginica
|
| 2656 |
+
6.3,2.9,5.5,1.8,Iris-virginica
|
| 2657 |
+
6.2,2.8,4.8,1.8,Iris-virginica
|
| 2658 |
+
5.8,2.8,5.2,2.4,Iris-virginica
|
| 2659 |
+
6.9,3.1,5.3,2.3,Iris-virginica
|
| 2660 |
+
5.3,2.6,4.6,1.8,Iris-virginica
|
| 2661 |
+
6.3,2.8,5.3,1.8,Iris-virginica
|
| 2662 |
+
6.7,3.3,5.7,2.2,Iris-virginica
|
| 2663 |
+
7.3,2.9,6.2,1.8,Iris-virginica
|
| 2664 |
+
7.2,3.2,6.0,1.8,Iris-virginica
|
| 2665 |
+
7.2,3.0,6.2,1.8,Iris-virginica
|
| 2666 |
+
6.4,3.1,5.3,1.9,Iris-virginica
|
| 2667 |
+
6.5,3.0,5.9,2.2,Iris-virginica
|
| 2668 |
+
6.5,3.2,5.2,2.0,Iris-virginica
|
| 2669 |
+
7.7,2.8,6.7,2.0,Iris-virginica
|
| 2670 |
+
6.4,2.8,5.7,2.0,Iris-virginica
|
| 2671 |
+
6.2,3.4,5.3,2.3,Iris-virginica
|
| 2672 |
+
6.4,2.8,5.5,2.1,Iris-virginica
|
| 2673 |
+
6.3,3.1,5.2,1.8,Iris-virginica
|
| 2674 |
+
6.5,3.2,5.2,2.1,Iris-virginica
|
| 2675 |
+
6.8,3.1,5.2,2.3,Iris-virginica
|
| 2676 |
+
7.1,3.0,5.9,2.1,Iris-virginica
|
| 2677 |
+
6.7,3.0,5.2,2.3,Iris-virginica
|
| 2678 |
+
6.7,3.0,5.2,2.2,Iris-virginica
|
| 2679 |
+
6.4,2.8,5.7,2.0,Iris-virginica
|
| 2680 |
+
6.6,3.3,5.7,2.5,Iris-virginica
|
| 2681 |
+
6.7,3.0,5.5,2.0,Iris-virginica
|
| 2682 |
+
6.8,3.2,5.9,2.3,Iris-virginica
|
| 2683 |
+
6.4,3.2,5.3,2.3,Iris-virginica
|
| 2684 |
+
7.0,3.2,5.9,2.2,Iris-virginica
|
| 2685 |
+
6.3,2.3,5.3,1.7,Iris-virginica
|
| 2686 |
+
6.4,3.2,5.3,2.3,Iris-virginica
|
| 2687 |
+
6.4,2.8,5.5,2.1,Iris-virginica
|
| 2688 |
+
6.8,3.1,5.7,2.2,Iris-virginica
|
| 2689 |
+
6.3,2.8,5.3,1.7,Iris-virginica
|
| 2690 |
+
7.4,2.8,6.0,1.9,Iris-virginica
|
| 2691 |
+
7.7,2.9,6.6,2.0,Iris-virginica
|
| 2692 |
+
6.5,3.0,5.9,2.2,Iris-virginica
|
| 2693 |
+
7.5,3.0,6.0,2.2,Iris-virginica
|
| 2694 |
+
6.0,2.7,5.0,1.9,Iris-virginica
|
| 2695 |
+
7.6,3.0,6.6,2.1,Iris-virginica
|
| 2696 |
+
6.4,2.8,5.7,2.1,Iris-virginica
|
| 2697 |
+
6.5,3.0,5.5,2.1,Iris-virginica
|
| 2698 |
+
6.9,3.0,5.7,2.1,Iris-virginica
|
| 2699 |
+
7.7,3.8,6.7,2.2,Iris-virginica
|
| 2700 |
+
6.5,3.0,5.5,1.8,Iris-virginica
|
| 2701 |
+
7.2,3.1,6.0,1.7,Iris-virginica
|
| 2702 |
+
6.3,2.5,5.2,1.7,Iris-virginica
|
| 2703 |
+
7.2,3.1,5.9,1.7,Iris-virginica
|
| 2704 |
+
6.2,2.9,4.8,1.8,Iris-virginica
|
| 2705 |
+
6.5,3.4,5.7,2.3,Iris-virginica
|
| 2706 |
+
6.8,3.1,5.3,2.3,Iris-virginica
|
| 2707 |
+
6.5,3.2,5.2,2.0,Iris-virginica
|
| 2708 |
+
6.6,2.5,5.7,1.7,Iris-virginica
|
| 2709 |
+
7.7,3.0,6.2,2.3,Iris-virginica
|
| 2710 |
+
6.1,2.9,4.8,1.8,Iris-virginica
|
| 2711 |
+
6.3,3.1,5.3,1.8,Iris-virginica
|
| 2712 |
+
7.7,2.9,6.7,2.0,Iris-virginica
|
| 2713 |
+
6.1,2.8,4.8,1.8,Iris-virginica
|
| 2714 |
+
5.8,2.7,5.2,1.9,Iris-virginica
|
| 2715 |
+
6.9,3.2,5.7,2.3,Iris-virginica
|
| 2716 |
+
6.8,3.1,5.7,2.4,Iris-virginica
|
| 2717 |
+
6.9,3.1,5.5,2.1,Iris-virginica
|
| 2718 |
+
6.4,2.7,5.3,1.9,Iris-virginica
|
| 2719 |
+
7.8,3.8,6.6,2.1,Iris-virginica
|
| 2720 |
+
6.0,3.0,5.0,1.8,Iris-virginica
|
| 2721 |
+
6.8,3.3,5.7,2.2,Iris-virginica
|
| 2722 |
+
6.3,2.6,5.0,1.9,Iris-virginica
|
| 2723 |
+
6.7,3.3,5.7,2.3,Iris-virginica
|
| 2724 |
+
6.8,3.2,5.9,2.3,Iris-virginica
|
| 2725 |
+
6.1,2.6,5.5,1.4,Iris-virginica
|
| 2726 |
+
6.1,2.3,5.0,1.6,Iris-virginica
|
| 2727 |
+
6.4,3.0,5.5,1.8,Iris-virginica
|
| 2728 |
+
6.4,2.8,5.5,2.0,Iris-virginica
|
| 2729 |
+
7.7,2.9,6.7,2.1,Iris-virginica
|
| 2730 |
+
6.3,2.8,4.8,1.8,Iris-virginica
|
| 2731 |
+
6.3,3.4,5.9,2.4,Iris-virginica
|
| 2732 |
+
6.6,3.0,5.5,2.3,Iris-virginica
|
| 2733 |
+
6.2,3.0,5.0,1.8,Iris-virginica
|
| 2734 |
+
6.9,3.1,5.2,2.2,Iris-virginica
|
| 2735 |
+
7.1,3.5,6.0,2.1,Iris-virginica
|
| 2736 |
+
6.7,3.3,5.7,2.5,Iris-virginica
|
| 2737 |
+
6.3,2.8,5.0,1.7,Iris-virginica
|
| 2738 |
+
5.3,2.6,4.8,1.8,Iris-virginica
|
| 2739 |
+
7.7,2.7,6.7,2.1,Iris-virginica
|
| 2740 |
+
6.8,3.1,5.5,2.1,Iris-virginica
|
| 2741 |
+
