# πŸš€ Phase 1 Implementation Plan - Research Features ## Quick Wins: Build These First (2-3 days) ### Priority 1: RAG Pipeline Visualization ⭐⭐⭐ **Why:** Shows research credibility, transparency, visual appeal **Effort:** Medium **Impact:** High #### Implementation Steps: 1. **Backend: Track RAG stages** (`api/rag_tracker.py`) ```python class RAGTracker: def __init__(self): self.stages = [] def track_query_encoding(self, query, embedding): self.stages.append({ "stage": "encoding", "query": query, "embedding_preview": embedding[:10], # First 10 dims "timestamp": time.time() }) def track_retrieval(self, documents, scores): self.stages.append({ "stage": "retrieval", "num_docs": len(documents), "top_scores": scores[:5], "documents": [{"text": d[:100], "score": s} for d, s in zip(documents[:5], scores[:5])] }) def track_generation(self, context, response): self.stages.append({ "stage": "generation", "context_length": len(context), "response_length": len(response), "attribution": self.extract_citations(response) }) ``` 2. **Frontend: RAG Pipeline Viewer** (add to `index.html`) ```html
πŸ”
Query Encoding
πŸ“š
Document Retrieval
✍️
Generation
``` 3. **Styling: Research Lab Theme** ```css .rag-pipeline { background: #1e1e1e; color: #d4d4d4; font-family: 'Fira Code', monospace; padding: 20px; border-radius: 8px; margin: 20px 0; } .stage { border-left: 3px solid #007acc; padding: 15px; margin: 10px 0; transition: all 0.3s; } .stage.active { border-left-color: #4ec9b0; background: #2d2d2d; } .embedding-preview { font-family: 'Courier New', monospace; background: #0e0e0e; padding: 10px; border-radius: 4px; overflow-x: auto; } ``` --- ### Priority 2: Attention Visualization ⭐⭐ **Why:** Shows interpretability, looks impressive, educational **Effort:** Medium-High **Impact:** Very High (visually stunning) #### Implementation: 1. **Mock attention data in demo mode** ```python def generate_attention_heatmap(query: str, response: str): """Generate synthetic attention weights for demo.""" query_tokens = query.split() response_tokens = response.split()[:20] # First 20 tokens # Simulate attention: query tokens attend to relevant response tokens attention = np.random.rand(len(query_tokens), len(response_tokens)) # Add some structure (diagonal-ish for realistic look) for i in range(len(query_tokens)): attention[i, i:i+3] *= 2 # Boost nearby tokens attention = softmax(attention, axis=1) return { "query_tokens": query_tokens, "response_tokens": response_tokens, "attention_weights": attention.tolist() } ``` 2. **Interactive heatmap with Plotly or D3.js** ```javascript function renderAttentionHeatmap(data) { const trace = { x: data.response_tokens, y: data.query_tokens, z: data.attention_weights, type: 'heatmap', colorscale: 'Viridis', hoverongaps: false }; const layout = { title: 'Attention Pattern: Query β†’ Response', xaxis: { title: 'Response Tokens' }, yaxis: { title: 'Query Tokens' }, paper_bgcolor: '#1e1e1e', plot_bgcolor: '#1e1e1e', font: { color: '#d4d4d4' } }; Plotly.newPlot('attention-heatmap', [trace], layout); } ``` --- ### Priority 3: Paper Citation System ⭐⭐⭐ **Why:** Academic credibility, research positioning **Effort:** Low **Impact:** High (perception) #### Implementation: 1. **Paper database** (`api/papers.py`) ```python RESEARCH_PAPERS = { "attention": { "title": "Attention is All You Need", "authors": "Vaswani et al.", "year": 2017, "venue": "NeurIPS", "url": "https://arxiv.org/abs/1706.03762", "citations": 87000, "summary": "Introduced the Transformer architecture using self-attention." }, "rag": { "title": "Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks", "authors": "Lewis et al.", "year": 2020, "venue": "NeurIPS", "url": "https://arxiv.org/abs/2005.11401", "citations": 3200, "summary": "Combines