Spaces:
Sleeping
Sleeping
File size: 17,311 Bytes
ff45240 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 |
"""
EcoScan - AI-Powered Waste Sorting Classifier
Using Gradio Interface for Deployment
"""
import torch
import torch.nn as nn
from torchvision import transforms, models
from PIL import Image
import gradio as gr
import numpy as np
import cv2
import json
from pathlib import Path
from huggingface_hub import hf_hub_download
#
# CONFIGURATION
#
class Config:
MODEL_PATH = "model/ecoscan_model.pth"
CLASS_NAMES_PATH = "model/class_names.json"
MODEL_NAME = "efficientnet_b3"
NUM_CLASSES = 6,
IMAGE_SIZE = 300,
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
config = Config()
# RECYCLING INFORMATION DATABASE
RECYCLING_INFO = {
"cardboard":{
"icon": "📦",
"tip": "Flatten boxes to save space. Remove any plastic tape or labels. Keep dry - wet cardboard contaminates recycling.",
"eco_score": 9,
"decompose_time": "2-3 months",
"facts": "Recyling 1 ton of cardboard saves 17 trees and 7,000 gallons of water!"
},
"glass":{
"icon": "🍾",
"tip": "Rinse glass containers to remove food residue. Remove lids and caps, as they are often made of different materials.",
"eco_score": 8,
"decompose_time": "1 million years",
"facts": "Recycling glass saves 30% of the energy required to make new glass from raw materials."
},
"metal":{
"icon": "🔩",
"tip": "Rinse aluminum cans and steel containers, Crush cans to save space. Metal recyling saves 95% of enerdy!",
"eco_score": 9,
"decompose_time": "50-500 years",
"facts": "Recycling aluminum saves 95% of the energy needed to make new aluminium from raw materials. "
},
"paper":{
"icon": "📄",
"tip": "Keep paper dry and clean. Remove staples and paper clips. Shred sensitive documents before recylcing.",
"eco_score": 8,
"decompose_time": "2-6 weeks",
"facts": "Recycling 1 ton of paper saves 17 trees, 380 gallons of oil, and 7,000 gallons of water."
},
"plastic":{
"icon": "🧴",
"tip": "Rinse plastic containers to remove food residue. Check the recycling symbol and number to ensure it's accepted in your local program.",
"eco_score": 4,
"decompose_time": "450-1000 years",
"facts": "Only about 9% of all plastic waste ever produced has been recycled. Recycling plastic saves 88% of the energy compared to producing new plastic from raw materials."
},
"trash":{
"icon": "🗑️",
"tip": "This item is general waste or e-waste. Check for specialized recylcing programs. Consider composting organic materials",
"eco_score": 3,
"decompose_time": "Variable (decades to never)",
"facts": "E-waste contains valuable materials like gold and copper, but also toxic substances. Always use proper disposal."
}
}
# MODEL LOADING
def load_model():
"""Load the trained model"""
print(f"Loading model on {config.DEVICE}...")
# Download from Hub if not local
if not Path(config.MODEL_PATH).exists():
print("Downloading model from Hugging Face Hub...")
try:
hf_hub_download(
repo_id="AyobamiMichael/ecoscan-model",
filename="ecoscan_model.pth",
local_dir="model",
repo_type="model"
)
except Exception as e:
print(f"Error downloading model: {e}")
raise
# Check if model file exists
if not Path(config.MODEL_PATH).exists():
raise FileNotFoundError(f"Model file not found:{config.MODEL_PATH}")
print(f"Loading complete model from: {config.MODEL_PATH}")
# Create mode architecture
if config.MODEL_NAME == "efficientnet_b3":
from torchvision.models import efficientnet_b3
# Load pretrianed model to get correct architecture
print("Building EfficientNet-B3 architecture...")
model = efficientnet_b3(weights=None)
# Get the input features from the last layer
in_features = 1536
num_classes = 6
print(f"EfficinetNet-B3 classifier input features: {in_features}")
# Replace classifier
model.classifier = nn.Sequential(
nn.Dropout(p=0.3, inplace=True),
nn.Linear(in_features, num_classes)
)
elif config.MODEL_NAME == "resnet50":
from torchvision.models import resnet50
print("Building ResNet50 architecture...")
model = resnet50(weights=None)
# Get the input features
in_features = 2048
num_classes = 6
print(f"ResNet50 fc input features: {in_features}")
# Replace final layer
model.fc = nn.Linear(in_features,num_classes)
else:
raise ValueError(f"Unknown model: {config.MODEL_NAME}")
# Load trained weights
print(f"Loading weights from: {config.MODEL_PATH}")
state_dict = torch.load(config.MODEL_PATH, map_location=config.DEVICE)
try:
#state_dict = torch.load(config.MODEL_PATH, map_location=config.DEVICE)
model.load_state_dict(state_dict, strict=True)
print("✅ All weights loaded successfully!")
except Exception as e:
print(f"⚠️ Warning: {e}")
print("Some weights may not match. Loading with strict=False...")