5.8,2.7,5.2,1.9,Iris-virginica
|
| 2742 |
+
6.8,3.0,5.5,2.1,Iris-virginica
|
| 2743 |
+
6.5,3.0,5.3,1.9,Iris-virginica
|
| 2744 |
+
7.7,2.8,6.7,2.1,Iris-virginica
|
| 2745 |
+
6.5,3.3,5.9,2.5,Iris-virginica
|
| 2746 |
+
7.1,3.4,5.9,2.0,Iris-virginica
|
| 2747 |
+
5.9,3.0,5.2,1.8,Iris-virginica
|
| 2748 |
+
6.6,3.0,5.5,2.0,Iris-virginica
|
| 2749 |
+
6.7,2.5,5.7,1.8,Iris-virginica
|
| 2750 |
+
6.3,3.0,5.5,1.8,Iris-virginica
|
| 2751 |
+
6.9,3.2,5.5,2.3,Iris-virginica
|
| 2752 |
+
6.5,2.5,5.3,1.9,Iris-virginica
|
| 2753 |
+
6.4,3.1,5.5,1.8,Iris-virginica
|
| 2754 |
+
6.3,3.0,5.5,1.8,Iris-virginica
|
| 2755 |
+
6.4,3.1,5.5,1.8,Iris-virginica
|
| 2756 |
+
6.8,3.1,5.7,2.2,Iris-virginica
|
| 2757 |
+
6.6,3.0,5.7,2.3,Iris-virginica
|
| 2758 |
+
6.3,3.1,5.3,1.8,Iris-virginica
|
| 2759 |
+
4.9,2.5,4.5,1.7,Iris-virginica
|
| 2760 |
+
6.3,2.5,5.2,1.9,Iris-virginica
|
| 2761 |
+
7.4,2.8,6.2,1.9,Iris-virginica
|
| 2762 |
+
6.3,3.1,5.3,1.8,Iris-virginica
|
| 2763 |
+
6.5,3.0,5.5,2.1,Iris-virginica
|
| 2764 |
+
6.3,3.4,5.7,2.4,Iris-virginica
|
| 2765 |
+
6.3,2.9,5.3,1.8,Iris-virginica
|
| 2766 |
+
5.9,3.0,5.0,1.8,Iris-virginica
|
| 2767 |
+
6.3,3.4,5.5,2.4,Iris-virginica
|
| 2768 |
+
6.4,2.7,5.3,1.9,Iris-virginica
|
| 2769 |
+
6.0,2.3,5.2,1.5,Iris-virginica
|
| 2770 |
+
6.3,2.5,5.0,1.9,Iris-virginica
|
| 2771 |
+
7.3,2.9,6.4,1.8,Iris-virginica
|
| 2772 |
+
6.1,3.0,5.0,1.8,Iris-virginica
|
| 2773 |
+
6.3,2.7,5.0,1.7,Iris-virginica
|
| 2774 |
+
5.8,3.0,5.0,1.8,Iris-virginica
|
| 2775 |
+
6.7,3.1,5.7,2.4,Iris-virginica
|
| 2776 |
+
6.9,3.2,5.7,2.3,Iris-virginica
|
| 2777 |
+
7.3,2.9,6.4,1.9,Iris-virginica
|
| 2778 |
+
7.2,3.0,6.0,1.7,Iris-virginica
|
| 2779 |
+
6.0,2.7,5.0,1.9,Iris-virginica
|
| 2780 |
+
6.0,3.0,4.8,1.8,Iris-virginica
|
| 2781 |
+
6.2,2.8,5.3,2.2,Iris-virginica
|
| 2782 |
+
5.9,3.0,5.2,1.8,Iris-virginica
|
| 2783 |
+
7.2,3.0,6.2,1.8,Iris-virginica
|
| 2784 |
+
6.9,3.1,5.5,2.1,Iris-virginica
|
| 2785 |
+
6.8,3.0,5.5,2.1,Iris-virginica
|
| 2786 |
+
7.7,2.6,6.9,2.3,Iris-virginica
|
| 2787 |
+
7.3,3.6,6.2,2.4,Iris-virginica
|
| 2788 |
+
7.2,3.2,6.0,1.8,Iris-virginica
|
| 2789 |
+
7.0,3.0,5.7,2.1,Iris-virginica
|
| 2790 |
+
6.8,3.1,5.7,2.4,Iris-virginica
|
| 2791 |
+
6.9,3.2,5.7,2.3,Iris-virginica
|
| 2792 |
+
6.3,2.8,5.0,1.7,Iris-virginica
|
| 2793 |
+
7.3,3.3,6.0,1.8,Iris-virginica
|
| 2794 |
+
7.6,3.0,6.6,2.0,Iris-virginica
|
| 2795 |
+
6.4,2.9,5.7,2.2,Iris-virginica
|
| 2796 |
+
6.3,2.8,5.5,2.0,Iris-virginica
|
| 2797 |
+
6.0,2.5,5.0,2.0,Iris-virginica
|
| 2798 |
+
6.3,3.3,5.9,2.5,Iris-virginica
|
| 2799 |
+
7.1,3.0,5.9,2.0,Iris-virginica
|
| 2800 |
+
7.7,3.0,6.4,2.1,Iris-virginica
|
| 2801 |
+
7.6,3.0,6.6,2.1,Iris-virginica
|
| 2802 |
+
6.0,3.0,4.8,1.8,Iris-virginica
|
| 2803 |
+
6.7,3.0,5.2,2.3,Iris-virginica
|
| 2804 |
+
6.6,3.3,5.5,2.0,Iris-virginica
|
| 2805 |
+
6.3,2.8,5.5,2.3,Iris-virginica
|
| 2806 |
+
7.6,2.8,6.4,2.0,Iris-virginica
|
| 2807 |
+
6.3,3.1,5.3,1.8,Iris-virginica
|
| 2808 |
+
7.0,3.0,5.7,2.1,Iris-virginica
|
| 2809 |
+
6.7,3.3,5.7,2.1,Iris-virginica
|
| 2810 |
+
6.3,3.1,5.3,1.8,Iris-virginica
|
| 2811 |
+
6.3,2.5,5.2,1.7,Iris-virginica
|
| 2812 |
+
6.1,3.0,4.8,1.8,Iris-virginica
|
| 2813 |
+
7.2,3.0,6.0,2.0,Iris-virginica
|
| 2814 |
+
7.5,3.0,6.6,2.0,Iris-virginica
|
| 2815 |
+
6.7,3.1,5.5,2.4,Iris-virginica
|
| 2816 |
+
6.6,3.3,5.5,2.0,Iris-virginica
|
| 2817 |
+
7.7,3.0,6.2,2.3,Iris-virginica
|
| 2818 |
+
6.0,3.0,4.8,1.8,Iris-virginica
|
| 2819 |
+
6.0,3.0,4.8,1.8,Iris-virginica
|
| 2820 |
+
6.9,3.1,5.2,2.3,Iris-virginica
|
| 2821 |
+
6.9,3.1,5.2,2.3,Iris-virginica
|
| 2822 |
+
6.5,3.0,5.3,1.9,Iris-virginica
|
| 2823 |
+
7.2,3.1,5.9,1.7,Iris-virginica
|
| 2824 |
+
6.4,3.4,5.7,2.3,Iris-virginica
|
| 2825 |
+
6.7,3.0,5.2,2.3,Iris-virginica
|
| 2826 |
+
6.3,2.8,5.2,1.5,Iris-virginica
|
| 2827 |
