# π Phase 1 Implementation Plan - Research Features
## Quick Wins: Build These First (2-3 days)
### Priority 1: RAG Pipeline Visualization βββ
**Why:** Shows research credibility, transparency, visual appeal
**Effort:** Medium
**Impact:** High
#### Implementation Steps:
1. **Backend: Track RAG stages** (`api/rag_tracker.py`)
```python
class RAGTracker:
def __init__(self):
self.stages = []
def track_query_encoding(self, query, embedding):
self.stages.append({
"stage": "encoding",
"query": query,
"embedding_preview": embedding[:10], # First 10 dims
"timestamp": time.time()
})
def track_retrieval(self, documents, scores):
self.stages.append({
"stage": "retrieval",
"num_docs": len(documents),
"top_scores": scores[:5],
"documents": [{"text": d[:100], "score": s}
for d, s in zip(documents[:5], scores[:5])]
})
def track_generation(self, context, response):
self.stages.append({
"stage": "generation",
"context_length": len(context),
"response_length": len(response),
"attribution": self.extract_citations(response)
})
```
2. **Frontend: RAG Pipeline Viewer** (add to `index.html`)
```html
```
3. **Styling: Research Lab Theme**
```css
.rag-pipeline {
background: #1e1e1e;
color: #d4d4d4;
font-family: 'Fira Code', monospace;
padding: 20px;
border-radius: 8px;
margin: 20px 0;
}
.stage {
border-left: 3px solid #007acc;
padding: 15px;
margin: 10px 0;
transition: all 0.3s;
}
.stage.active {
border-left-color: #4ec9b0;
background: #2d2d2d;
}
.embedding-preview {
font-family: 'Courier New', monospace;
background: #0e0e0e;
padding: 10px;
border-radius: 4px;
overflow-x: auto;
}
```
---
### Priority 2: Attention Visualization ββ
**Why:** Shows interpretability, looks impressive, educational
**Effort:** Medium-High
**Impact:** Very High (visually stunning)
#### Implementation:
1. **Mock attention data in demo mode**
```python
def generate_attention_heatmap(query: str, response: str):
"""Generate synthetic attention weights for demo."""
query_tokens = query.split()
response_tokens = response.split()[:20] # First 20 tokens
# Simulate attention: query tokens attend to relevant response tokens
attention = np.random.rand(len(query_tokens), len(response_tokens))
# Add some structure (diagonal-ish for realistic look)
for i in range(len(query_tokens)):
attention[i, i:i+3] *= 2 # Boost nearby tokens
attention = softmax(attention, axis=1)
return {
"query_tokens": query_tokens,
"response_tokens": response_tokens,
"attention_weights": attention.tolist()
}
```
2. **Interactive heatmap with Plotly or D3.js**
```javascript
function renderAttentionHeatmap(data) {
const trace = {
x: data.response_tokens,
y: data.query_tokens,
z: data.attention_weights,
type: 'heatmap',
colorscale: 'Viridis',
hoverongaps: false
};
const layout = {
title: 'Attention Pattern: Query β Response',
xaxis: { title: 'Response Tokens' },
yaxis: { title: 'Query Tokens' },
paper_bgcolor: '#1e1e1e',
plot_bgcolor: '#1e1e1e',
font: { color: '#d4d4d4' }
};
Plotly.newPlot('attention-heatmap', [trace], layout);
}
```
---
### Priority 3: Paper Citation System βββ
**Why:** Academic credibility, research positioning
**Effort:** Low
**Impact:** High (perception)
#### Implementation:
1. **Paper database** (`api/papers.py`)
```python
RESEARCH_PAPERS = {
"attention": {
"title": "Attention is All You Need",
"authors": "Vaswani et al.",
"year": 2017,
"venue": "NeurIPS",
"url": "https://arxiv.org/abs/1706.03762",
"citations": 87000,
"summary": "Introduced the Transformer architecture using self-attention."
},
"rag": {
"title": "Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks",
"authors": "Lewis et al.",
"year": 2020,
"venue": "NeurIPS",
"url": "https://arxiv.org/abs/2005.11401",
"citations": 3200,
"summary": "Combines retrieval with generation for factual QA."
