""" EcoScan - AI-Powered Waste Sorting Classifier Using Gradio Interface for Deployment """ import torch import torch.nn as nn from torchvision import transforms, models from PIL import Image import gradio as gr import numpy as np import cv2 import json from pathlib import Path from huggingface_hub import hf_hub_download # # CONFIGURATION # class Config: MODEL_PATH = "model/ecoscan_model.pth" CLASS_NAMES_PATH = "model/class_names.json" MODEL_NAME = "efficientnet_b3" NUM_CLASSES = 6, IMAGE_SIZE = 300, DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu') config = Config() # RECYCLING INFORMATION DATABASE RECYCLING_INFO = { "cardboard":{ "icon": "๐ฆ", "tip": "Flatten boxes to save space. Remove any plastic tape or labels. Keep dry - wet cardboard contaminates recycling.", "eco_score": 9, "decompose_time": "2-3 months", "facts": "Recyling 1 ton of cardboard saves 17 trees and 7,000 gallons of water!" }, "glass":{ "icon": "๐พ", "tip": "Rinse glass containers to remove food residue. Remove lids and caps, as they are often made of different materials.", "eco_score": 8, "decompose_time": "1 million years", "facts": "Recycling glass saves 30% of the energy required to make new glass from raw materials." }, "metal":{ "icon": "๐ฉ", "tip": "Rinse aluminum cans and steel containers, Crush cans to save space. Metal recyling saves 95% of enerdy!", "eco_score": 9, "decompose_time": "50-500 years", "facts": "Recycling aluminum saves 95% of the energy needed to make new aluminium from raw materials. " }, "paper":{ "icon": "๐", "tip": "Keep paper dry and clean. Remove staples and paper clips. Shred sensitive documents before recylcing.", "eco_score": 8, "decompose_time": "2-6 weeks", "facts": "Recycling 1 ton of paper saves 17 trees, 380 gallons of oil, and 7,000 gallons of water." }, "plastic":{ "icon": "๐งด", "tip": "Rinse plastic containers to remove food residue. Check the recycling symbol and number to ensure it's accepted in your local program.", "eco_score": 4, "decompose_time": "450-1000 years", "facts": "Only about 9% of all plastic waste ever produced has been recycled. Recycling plastic saves 88% of the energy compared to producing new plastic from raw materials." }, "trash":{ "icon": "๐๏ธ", "tip": "This item is general waste or e-waste. Check for specialized recylcing programs. Consider composting organic materials", "eco_score": 3, "decompose_time": "Variable (decades to never)", "facts": "E-waste contains valuable materials like gold and copper, but also toxic substances. Always use proper disposal." } } # MODEL LOADING def load_model(): """Load the trained model""" print(f"Loading model on {config.DEVICE}...") # Download from Hub if not local if not Path(config.MODEL_PATH).exists(): print("Downloading model from Hugging Face Hub...") try: hf_hub_download( repo_id="AyobamiMichael/ecoscan-model", filename="ecoscan_model.pth", local_dir="model", repo_type="model" ) except Exception as e: print(f"Error downloading model: {e}") raise # Check if model file exists if not Path(config.MODEL_PATH).exists(): raise FileNotFoundError(f"Model file not found:{config.MODEL_PATH}") print(f"Loading complete model from: {config.MODEL_PATH}") # Create mode architecture if config.MODEL_NAME == "efficientnet_b3": from torchvision.models import efficientnet_b3 # Load pretrianed model to get correct architecture print("Building EfficientNet-B3 architecture...") model = efficientnet_b3(weights=None) # Get the input features from the last layer in_features = 1536 num_classes = 6 print(f"EfficinetNet-B3 classifier input features: {in_features}") # Replace classifier model.classifier = nn.Sequential( nn.Dropout(p=0.3, inplace=True), nn.Linear(in_features, num_classes) ) elif config.MODEL_NAME == "resnet50": from torchvision.models import resnet50 print("Building ResNet50 architecture...") model = resnet50(weights=None) # Get the input features in_features = 2048 num_classes = 6 print(f"ResNet50 fc input features: {in_features}") # Replace final layer model.fc = nn.Linear(in_features,num_classes) else: raise ValueError(f"Unknown model: {config.MODEL_NAME}") # Load trained weights print(f"Loading weights from: {config.MODEL_PATH}") state_dict = torch.load(config.MODEL_PATH, map_location=config.DEVICE) try: #state_dict = torch.load(config.MODEL_PATH, map_location=config.DEVICE) model.load_state_dict(state_dict, strict=True) print("โ All weights loaded successfully!") except Exception as e: print(f"โ ๏ธ Warning: {e}") print("Some weights may not match. Loading with strict=False...") model.load_state_dict(state_dict, strict=False) print("โ Weights loaded (partial)") model.to(config.DEVICE) model.eval() # Verify the model print(f"โ Model ready on {config.DEVICE}") print(f" Input features: {in_features}") print(f" Output classes: {config.NUM_CLASSES}") return model def load_class_names(): """"Load class names from JSON file""" with open(config.CLASS_NAMES_PATH, 'r') as f: class_names = json.load(f) return class_names # ============================================================================ # IMAGE PREPROCESSING # ============================================================================ def get_transforms(): """Get image preprocessing transforms""" return transforms.Compose([ transforms.Resize(config.IMAGE_SIZE), transforms.CenterCrop(config.IMAGE_SIZE), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) # ============================================================================ # GRAD-CAM VISUALIZATION # ============================================================================ class GradCAM: """"Gradient-weighted Class Activation Mapping""" def __init__(self, model, target_layer): self.model = model self.target_layer = target_layer self.gradients = None self.activations = None # Register hooks target_layer.register_forward_hook(self.save_activations) target_layer.register_backward_hook(self.save_gradients) def