+
6.9,3.1,5.3,2.2,Iris-virginica
|
| 2828 |
+
7.5,2.8,6.6,1.9,Iris-virginica
|
| 2829 |
+
7.2,2.9,6.0,1.7,Iris-virginica
|
| 2830 |
+
6.3,2.9,5.5,1.8,Iris-virginica
|
| 2831 |
+
5.9,3.0,5.2,1.8,Iris-virginica
|
| 2832 |
+
7.1,3.0,5.9,2.1,Iris-virginica
|
| 2833 |
+
6.3,3.1,5.3,1.8,Iris-virginica
|
| 2834 |
+
6.3,3.0,5.5,1.8,Iris-virginica
|
| 2835 |
+
7.7,2.9,6.4,2.2,Iris-virginica
|
| 2836 |
+
6.7,2.5,5.9,1.8,Iris-virginica
|
| 2837 |
+
7.6,3.7,6.6,2.1,Iris-virginica
|
| 2838 |
+
6.4,2.8,5.5,2.1,Iris-virginica
|
| 2839 |
+
6.8,3.0,5.2,2.3,Iris-virginica
|
| 2840 |
+
6.8,3.1,5.9,2.3,Iris-virginica
|
| 2841 |
+
6.3,2.6,5.0,1.9,Iris-virginica
|
| 2842 |
+
6.8,3.2,5.9,2.3,Iris-virginica
|
| 2843 |
+
7.2,2.9,6.2,1.7,Iris-virginica
|
| 2844 |
+
6.7,3.3,5.7,2.2,Iris-virginica
|
| 2845 |
+
6.3,2.7,5.0,1.8,Iris-virginica
|
| 2846 |
+
7.7,2.9,6.7,2.0,Iris-virginica
|
| 2847 |
+
6.5,3.0,5.9,2.2,Iris-virginica
|
| 2848 |
+
6.5,3.0,5.3,1.9,Iris-virginica
|
| 2849 |
+
6.6,3.1,5.7,2.3,Iris-virginica
|
| 2850 |
+
6.1,2.9,5.0,1.8,Iris-virginica
|
| 2851 |
+
6.3,2.8,5.2,1.5,Iris-virginica
|
| 2852 |
+
6.5,3.0,5.7,2.2,Iris-virginica
|
| 2853 |
+
6.7,3.3,5.7,2.3,Iris-virginica
|
| 2854 |
+
6.4,2.8,5.5,2.1,Iris-virginica
|
| 2855 |
+
6.8,3.1,5.3,2.3,Iris-virginica
|
| 2856 |
+
6.0,2.8,5.0,1.9,Iris-virginica
|
| 2857 |
+
6.6,3.0,5.5,2.3,Iris-virginica
|
| 2858 |
+
6.4,2.7,5.3,1.9,Iris-virginica
|
| 2859 |
+
7.3,2.9,6.4,1.9,Iris-virginica
|
| 2860 |
+
5.8,2.7,5.0,1.9,Iris-virginica
|
| 2861 |
+
6.5,3.0,5.3,2.0,Iris-virginica
|
| 2862 |
+
7.2,3.0,6.2,1.8,Iris-virginica
|
| 2863 |
+
6.9,3.1,5.3,2.1,Iris-virginica
|
| 2864 |
+
5.9,3.0,5.2,1.8,Iris-virginica
|
| 2865 |
+
7.6,3.5,6.2,1.9,Iris-virginica
|
| 2866 |
+
7.7,2.7,6.9,2.3,Iris-virginica
|
| 2867 |
+
6.3,2.7,5.0,1.7,Iris-virginica
|
| 2868 |
+
7.3,2.9,5.9,1.7,Iris-virginica
|
| 2869 |
+
5.3,2.4,4.6,1.7,Iris-virginica
|
| 2870 |
+
6.0,2.2,5.0,1.5,Iris-virginica
|
| 2871 |
+
6.3,2.7,4.8,1.8,Iris-virginica
|
| 2872 |
+
7.3,2.9,6.2,1.8,Iris-virginica
|
| 2873 |
+
7.2,3.0,6.2,1.8,Iris-virginica
|
| 2874 |
+
7.5,2.8,6.6,1.9,Iris-virginica
|
| 2875 |
+
6.8,3.1,5.7,2.4,Iris-virginica
|
| 2876 |
+
6.4,2.8,5.7,2.2,Iris-virginica
|
| 2877 |
+
5.6,2.8,5.0,2.0,Iris-virginica
|
| 2878 |
+
6.5,3.0,5.5,1.8,Iris-virginica
|
| 2879 |
+
6.2,2.7,5.5,1.4,Iris-virginica
|
| 2880 |
+
6.7,3.0,5.3,2.3,Iris-virginica
|
| 2881 |
+
7.7,3.0,6.0,2.3,Iris-virginica
|
| 2882 |
+
5.8,2.7,5.2,1.9,Iris-virginica
|
| 2883 |
+
6.0,3.0,4.8,1.8,Iris-virginica
|
| 2884 |
+
7.7,2.9,6.6,2.0,Iris-virginica
|
| 2885 |
+
5.7,2.6,5.0,2.0,Iris-virginica
|
| 2886 |
+
6.4,3.1,5.3,1.9,Iris-virginica
|
| 2887 |
+
6.3,2.7,5.0,1.8,Iris-virginica
|
| 2888 |
+
6.8,3.2,5.9,2.3,Iris-virginica
|
| 2889 |
+
6.8,3.3,5.9,2.4,Iris-virginica
|
| 2890 |
+
7.3,2.9,6.4,1.8,Iris-virginica
|
| 2891 |
+
6.6,3.0,5.7,2.2,Iris-virginica
|
| 2892 |
+
7.2,3.0,6.2,1.8,Iris-virginica
|
| 2893 |
+
6.8,3.1,5.5,2.4,Iris-virginica
|
| 2894 |
+
6.8,3.1,5.3,2.3,Iris-virginica
|
| 2895 |
+
7.5,2.8,6.2,2.0,Iris-virginica
|
| 2896 |
+
6.1,3.0,5.0,1.8,Iris-virginica
|
| 2897 |
+
6.2,2.5,5.0,2.0,Iris-virginica
|
| 2898 |
+
7.2,3.1,5.9,1.7,Iris-virginica
|
| 2899 |
+
6.3,3.3,6.0,2.5,Iris-virginica
|
| 2900 |
+
6.4,3.1,5.3,1.9,Iris-virginica
|
| 2901 |
+
7.2,3.0,5.9,1.7,Iris-virginica
|
| 2902 |
+
6.8,3.2,5.9,2.3,Iris-virginica
|
| 2903 |
+
6.3,2.9,5.3,1.8,Iris-virginica
|
| 2904 |
+
5.0,2.4,4.6,1.7,Iris-virginica
|
| 2905 |
+
6.3,3.2,5.3,2.3,Iris-virginica
|
| 2906 |
+
6.3,2.8,5.5,2.0,Iris-virginica
|
| 2907 |
+
6.0,2.3,5.2,1.5,Iris-virginica
|
| 2908 |
+
7.6,2.8,6.6,2.0,Iris-virginica
|
| 2909 |
+
7.3,3.0,6.2,2.1,Iris-virginica
|
| 2910 |
+
7.2,3.1,5.9,1.7,Iris-virginica
|
| 2911 |
+
6.8,3.2,5.9,2.3,Iris-virginica
|
| 2912 |
+
7.0,3.1,5.9,2.2,Iris-virginica
