Spaces:
Paused
Paused
| import gradio as gr | |
| import transformers | |
| # Load your custom models (example) | |
| model_name = "microsoft/Phi-3-mini-4k-instruct" # Replace with your model name | |
| tokenizer = transformers.AutoTokenizer.from_pretrained(model_name) | |
| model = transformers.AutoModelForCausalLM.from_pretrained(model_name) | |
| def chatbot_response(user_input): | |
| inputs = tokenizer.encode(user_input, return_tensors="pt") | |
| outputs = model.generate(inputs, max_length=100, num_return_sequences=1) | |
| response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| return response | |
| def upload_readme(filepath): | |
| if filepath is not None: | |
| with open(filepath, 'r', encoding='utf-8') as file: | |
| content = file.read() | |
| return content | |
| return "No file uploaded" | |
| with gr.Blocks() as demo: | |
| with gr.Row(): | |
| with gr.Column(): | |
| gr.Markdown("# Chatbot Interface") | |
| gr.Markdown("Upload your README file and interact with the chatbot.") | |
| # File upload | |
| readme_file = gr.File(label="Upload README file", type="filepath", file_types=[".md"]) | |
| readme_content = gr.Textbox(label="README Content", lines=10, placeholder="README content will appear here...") | |
| # Display README content after upload | |
| readme_file.change(upload_readme, inputs=readme_file, outputs=readme_content) | |
| # Chatbot input and output | |
| user_input = gr.Textbox(label="Your message", placeholder="Type your message here...") | |
| output = gr.Textbox(label="Chatbot response", placeholder="Chatbot response will appear here...", lines=5) | |
| # Get chatbot response | |
| user_input.submit(chatbot_response, inputs=user_input, outputs=output) | |
| demo.launch() | |