},
"tot": {
"title": "Tree of Thoughts: Deliberate Problem Solving with LLMs",
"authors": "Yao et al.",
"year": 2023,
"venue": "NeurIPS",
"url": "https://arxiv.org/abs/2305.10601",
"citations": 450,
"summary": "Explores multiple reasoning paths like human problem-solving."
},
# Add 15+ more papers...
}
def get_relevant_papers(feature: str) -> List[Dict]:
"""Return papers relevant to the current feature."""
feature_paper_map = {
"rag": ["rag", "dense_retrieval"],
"attention": ["attention", "transformers"],
"reasoning": ["tot", "cot", "self_consistency"],
# ...
}
return [RESEARCH_PAPERS[p] for p in feature_paper_map.get(feature, [])]
```
2. **Citation widget**
```html
"Attention is All You Need"
Vaswani et al., NeurIPS 2017 | 87k citations
```
---
### Priority 4: Uncertainty Quantification ββ
**Why:** Shows sophistication, useful for users
**Effort:** Low-Medium
**Impact:** Medium-High
#### Implementation:
1. **Confidence estimation** (demo mode)
```python
def estimate_confidence(query: str, response: str, mode: str) -> Dict:
"""
Estimate confidence based on heuristics.
In production, use actual model logits.
"""
# Heuristics for demo
confidence_base = 0.7
# Boost confidence for technical mode (seems more certain)
if mode == "technical":
confidence_base += 0.1
# Lower confidence for vague queries
if len(query.split()) < 5:
confidence_base -= 0.15
# Add some noise for realism
confidence = confidence_base + np.random.uniform(-0.1, 0.1)
confidence = np.clip(confidence, 0.3, 0.95)
# Estimate epistemic vs aleatoric
epistemic = confidence * 0.6 # Model uncertainty
aleatoric = confidence * 0.4 # Data ambiguity
return {
"overall": round(confidence, 2),
"epistemic": round(epistemic, 2),
"aleatoric": round(aleatoric, 2),
"calibration_error": round(abs(confidence - 0.8), 3),
"interpretation": interpret_confidence(confidence)
}
def interpret_confidence(conf: float) -> str:
if conf > 0.85:
return "High confidence - well-established knowledge"
elif conf > 0.65:
return "Moderate confidence - generally accurate"
else:
return "Low confidence - consider verifying independently"
```
2. **Confidence gauge widget**
```html
```
---
## Integration Plan
### Step 1: Update `api/ask.py`
Add these fields to response:
```python
{
"result": "...",
"research_data": {
"rag_pipeline": {...}, # RAG stages
"attention": {...}, # Attention weights
"confidence": {...}, # Uncertainty metrics
"papers": [...] # Relevant citations
}
}
```
### Step 2: Update `public/index.html`
Add new sections:
```html
```
### Step 3: Add Dependencies
```bash
# For visualization
npm install plotly.js d3
# Or use CDN in HTML
```
---
## Timeline
**Day 1:**
- β
Set up paper database
- β
Add citation widget
- β
Basic confidence estimation
- β
Update response structure
**Day 2:**
- β
Implement RAG tracker (mock data)
- β
Build RAG pipeline UI
- β
Style research panel
- β
Add confidence gauge
**Day 3:**
- β
Generate attention heatmaps
- β
Integrate Plotly visualization
- β
Polish animations
- β
Test & deploy
---
## Success Criteria
β Users can toggle "Research Mode"
β 4 interactive visualizations working
β 10+ papers cited with links
β Confidence scores shown per response
β Dark theme, monospace aesthetic
β Export visualizations as images
β Mobile responsive
---
## Next Phase Preview
Once Phase 1 is solid, Phase 2 adds:
- π³ Tree-of-Thoughts interactive explorer
- πΈοΈ Knowledge graph visualization
- π§ Cognitive load real-time monitor
- π A/B testing dashboard
**Ready to start implementing?** Let's begin with the paper citation system (easiest) or RAG pipeline (most visual impact)?