|
| 2913 |
+
6.4,3.1,5.5,1.8,Iris-virginica
|
| 2914 |
+
6.6,3.0,5.7,2.2,Iris-virginica
|
| 2915 |
+
6.9,3.2,5.7,2.3,Iris-virginica
|
| 2916 |
+
6.5,3.2,5.2,2.1,Iris-virginica
|
| 2917 |
+
6.4,3.1,5.3,1.9,Iris-virginica
|
| 2918 |
+
6.4,3.1,5.3,1.9,Iris-virginica
|
| 2919 |
+
7.5,2.8,6.2,2.0,Iris-virginica
|
| 2920 |
+
7.2,3.0,6.0,1.7,Iris-virginica
|
| 2921 |
+
6.6,2.6,5.7,1.9,Iris-virginica
|
| 2922 |
+
6.5,3.2,5.2,2.0,Iris-virginica
|
| 2923 |
+
6.5,3.0,5.5,1.8,Iris-virginica
|
| 2924 |
+
6.8,3.0,5.3,2.2,Iris-virginica
|
| 2925 |
+
7.4,3.0,6.4,2.0,Iris-virginica
|
| 2926 |
+
6.4,2.8,5.5,2.2,Iris-virginica
|
| 2927 |
+
6.7,3.2,5.9,2.3,Iris-virginica
|
| 2928 |
+
6.3,3.0,5.5,1.8,Iris-virginica
|
| 2929 |
+
6.3,2.7,4.8,1.8,Iris-virginica
|
| 2930 |
+
6.6,3.3,5.7,2.5,Iris-virginica
|
| 2931 |
+
7.3,3.6,6.0,2.0,Iris-virginica
|
| 2932 |
+
6.9,3.1,5.3,2.3,Iris-virginica
|
| 2933 |
+
7.6,3.0,6.6,2.1,Iris-virginica
|
| 2934 |
+
6.3,2.5,5.0,1.9,Iris-virginica
|
| 2935 |
+
6.9,3.2,5.7,2.3,Iris-virginica
|
| 2936 |
+
6.7,3.3,5.7,2.3,Iris-virginica
|
| 2937 |
+
6.5,2.4,5.5,1.7,Iris-virginica
|
| 2938 |
+
6.3,3.3,5.9,2.5,Iris-virginica
|
| 2939 |
+
7.2,3.0,6.2,1.8,Iris-virginica
|
| 2940 |
+
7.7,3.8,6.6,2.3,Iris-virginica
|
| 2941 |
+
5.8,2.6,5.0,2.1,Iris-virginica
|
| 2942 |
+
6.8,3.2,5.9,2.3,Iris-virginica
|
| 2943 |
+
6.5,3.0,5.5,1.8,Iris-virginica
|
| 2944 |
+
7.2,3.0,6.0,2.0,Iris-virginica
|
| 2945 |
+
7.2,3.2,6.0,1.8,Iris-virginica
|
| 2946 |
+
6.3,3.1,5.3,1.8,Iris-virginica
|
| 2947 |
+
6.3,2.7,5.2,1.9,Iris-virginica
|
| 2948 |
+
6.4,2.8,5.5,2.2,Iris-virginica
|
| 2949 |
+
6.4,2.7,5.3,1.9,Iris-virginica
|
| 2950 |
+
6.4,3.4,5.7,2.4,Iris-virginica
|
| 2951 |
+
5.9,3.0,5.0,1.8,Iris-virginica
|
| 2952 |
+
6.8,3.0,5.5,2.1,Iris-virginica
|
| 2953 |
+
5.7,2.5,5.0,2.0,Iris-virginica
|
| 2954 |
+
6.5,3.0,5.3,2.0,Iris-virginica
|
| 2955 |
+
6.9,3.1,5.2,2.3,Iris-virginica
|
| 2956 |
+
7.5,3.6,6.4,2.3,Iris-virginica
|
| 2957 |
+
6.3,2.8,5.2,1.5,Iris-virginica
|
| 2958 |
+
5.8,2.6,5.0,2.1,Iris-virginica
|
| 2959 |
+
7.3,2.9,6.2,1.8,Iris-virginica
|
| 2960 |
+
6.5,3.1,5.2,2.0,Iris-virginica
|
| 2961 |
+
6.8,3.2,5.9,2.3,Iris-virginica
|
| 2962 |
+
6.3,3.0,5.5,1.8,Iris-virginica
|
| 2963 |
+
6.4,2.8,5.5,2.0,Iris-virginica
|
| 2964 |
+
6.4,2.7,5.3,1.9,Iris-virginica
|
| 2965 |
+
7.7,2.8,6.6,2.3,Iris-virginica
|
| 2966 |
+
6.5,2.5,5.3,1.9,Iris-virginica
|
| 2967 |
+
7.1,3.0,5.9,2.1,Iris-virginica
|
| 2968 |
+
6.7,3.2,5.7,2.4,Iris-virginica
|
| 2969 |
+
6.3,3.3,5.9,2.5,Iris-virginica
|
| 2970 |
+
6.5,2.5,5.3,1.9,Iris-virginica
|
| 2971 |
+
6.7,3.1,5.5,2.4,Iris-virginica
|
| 2972 |
+
6.9,3.1,5.5,2.0,Iris-virginica
|
| 2973 |
+
6.5,3.0,5.7,2.2,Iris-virginica
|
| 2974 |
+
6.3,2.7,5.0,1.7,Iris-virginica
|
| 2975 |
+
7.1,3.4,5.9,2.4,Iris-virginica
|
| 2976 |
+
6.6,2.6,5.7,1.9,Iris-virginica
|
| 2977 |
+
6.8,3.3,5.7,2.4,Iris-virginica
|
| 2978 |
+
5.7,2.8,5.0,2.0,Iris-virginica
|
| 2979 |
+
7.2,3.1,5.9,1.7,Iris-virginica
|
| 2980 |
+
5.9,3.0,5.2,1.8,Iris-virginica
|
| 2981 |
+
5.7,2.5,5.0,2.0,Iris-virginica
|
| 2982 |
+
6.3,3.3,5.9,2.5,Iris-virginica
|
| 2983 |
+
7.7,3.0,6.0,2.3,Iris-virginica
|
| 2984 |
+
6.7,3.0,5.3,2.3,Iris-virginica
|
| 2985 |
+
7.8,3.8,6.6,2.1,Iris-virginica
|
| 2986 |
+
6.3,2.8,5.5,2.0,Iris-virginica
|
| 2987 |
+
7.5,2.8,6.6,1.9,Iris-virginica
|
| 2988 |
+
6.3,2.6,5.0,1.9,Iris-virginica
|
| 2989 |
+
6.3,2.8,5.2,1.5,Iris-virginica
|
| 2990 |
+
5.5,2.8,4.8,2.0,Iris-virginica
|
| 2991 |
+
6.4,3.2,5.2,2.2,Iris-virginica
|
| 2992 |
+
6.1,2.6,5.5,1.4,Iris-virginica
|
| 2993 |
+
7.3,2.9,6.4,1.9,Iris-virginica
|
| 2994 |
+
7.2,3.0,6.0,1.7,Iris-virginica
|
| 2995 |
+
5.7,2.8,5.0,2.2,Iris-virginica
|
| 2996 |
+
7.0,3.1,5.7,2.0,Iris-virginica
|
| 2997 |
+
7.2,3.6,6.0,2.5,Iris-virginica
|
| 2998 |
+