retrieval with generation for factual QA." }, "tot": { "title": "Tree of Thoughts: Deliberate Problem Solving with LLMs", "authors": "Yao et al.", "year": 2023, "venue": "NeurIPS", "url": "https://arxiv.org/abs/2305.10601", "citations": 450, "summary": "Explores multiple reasoning paths like human problem-solving." }, # Add 15+ more papers... } def get_relevant_papers(feature: str) -> List[Dict]: """Return papers relevant to the current feature.""" feature_paper_map = { "rag": ["rag", "dense_retrieval"], "attention": ["attention", "transformers"], "reasoning": ["tot", "cot", "self_consistency"], # ... } return [RESEARCH_PAPERS[p] for p in feature_paper_map.get(feature, [])] ``` 2. **Citation widget** ```html
πŸ“š Research Foundations
"Attention is All You Need"
Vaswani et al., NeurIPS 2017 | 87k citations
``` --- ### Priority 4: Uncertainty Quantification ⭐⭐ **Why:** Shows sophistication, useful for users **Effort:** Low-Medium **Impact:** Medium-High #### Implementation: 1. **Confidence estimation** (demo mode) ```python def estimate_confidence(query: str, response: str, mode: str) -> Dict: """ Estimate confidence based on heuristics. In production, use actual model logits. """ # Heuristics for demo confidence_base = 0.7 # Boost confidence for technical mode (seems more certain) if mode == "technical": confidence_base += 0.1 # Lower confidence for vague queries if len(query.split()) < 5: confidence_base -= 0.15 # Add some noise for realism confidence = confidence_base + np.random.uniform(-0.1, 0.1) confidence = np.clip(confidence, 0.3, 0.95) # Estimate epistemic vs aleatoric epistemic = confidence * 0.6 # Model uncertainty aleatoric = confidence * 0.4 # Data ambiguity return { "overall": round(confidence, 2), "epistemic": round(epistemic, 2), "aleatoric": round(aleatoric, 2), "calibration_error": round(abs(confidence - 0.8), 3), "interpretation": interpret_confidence(confidence) } def interpret_confidence(conf: float) -> str: if conf > 0.85: return "High confidence - well-established knowledge" elif conf > 0.65: return "Moderate confidence - generally accurate" else: return "Low confidence - consider verifying independently" ``` 2. **Confidence gauge widget** ```html
Confidence Analysis
76%
Epistemic (Model)
Aleatoric (Data)
``` --- ## Integration Plan ### Step 1: Update `api/ask.py` Add these fields to response: ```python { "result": "...", "research_data": { "rag_pipeline": {...}, # RAG stages "attention": {...}, # Attention weights "confidence": {...}, # Uncertainty metrics "papers": [...] # Relevant citations } } ``` ### Step 2: Update `public/index.html` Add new sections: ```html ``` ### Step 3: Add Dependencies ```bash # For visualization npm install plotly.js d3 # Or use CDN in HTML ``` --- ## Timeline **Day 1:** - βœ… Set up paper database - βœ… Add citation widget - βœ… Basic confidence estimation - βœ… Update response structure **Day 2:** - βœ… Implement RAG tracker (mock data) - βœ… Build RAG pipeline UI - βœ… Style research panel - βœ… Add confidence gauge **Day 3:** - βœ… Generate attention heatmaps - βœ… Integrate Plotly visualization - βœ… Polish animations - βœ… Test & deploy --- ## Success Criteria βœ“ Users can toggle "Research Mode" βœ“ 4 interactive visualizations working βœ“ 10+ papers cited with links βœ“ Confidence scores shown per response βœ“ Dark theme, monospace aesthetic βœ“ Export visualizations as images βœ“ Mobile responsive --- ## Next Phase Preview Once Phase 1 is solid, Phase 2 adds: - 🌳 Tree-of-Thoughts interactive explorer - πŸ•ΈοΈ Knowledge graph visualization - 🧠 Cognitive load real-time monitor - πŸ“Š A/B testing dashboard **Ready to start implementing?** Let's begin with the paper citation system (easiest) or RAG pipeline (most visual impact)?