save_activations(self, module, input, output): self.activations = output.detach() def save_gradients(self, module, grad_input, grad_output): self.gradients = grad_output[0].detach() def generate_cam(self, input_image, class_idx): """Generate CAM for a specific class""" try: # Forward pass output = self.model(input_image) # Backward pass self.model.zero_grad() class_loss = output[0, class_idx] class_loss.backward() # Generate CAM if self.gradients is None or self.activations is None: print("Warning: gradients or activations not captured") return np.ones((input_image.shape[2], input_image.shape[3])) gradients = self.gradients[0] # [C, H, W] activations = self.activations[0] # [C, H, W] # Global average pooling on gradients weights = torch.mean(gradients, dim=(1, 2)) # [C] # Weighted combination cam = torch.zeros(activations.shape[1:], dtype=torch.float32) for i, w in enumerate(weights): cam += w * activations[i] # ReLU cam = torch.relu(cam) # Normalize cam_min = cam.min() cam_max = cam.max() if cam_max - cam_min > 0: cam = (cam - cam_min) / (cam_max - cam_min) else: cam = torch.zeros_like(cam) return cam.cpu().numpy() except Exception as e: print(f"Grad-CAM generation error: {e}") return np.ones((input_image.shape[2], input_image.shape[3])) def overlay_heatmap(image, heatmap, alpha=0.4): """Overlay heatmap on original image""" # Ensure image is numpy array if not isinstance(image, np.ndarray): image = np.array(image) # Ensure image is uint8 if image.dtype != np.uint8: image = (image * 255).astype(np.uint8) # Resize heatmap to match image heatmap = cv2.resize(heatmap, (image.shape[1], image.shape[0])) # Apply colormap heatmap = np.uint8(255 * heatmap) heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET) # Convert BGR to RGB heatmap = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB) # Overlay overlay = cv2.addWeighted(image, 1-alpha, heatmap, alpha, 0) return overlay # Global MODELAND CLASS NAMES (will be loaded at startup) model = None class_names = None # ============================================================================ # INFERENCE FUNCTION # ============================================================================ def classify_image(image): """Main classification function """ global model, class_names if image is None: return None, None, "Please upload an image first!" # Convert to PIL Image if isinstance(image, np.ndarray): pil_image = Image.fromarray(image) else: pil_image = image # Preprocess transform = get_transforms() input_tensor = transform(pil_image).unsqueeze(0).to(config.DEVICE) # Get predictions with torch.no_grad(): outputs = model(input_tensor) probabilities = torch.nn.functional.softmax(outputs, dim=1) confidence, predicted = torch.max(probabilities, 1) predicted_class = class_names[predicted.item()] confidence_score = confidence.item() # Generate Grad-CAM try: # Get traget layer if config.MODEL_NAME == "efficientnet_b3": target_layer = model.features[-1] elif config.MODEL_NAME == "resnet50": target_layer = model.layer4[-1] gradcam = GradCAM(model, target_layer) cam = gradcam.generate_cam(input_tensor, predicted.item()) # Create overlay original_img = np.array(pil_image.resize((config.IMAGE_SIZE, config.IMAGE_SIZE))) heatmap_img = gradcam.overlay_heatmap(original_img, cam) except Exception as e: print(f"Grad-CAM error: {e}") heatmap_img = np.array(pil_image) # Get recycling info info = RECYCLING_INFO.get(predicted_class, RECYCLING_INFO["trash"]) # Format predictions for top-3 top3_probs, top3_indices = torch.topk(probabilities[0], 3) predictions_dict = {} for prob, idx in zip(top3_probs, top3_indices): class_name = class_names[idx.item()] confidence = float(prob.item()) predictions_dict[class_name] = confidence # Create detailed output # Create detailed output output_text = f""" ## {info['icon']} Classification Result **Detected Material:** {predicted_class.upper()} **Confidence:** {confidence_score*100:.1f}% --- ### โป๏ธ Recycling Instructions {info['tip']} --- ### ๐ Environmental Impact - **EcoScore:** {info['eco_score']}/10 - **Decomposition Time:** {info['decompose_time']} ### ๐ก Did You Know? {info['facts']} """ return predictions_dict, heatmap_img, output_text # ============================================================================ # INITIALIZE MODEL & CLASS NAMES AT STARTUP # ============================================================================ print("๐ Initializing EcoScan...") model = load_model() class_names = load_class_names() print(f"โ Loaded {len(class_names)} classes: {class_names}") print("๐ฑ EcoScan ready!") # ============================================================================ # GRADIO INTERFACE # ============================================================================ # Custom CSS custom_css = """ #title { text-align: center; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; padding: 20px; border-radius: 10px; margin-bottom: 20px; } #output-box { border: 2px solid #667eea; border-radius: 10px; padding: 15px; } .eco-high { color: #10b981; font-weight: bold; } .eco-medium { color: #f59e0b; font-weight: bold; } .eco-low { color: #ef4444; font-weight: bold; } """ # Example images examples = [ ["examples/plastic_bottle.jpg"] if Path("examples/plastic_bottle.jpg").exists() else None, ["examples/cardboard_box.jpg"] if Path("examples/cardboard_box.jpg").exists() else None, ["examples/glass_jar.jpg"] if Path("examples/glass_jar.jpg").exists() else None, ] examples = [ex for ex in examples if ex is not None] # Create interface with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo: gr.Markdown( """
Upload an image of waste material to get instant classification and recycling guidance
Built with โค๏ธ for a sustainable future | Powered by EfficientNet-B3 & PyTorch
๐ก Tip: This AI model was trained on 2,500+ waste images with 90%+ accuracy