7.3,3.0,6.2,2.1,Iris-virginica
|
| 2999 |
+
6.9,3.2,5.7,2.3,Iris-virginica
|
| 3000 |
+
7.5,2.8,6.0,2.0,Iris-virginica
|
| 3001 |
+
6.7,3.0,5.3,2.3,Iris-virginica
|
data/sample.csv
ADDED
|
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
sepal length,sepal width,petal length,petal width,label
|
| 2 |
+
5.1,3.5,,0.2,Iris-setosa
|
| 3 |
+
4.9,,1.4,0.2,Iris-setosa
|
| 4 |
+
4.7,3.2,1.3,0.2,Iris-setosa
|
| 5 |
+
4.6,3.1,1.5,0.2,Iris-setosa
|
| 6 |
+
5.0,3.6,1.4,0.2,Iris-setosa
|
| 7 |
+
5.4,3.9,1.7,0.4,Iris-setosa
|
| 8 |
+
4.6,3.4,1.4,0.3,Iris-setosa
|
| 9 |
+
5.0,3.4,1.5,0.2,Iris-setosa
|
| 10 |
+
4.4,2.9,1.4,0.2,Iris-setosa
|
| 11 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 12 |
+
5.4,3.7,1.5,0.2,Iris-setosa
|
| 13 |
+
4.8,3.4,1.6,0.2,Iris-setosa
|
| 14 |
+
4.8,3.0,1.4,0.1,Iris-setosa
|
| 15 |
+
4.3,3.0,1.1,0.1,Iris-setosa
|
| 16 |
+
5.8,4.0,1.2,0.2,Iris-setosa
|
| 17 |
+
5.7,4.4,1.5,0.4,Iris-setosa
|
| 18 |
+
5.4,3.9,1.3,0.4,Iris-setosa
|
| 19 |
+
5.1,3.5,1.4,0.3,Iris-setosa
|
| 20 |
+
5.7,3.8,1.7,0.3,Iris-setosa
|
| 21 |
+
5.1,3.8,1.5,0.3,Iris-setosa
|
| 22 |
+
5.4,3.4,1.7,0.2,Iris-setosa
|
| 23 |
+
5.1,3.7,1.5,0.4,Iris-setosa
|
| 24 |
+
4.6,3.6,1.0,0.2,Iris-setosa
|
| 25 |
+
5.1,3.3,1.7,0.5,Iris-setosa
|
| 26 |
+
4.8,3.4,1.9,0.2,Iris-setosa
|
| 27 |
+
5.0,3.0,1.6,0.2,Iris-setosa
|
| 28 |
+
5.0,3.4,1.6,0.4,Iris-setosa
|
| 29 |
+
5.2,3.5,1.5,0.2,Iris-setosa
|
| 30 |
+
5.2,3.4,1.4,0.2,Iris-setosa
|
| 31 |
+
4.7,3.2,1.6,0.2,Iris-setosa
|
| 32 |
+
4.8,3.1,1.6,0.2,Iris-setosa
|
| 33 |
+
5.4,3.4,1.5,0.4,Iris-setosa
|
| 34 |
+
5.2,4.1,1.5,0.1,Iris-setosa
|
| 35 |
+
5.5,4.2,1.4,0.2,Iris-setosa
|
| 36 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 37 |
+
5.0,3.2,1.2,0.2,Iris-setosa
|
| 38 |
+
5.5,3.5,1.3,0.2,Iris-setosa
|
| 39 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
| 40 |
+
4.4,3.0,1.3,0.2,Iris-setosa
|
| 41 |
+
5.1,3.4,1.5,0.2,Iris-setosa
|
| 42 |
+
5.0,3.5,1.3,0.3,Iris-setosa
|
| 43 |
+
4.5,2.3,1.3,0.3,Iris-setosa
|
| 44 |
+
4.4,3.2,1.3,0.2,Iris-setosa
|
| 45 |
+
5.0,3.5,1.6,0.6,Iris-setosa
|
| 46 |
+
5.1,3.8,1.9,0.4,Iris-setosa
|
| 47 |
+
4.8,3.0,1.4,0.3,Iris-setosa
|
| 48 |
+
5.1,3.8,1.6,0.2,Iris-setosa
|
| 49 |
+
4.6,3.2,1.4,0.2,Iris-setosa
|
| 50 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
| 51 |
+
5.0,3.3,1.4,0.2,Iris-setosa
|
| 52 |
+
7.0,3.2,4.7,1.4,Iris-versicolor
|
| 53 |
+
6.4,3.2,4.5,1.5,Iris-versicolor
|
| 54 |
+
6.9,3.1,4.9,1.5,Iris-versicolor
|
| 55 |
+
5.5,2.3,4.0,1.3,Iris-versicolor
|
| 56 |
+
6.5,2.8,4.6,1.5,Iris-versicolor
|
| 57 |
+
5.7,2.8,4.5,1.3,Iris-versicolor
|
| 58 |
+
6.3,3.3,4.7,1.6,Iris-versicolor
|
| 59 |
+
4.9,2.4,3.3,1.0,Iris-versicolor
|
| 60 |
+
6.6,2.9,4.6,1.3,Iris-versicolor
|
| 61 |
+
5.2,2.7,3.9,1.4,Iris-versicolor
|
| 62 |
+
5.0,2.0,3.5,1.0,Iris-versicolor
|
| 63 |
+
5.9,3.0,4.2,1.5,Iris-versicolor
|
| 64 |
+
6.0,2.2,4.0,1.0,Iris-versicolor
|
| 65 |
+
6.1,2.9,4.7,1.4,Iris-versicolor
|
| 66 |
+
5.6,2.9,3.6,1.3,Iris-versicolor
|
| 67 |
+
6.7,3.1,4.4,1.4,Iris-versicolor
|
| 68 |
+
5.6,3.0,4.5,1.5,Iris-versicolor
|
| 69 |
+
5.8,2.7,4.1,1.0,Iris-versicolor
|
| 70 |
+
6.2,2.2,4.5,1.5,Iris-versicolor
|
| 71 |
+
5.6,2.5,3.9,1.1,Iris-versicolor
|
| 72 |
+
5.9,3.2,4.8,1.8,Iris-versicolor
|
| 73 |
+
6.1,2.8,4.0,1.3,Iris-versicolor
|
| 74 |
+
6.3,2.5,4.9,1.5,Iris-versicolor
|
| 75 |
+
6.1,2.8,4.7,1.2,Iris-versicolor
|
| 76 |
+
6.4,2.9,4.3,1.3,Iris-versicolor
|
| 77 |
+
6.6,3.0,4.4,1.4,Iris-versicolor
|
| 78 |
+
6.8,2.8,4.8,1.4,Iris-versicolor
|
| 79 |
+
6.7,3.0,5.0,1.7,Iris-versicolor
|
| 80 |
+
6.0,2.9,4.5,1.5,Iris-versicolor
|
| 81 |
+
5.7,2.6,3.5,1.0,Iris-versicolor
|
| 82 |
+
5.5,2.4,3.8,1.1,Iris-versicolor
|
| 83 |
+
5.5,2.4,3.7,1.0,Iris-versicolor
|
| 84 |
+
5.8,2.7,3.9,1.2,Iris-versicolor
|
| 85 |
+
6.0,2.7,5.1,1.6,Iris-versicolor
|
| 86 |
