""" Quick inference test script to verify model works before deployment Run this before deploying to catch any issues early """ import torch import torch.nn as nn from torchvision import transforms, models from PIL import Image import json import sys from pathlib import Path def test_model_loading(): """Test if model loads correctly""" print("=" * 60) print("๐Ÿงช Testing Model Loading...") print("=" * 60) try: # Check if model file exists model_path = "model/ecoscan_model.pth" if not Path(model_path).exists(): print(f"โŒ Model file not found: {model_path}") print(" Please place your trained model in the model/ folder") return False print(f"โœ… Found model file: {model_path}") # Check class names class_names_path = "model/class_names.json" if not Path(class_names_path).exists(): print(f"โŒ Class names file not found: {class_names_path}") return False with open(class_names_path, 'r') as f: class_names = json.load(f) print(f"โœ… Found {len(class_names)} classes: {class_names}") # Load model architecture print("\n๐Ÿ—๏ธ Building model architecture...") model = models.efficientnet_b3(weights=None) in_features = model.classifier[1].in_features model.classifier = nn.Sequential( nn.Dropout(p=0.3, inplace=True), nn.Linear(in_features, len(class_names)) ) # Load weights print("๐Ÿ“ฆ Loading weights...") device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model.load_state_dict(torch.load(model_path, map_location=device)) model.to(device) model.eval() print(f"โœ… Model loaded successfully on {device}") return True except Exception as e: print(f"โŒ Error loading model: {e}") import traceback traceback.print_exc() return False def test_inference(): """Test inference on a dummy image""" print("\n" + "=" * 60) print("๐Ÿ” Testing Inference...") print("=" * 60) try: # Load model model_path = "model/ecoscan_model.pth" class_names_path = "model/class_names.json" with open(class_names_path, 'r') as f: class_names = json.load(f) model = models.efficientnet_b3(weights=None) in_features = model.classifier[1].in_features model.classifier = nn.Sequential( nn.Dropout(p=0.3, inplace=True), nn.Linear(in_features, len(class_names)) ) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model.load_state_dict(torch.load(model_path, map_location=device)) model.to(device) model.eval() # Create dummy image print("๐Ÿ“ธ Creating test image (300x300 RGB)...") dummy_image = Image.new('RGB', (300, 300), color='blue') # Preprocess transform = transforms.Compose([ transforms.Resize((300, 300)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) input_tensor = transform(dummy_image).unsqueeze(0).to(device) # Run inference print("๐Ÿš€ Running inference...") with torch.no_grad(): outputs = model(input_tensor) probabilities = torch.nn.functional.softmax(outputs, dim=1) confidence, predicted = torch.max(probabilities, 1) predicted_class = class_names[predicted.item()] confidence_score = confidence.item() print(f"โœ… Inference successful!") print(f" Predicted: {predicted_class}") print(f" Confidence: {confidence_score*100:.2f}%") # Show top-3 predictions print("\n๐Ÿ“Š Top-3 Predictions:") top3_probs, top3_indices = torch.topk(probabilities[0], min(3, len(class_names))) for prob, idx in zip(top3_probs, top3_indices): print(f" {class_names[idx.item()]}: {prob.item()*100:.2f}%") return True except Exception as e: print(f"โŒ Error during inference: {e}") import traceback traceback.print_exc() return False def test_dependencies(): """Test if all required packages are installed""" print("\n" + "=" * 60) print("๐Ÿ“ฆ Testing Dependencies...") print("=" * 60) required_packages = { 'torch': 'PyTorch', 'torchvision': 'TorchVision', 'PIL': 'Pillow', 'gradio': 'Gradio', 'cv2': 'OpenCV (cv2)', 'numpy': 'NumPy' } all_installed = True for package, name in required_packages.items(): try: __import__(package) print(f"โœ… {name}") except ImportError: print(f"โŒ {name} - NOT INSTALLED") all_installed = False return all_installed def test_file_structure(): """Test if project structure is correct""" print("\n" + "=" * 60) print("๐Ÿ“‚ Testing File Structure...") print("=" * 60) required_files = [ "app.py", "requirements.txt", "README.md", "model/ecoscan_model.pth", "model/class_names.json" ] optional_files = [ "examples/plastic_bottle.jpg", "examples/cardboard_box.jpg", "examples/glass_jar.jpg" ] all_present = True print("\n๐Ÿ” Required files:") for file_path in required_files: if Path(file_path).exists(): size = Path(file_path).stat().st_size / (1024 * 1024) # MB print(f"โœ… {file_path} ({size:.2f} MB)") else: print(f"โŒ {file_path} - MISSING") all_present = False print("\n๐ŸŽจ Optional files:") for file_path in optional_files: if Path(file_path).exists(): print(f"โœ… {file_path}") else: print(f"โš ๏ธ {file_path} - not found (optional)") return all_present def main(): """Run all tests""" print("\n") print("โ•”" + "=" * 58 + "โ•—") print("โ•‘" + " " * 58 + "โ•‘") print("โ•‘" + " ๐ŸŒฑ EcoScan - Pre-Deployment Testing Suite ".center(58) + "โ•‘") print("โ•‘" + " " * 58 + "โ•‘") print("โ•š" + "=" * 58 + "โ•") print("\n") tests = [ ("File Structure", test_file_structure), ("Dependencies", test_dependencies), ("Model Loading", test_model_loading), ("Inference", test_inference) ] results = {} for test_name, test_func in tests: try: results[test_name] = test_func() except Exception as e: print(f"\nโŒ Test '{test_name}' crashed: {e}") results[test_name] = False # Summary print("\n" + "=" * 60) print("๐Ÿ“‹ TEST SUMMARY") print("=" * 60) for test_name, passed in results.items(): status = "โœ… PASSED" if passed else "โŒ FAILED" print(f"{test_name:.<40} {status}") all_passed = all(results.values()) print("\n" + "=" * 60) if all_passed: print("๐ŸŽ‰ ALL TESTS PASSED!") print("โœ… Your app is ready for deployment!") print("\nNext steps:") print(" 1. Test locally: python app.py") print(" 2. Deploy to Hugging Face Spaces") print(" 3. Share with the world! ๐ŸŒ") else: print("โš ๏ธ SOME TESTS FAILED") print("Please fix the issues above before deploying.") print("\nCommon fixes:") print(" - Install missing packages: pip install -r requirements.txt") print(" - Download model from Kaggle to model/ folder") print(" - Verify file paths match your structure") print("=" * 60 + "\n") return 0 if all_passed else 1 if __name__ == "__main__": sys.exit(main())