+
5.4,3.0,4.5,1.5,Iris-versicolor
|
| 87 |
+
6.0,3.4,4.5,1.6,Iris-versicolor
|
| 88 |
+
6.7,3.1,4.7,1.5,Iris-versicolor
|
| 89 |
+
6.3,2.3,4.4,1.3,Iris-versicolor
|
| 90 |
+
5.6,3.0,4.1,1.3,Iris-versicolor
|
| 91 |
+
5.5,2.5,4.0,1.3,Iris-versicolor
|
| 92 |
+
5.5,2.6,4.4,1.2,Iris-versicolor
|
| 93 |
+
6.1,3.0,4.6,1.4,Iris-versicolor
|
| 94 |
+
5.8,2.6,4.0,1.2,Iris-versicolor
|
| 95 |
+
5.0,2.3,3.3,1.0,Iris-versicolor
|
| 96 |
+
5.6,2.7,4.2,1.3,Iris-versicolor
|
| 97 |
+
5.7,3.0,4.2,1.2,Iris-versicolor
|
| 98 |
+
5.7,2.9,4.2,1.3,Iris-versicolor
|
| 99 |
+
6.2,2.9,4.3,1.3,Iris-versicolor
|
| 100 |
+
5.1,2.5,3.0,1.1,Iris-versicolor
|
| 101 |
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
| 102 |
+
6.3,3.3,6.0,2.5,Iris-virginica
|
| 103 |
+
5.8,2.7,5.1,1.9,Iris-virginica
|
| 104 |
+
7.1,3.0,5.9,2.1,Iris-virginica
|
| 105 |
+
6.3,2.9,5.6,1.8,Iris-virginica
|
| 106 |
+
6.5,3.0,5.8,2.2,Iris-virginica
|
| 107 |
+
7.6,3.0,6.6,2.1,Iris-virginica
|
| 108 |
+
4.9,2.5,4.5,1.7,Iris-virginica
|
| 109 |
+
7.3,2.9,6.3,1.8,Iris-virginica
|
| 110 |
+
6.7,2.5,5.8,1.8,Iris-virginica
|
| 111 |
+
7.2,3.6,6.1,2.5,Iris-virginica
|
| 112 |
+
6.5,3.2,5.1,2.0,Iris-virginica
|
| 113 |
+
6.4,2.7,5.3,1.9,Iris-virginica
|
| 114 |
+
6.8,3.0,5.5,2.1,Iris-virginica
|
| 115 |
+
5.7,2.5,5.0,2.0,Iris-virginica
|
| 116 |
+
5.8,2.8,5.1,2.4,Iris-virginica
|
| 117 |
+
6.4,3.2,5.3,2.3,Iris-virginica
|
| 118 |
+
6.5,3.0,5.5,1.8,Iris-virginica
|
| 119 |
+
7.7,3.8,6.7,2.2,Iris-virginica
|
| 120 |
+
7.7,2.6,6.9,2.3,Iris-virginica
|
| 121 |
+
6.0,2.2,5.0,1.5,Iris-virginica
|
| 122 |
+
6.9,3.2,5.7,2.3,Iris-virginica
|
| 123 |
+
5.6,2.8,4.9,2.0,Iris-virginica
|
| 124 |
+
7.7,2.8,6.7,2.0,Iris-virginica
|
| 125 |
+
6.3,2.7,4.9,1.8,Iris-virginica
|
| 126 |
+
6.7,3.3,5.7,2.1,Iris-virginica
|
| 127 |
+
7.2,3.2,6.0,1.8,Iris-virginica
|
| 128 |
+
6.2,2.8,4.8,1.8,Iris-virginica
|
| 129 |
+
6.1,3.0,4.9,1.8,Iris-virginica
|
| 130 |
+
6.4,2.8,5.6,2.1,Iris-virginica
|
| 131 |
+
7.2,3.0,5.8,1.6,Iris-virginica
|
| 132 |
+
7.4,2.8,6.1,1.9,Iris-virginica
|
| 133 |
+
7.9,3.8,6.4,2.0,Iris-virginica
|
| 134 |
+
6.4,2.8,5.6,2.2,Iris-virginica
|
| 135 |
+
6.3,2.8,5.1,1.5,Iris-virginica
|
| 136 |
+
6.1,2.6,5.6,1.4,Iris-virginica
|
| 137 |
+
7.7,3.0,6.1,2.3,Iris-virginica
|
| 138 |
+
6.3,3.4,5.6,2.4,Iris-virginica
|
| 139 |
+
6.4,3.1,5.5,1.8,Iris-virginica
|
| 140 |
+
6.0,3.0,4.8,1.8,Iris-virginica
|
| 141 |
+
6.9,3.1,5.4,2.1,Iris-virginica
|
| 142 |
+
6.7,3.1,5.6,2.4,Iris-virginica
|
| 143 |
+
6.9,3.1,5.1,2.3,Iris-virginica
|
| 144 |
+
5.8,2.7,5.1,1.9,Iris-virginica
|
| 145 |
+
6.8,3.2,5.9,2.3,Iris-virginica
|
| 146 |
+
6.7,3.3,5.7,2.5,Iris-virginica
|
| 147 |
+
6.7,3.0,5.2,2.3,Iris-virginica
|
| 148 |
+
6.3,2.5,5.0,1.9,Iris-virginica
|
| 149 |
+
6.5,3.0,5.2,2.0,Iris-virginica
|
| 150 |
+
6.2,3.4,5.4,2.3,Iris-virginica
|
| 151 |
+
5.9,3.0,5.1,1.8,Iris-virginica
|
| 152 |
+
|
experiments/logs/test.txt.txt
ADDED
|
File without changes
|
requirements.txt
ADDED
|
Binary file (3.23 kB). View file
|
|
|
utils/file_utils.py
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
|
| 3 |
+
def load_csv(file_path):
|
| 4 |
+
try:
|
| 5 |
+
df = pd.read_csv(file_path)
|
| 6 |
+
return df, None
|
| 7 |
+
except Exception as e:
|
| 8 |
+
return None, str(e)
|
| 9 |
+
|
| 10 |
+
def preview_dataframe(df, num_rows=5):
|
| 11 |
+
return df.head(num_rows)
|
| 12 |
+
|
| 13 |
+
def get_column_names(df):
|
| 14 |
+
return list(df.columns)
|
utils/logger.py
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import time
|
| 4 |
+
from datetime import datetime
|
| 5 |
+
import joblib
|
| 6 |
+
import psutil
|
| 7 |
+
import platform
|
| 8 |
+
|
| 9 |
+
try:
|
| 10 |
+
import cpuinfo
|
| 11 |
+
CPU_NAME = cpuinfo.get_cpu_info().get('brand_raw', platform.processor())
|
| 12 |
+
except Exception:
|
| 13 |
+
CPU_NAME = platform.processor()
|
| 14 |
+
|
| 15 |
+
def log_experiment_results(logs, log_dir="experiments/logs/", log_file="experiment_log.jsonl"):
|
| 16 |
+
os.makedirs(log_dir, exist_ok=True)
|
| 17 |
+
log_path = os.path.join(log_dir, log_file)
|
| 18 |
+
with open(log_path, "a") as f:
|
| 19 |
+
for entry in logs:
|
| 20 |
+
f.write(json.dumps(entry) + "\n")
|
| 21 |
+
|
| 22 |
+
def create_log_entry(experiment_title, model_name, hyperparams, dataset_name, preprocessing, metrics, train_time, model_object):
|
| 23 |
+
timestamp = datetime.now().isoformat()
|
| 24 |
+
model_size = get_model_size(model_object)
|
| 25 |
+
cpu_util = psutil.cpu_percent(interval=0.1)
|
| 26 |
+
return {
|
| 27 |
+
"experiment_title": experiment_title,
|
| 28 |
+
"timestamp": timestamp,
|
| 29 |
+
"model": model_name,
|
| 30 |
+
"hyperparameters": hyperparams,
|
| 31 |
+
"dataset": dataset_name,
|
| 32 |
+
"preprocessing": preprocessing,
|
| 33 |
+
"metrics": metrics,
|
| 34 |
+
"training_time_sec": train_time,
|
| 35 |
+
"model_size_bytes": model_size,
|
| 36 |
+
"system_info": {
|
| 37 |
+
"cpu": CPU_NAME,
|
| 38 |
+
"cpu_utilization": cpu_util,
|
| 39 |
+
"memory_used_mb": psutil.Process().memory_info().rss // 1024 ** 2
|
| 40 |
+
}
|
| 41 |
+
}
|
| 42 |
+
|
| 43 |
+
def get_model_size(model):
|
| 44 |
+
temp_path = "experiments/logs/_temp_model.joblib"
|
| 45 |
+
joblib.dump(model, temp_path)
|
| 46 |
+
size = os.path.getsize(temp_path)
|
| 47 |
+
os.remove(temp_path)
|
| 48 |
+
return size
|
utils/preprocessing.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from sklearn.preprocessing import StandardScaler, LabelEncoder
|
| 4 |
+
|
| 5 |
+
def preprocess_data(df, target_col, missing_strategy="drop", transformation_map=None):
|
| 6 |
+
df = df.copy()
|
| 7 |
+
|
| 8 |
+
# 1. Handle missing values
|
| 9 |
+
if missing_strategy == "drop":
|
| 10 |
+
df = df.dropna()
|
| 11 |
+
elif missing_strategy in ["mean", "median"]:
|
| 12 |
+
numeric_cols = df.select_dtypes(include=["number"]).columns
|
| 13 |
+
non_numeric_cols = df.columns.difference(numeric_cols)
|
| 14 |
+
if missing_strategy == "mean":
|
| 15 |
+
df[numeric_cols] = df[numeric_cols].fillna(df[numeric_cols].mean())
|
| 16 |
+
else:
|
| 17 |
+
df[numeric_cols] = df[numeric_cols].fillna(df[numeric_cols].median())
|
| 18 |
+
for col in non_numeric_cols:
|
| 19 |
+
if df[col].isna().sum() > 0:
|
| 20 |
+
df[col] = df[col].fillna(df[col].mode()[0])
|
| 21 |
+
elif missing_strategy == "mode":
|
| 22 |
+
for col in df.columns:
|
| 23 |
+
if df[col].isna().sum() > 0:
|
| 24 |
+
df[col] = df[col].fillna(df[col].mode()[0])
|
| 25 |
+
|
| 26 |
+
# 2. Apply feature transformations
|
| 27 |
+
if transformation_map:
|
| 28 |
+
for col, transform in transformation_map.items():
|
| 29 |
+
if transform == "Label Encode":
|
| 30 |
+
if df[col].dtype == "object" or str(df[col].dtype).startswith("category"):
|
| 31 |
+
df[col] = LabelEncoder().fit_transform(df[col])
|
| 32 |
+
else:
|
| 33 |
+
df[col] = LabelEncoder().fit_transform(df[col].astype(str))
|
| 34 |
+
elif transform == "Normalize":
|
| 35 |
+
scaler = StandardScaler()
|
| 36 |
+
df[[col]] = scaler.fit_transform(df[[col]])
|
| 37 |
+
# "No Transformation" = leave column as is
|
| 38 |
+
|
| 39 |
+
# 3. Label encode target column if it's a string
|
| 40 |
+
if target_col and target_col in df.columns:
|
| 41 |
+
if df[target_col].dtype == "object" or str(df[target_col].dtype).startswith("category"):
|
| 42 |
+
df[target_col] = LabelEncoder().fit_transform(df[target_col])
|
| 43 |
+
|
| 44 |
+
return df
|
| 45 |
+
|
utils/split.py
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from sklearn.model_selection import train_test_split
|
| 2 |
+
|
| 3 |
+
def split_data(df, target_col, test_size=0.2, random_state=42):
|
| 4 |
+
X = df.drop(columns=[target_col])
|
| 5 |
+
y = df[target_col]
|
| 6 |
+
return train_test_split(X, y, test_size=test_size, random_state=random_state)
|
utils/training.py
ADDED
|
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
from sklearn.linear_model import LogisticRegression
|
| 3 |
+
from sklearn.tree import DecisionTreeClassifier
|
| 4 |
+
from sklearn.ensemble import RandomForestClassifier
|
| 5 |
+
from sklearn.svm import SVC
|
| 6 |
+
from sklearn.naive_bayes import GaussianNB
|
| 7 |
+
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
|
| 8 |
+
from time import perf_counter as timer # β
Use perf_counter for better precision
|
| 9 |
+
import joblib
|
| 10 |
+
import os
|
| 11 |
+
|
| 12 |
+
def get_model_instance(model_name, params):
|
| 13 |
+
if model_name == "Logistic Regression":
|
| 14 |
+
return LogisticRegression(**params)
|
| 15 |
+
elif model_name == "Decision Tree":
|
| 16 |
+
return DecisionTreeClassifier(**params)
|
| 17 |
+
elif model_name == "Random Forest":
|
| 18 |
+
return RandomForestClassifier(**params)
|
| 19 |
+
elif model_name == "SVM":
|
| 20 |
+
return SVC(**params)
|
| 21 |
+
elif model_name == "Naive Bayes":
|
| 22 |
+
return GaussianNB(**params)
|
| 23 |
+
else:
|
| 24 |
+
raise ValueError(f"Unsupported model: {model_name}")
|
| 25 |
+
|
| 26 |
+
def train_models(X_train, X_test, y_train, y_test, selected_models, model_params, preprocessing_steps, experiment_name="DefaultExperiment", dataset_name="Uploaded CSV"):
|
| 27 |
+
results = {}
|
| 28 |
+
for model_name in selected_models:
|
| 29 |
+
params = model_params.get(model_name, {})
|
| 30 |
+
model = get_model_instance(model_name, params)
|
| 31 |
+
|
| 32 |
+
# β
Measure training time with high precision
|
| 33 |
+
start_time = timer()
|
| 34 |
+
model.fit(X_train, y_train)
|
| 35 |
+
training_time = round(timer() - start_time, 4)
|
| 36 |
+
|
| 37 |
+
# β
Measure model size
|
| 38 |
+
temp_model_path = f"models/{model_name.replace(' ', '_')}_temp.joblib"
|
| 39 |
+
os.makedirs("models", exist_ok=True)
|
| 40 |
+
joblib.dump(model, temp_model_path)
|
| 41 |
+
model_size = os.path.getsize(temp_model_path)
|
| 42 |
+
os.remove(temp_model_path)
|
| 43 |
+
|
| 44 |
+
# β
Predictions
|
| 45 |
+
y_train_pred = model.predict(X_train)
|
| 46 |
+
y_test_pred = model.predict(X_test)
|
| 47 |
+
|
| 48 |
+
# β
Inference time on a single sample
|
| 49 |
+
single_sample = X_test.iloc[[0]] if hasattr(X_test, "iloc") else X_test[0].reshape(1, -1)
|
| 50 |
+
start_inf = timer()
|
| 51 |
+
_ = model.predict(single_sample)
|
| 52 |
+
inference_time = round(timer() - start_inf, 6)
|
| 53 |
+
|
| 54 |
+
# β
Evaluation metrics
|
| 55 |
+
metrics = {
|
| 56 |
+
"accuracy_train": accuracy_score(y_train, y_train_pred),
|
| 57 |
+
"accuracy_test": accuracy_score(y_test, y_test_pred),
|
| 58 |
+
"precision_train": precision_score(y_train, y_train_pred, average='weighted', zero_division=0),
|
| 59 |
+
"precision_test": precision_score(y_test, y_test_pred, average='weighted', zero_division=0),
|
| 60 |
+
"recall_train": recall_score(y_train, y_train_pred, average='weighted', zero_division=0),
|
| 61 |
+
"recall_test": recall_score(y_test, y_test_pred, average='weighted', zero_division=0),
|
| 62 |
+
"f1_score_train": f1_score(y_train, y_train_pred, average='weighted', zero_division=0),
|
| 63 |
+
"f1_score_test": f1_score(y_test, y_test_pred, average='weighted', zero_division=0),
|
| 64 |
+
"inference_time": inference_time
|
| 65 |
+
}
|
| 66 |
+
|
| 67 |
+
results[model_name] = {
|
| 68 |
+
"model": model,
|
| 69 |
+
"metrics": metrics,
|
| 70 |
+
"training_time": training_time,
|
| 71 |
+
"inference_time": inference_time,
|
| 72 |
+
"model_size": model_size
|
| 73 |
+
}
|
| 74 |
+
return results
|