model.load_state_dict(state_dict, strict=False)
print("✅ Weights loaded (partial)")
model.to(config.DEVICE)
model.eval()
# Verify the model
print(f"✅ Model ready on {config.DEVICE}")
print(f" Input features: {in_features}")
print(f" Output classes: {config.NUM_CLASSES}")
return model
def load_class_names():
""""Load class names from JSON file"""
with open(config.CLASS_NAMES_PATH, 'r') as f:
class_names = json.load(f)
return class_names
# ============================================================================
# IMAGE PREPROCESSING
# ============================================================================
def get_transforms():
"""Get image preprocessing transforms"""
return transforms.Compose([
transforms.Resize(config.IMAGE_SIZE),
transforms.CenterCrop(config.IMAGE_SIZE),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
# ============================================================================
# GRAD-CAM VISUALIZATION
# ============================================================================
class GradCAM:
""""Gradient-weighted Class Activation Mapping"""
def __init__(self, model, target_layer):
self.model = model
self.target_layer = target_layer
self.gradients = None
self.activations = None
# Register hooks
target_layer.register_forward_hook(self.save_activations)
target_layer.register_backward_hook(self.save_gradients)
def save_activations(self, module, input, output):
self.activations = output.detach()
def save_gradients(self, module, grad_input, grad_output):
self.gradients = grad_output[0].detach()
def generate_cam(self, input_image, class_idx):
"""Generate CAM for a specific class"""
try:
# Forward pass
output = self.model(input_image)
# Backward pass
self.model.zero_grad()
class_loss = output[0, class_idx]
class_loss.backward()
# Generate CAM
if self.gradients is None or self.activations is None:
print("Warning: gradients or activations not captured")
return np.ones((input_image.shape[2], input_image.shape[3]))
gradients = self.gradients[0] # [C, H, W]
activations = self.activations[0] # [C, H, W]
# Global average pooling on gradients
weights = torch.mean(gradients, dim=(1, 2)) # [C]
# Weighted combination
cam = torch.zeros(activations.shape[1:], dtype=torch.float32)
for i, w in enumerate(weights):
cam += w * activations[i]
# ReLU
cam = torch.relu(cam)
# Normalize
cam_min = cam.min()
cam_max = cam.max()
if cam_max - cam_min > 0:
cam = (cam - cam_min) / (cam_max - cam_min)
else:
cam = torch.zeros_like(cam)
return cam.cpu().numpy()
except Exception as e:
print(f"Grad-CAM generation error: {e}")
return np.ones((input_image.shape[2], input_image.shape[3]))
def overlay_heatmap(image, heatmap, alpha=0.4):
"""Overlay heatmap on original image"""
# Ensure image is numpy array
if not isinstance(image, np.ndarray):
image = np.array(image)
# Ensure image is uint8
if image.dtype != np.uint8:
image = (image * 255).astype(np.uint8)
# Resize heatmap to match image
heatmap = cv2.resize(heatmap, (image.shape[1], image.shape[0]))
# Apply colormap
heatmap = np.uint8(255 * heatmap)
heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)
# Convert BGR to RGB
heatmap = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB)
# Overlay
overlay = cv2.addWeighted(image, 1-alpha, heatmap, alpha, 0)
return overlay
# Global MODELAND CLASS NAMES (will be loaded at startup)
model = None
class_names = None
# ============================================================================
# INFERENCE FUNCTION
# ============================================================================
def classify_image(image):
"""Main classification function """
global model, class_names
if image is None:
return None, None, "Please upload an image first!"
# Convert to PIL Image
if isinstance(image, np.ndarray):
pil_image = Image.fromarray(image)
else:
pil_image = image
# Preprocess
transform = get_transforms()
input_tensor = transform(pil_image).unsqueeze(0).to(config.DEVICE)
# Get predictions
with torch.no_grad():
outputs = model(input_tensor)
probabilities = torch.nn.functional.softmax(outputs, dim=1)
confidence, predicted = torch.max(probabilities, 1)
predicted_class = class_names[predicted.item()]
confidence_score = confidence.item()
# Generate Grad-CAM
try:
# Get traget layer
if config.MODEL_NAME == "efficientnet_b3":
target_layer = model.features[-1]
elif config.MODEL_NAME == "resnet50":
target_layer = model.layer4[-1]
gradcam = GradCAM(model, target_layer)
cam = gradcam.generate_cam(input_tensor, predicted.item())
# Create overlay
original_img = np.array(pil_image.resize((config.IMAGE_SIZE, config.IMAGE_SIZE)))
heatmap_img = gradcam.overlay_heatmap(original_img, cam)
except Exception as e:
print(f"Grad-CAM error: {e}")
heatmap_img = np.array(pil_image)
# Get recycling info
info = RECYCLING_INFO.get(predicted_class, RECYCLING_INFO["trash"])
# Format predictions for top-3
top3_probs, top3_indices = torch.topk(probabilities[0], 3)
predictions_dict = {}
for prob, idx in zip(top3_probs, top3_indices):
class_name = class_names[idx.item()]
confidence = float(prob.item())
predictions_dict[class_name] = confidence
# Create detailed output
# Create detailed output
output_text = f"""
## {info['icon']} Classification Result
**Detected Material:** {predicted_class.upper()}
**Confidence:** {confidence_score*100:.1f}%
---
### ♻️ Recycling Instructions
{info['tip']}
---
### 📊 Environmental Impact
- **EcoScore:** {info['eco_score']}/10
- **Decomposition Time:** {info['decompose_time']}
### 💡 Did You Know?
{info['facts']}
"""
return predictions_dict, heatmap_img, output_text
# ============================================================================
# INITIALIZE MODEL & CLASS NAMES AT STARTUP
# ============================================================================
print("🚀 Initializing EcoScan...")
model = load_model()
class_names = load_class_names()
print(f"✅ Loaded {len(class_names)} classes: {class_names}")
print("🌱 EcoScan ready!")
# ============================================================================
# GRADIO INTERFACE
# ============================================================================
# Custom CSS
custom_css = """
#title {
text-align: center;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
padding: 20px;
border-radius: 10px;
margin-bottom: 20px;
}
#output-box {
border: 2px solid #667eea;
border-radius: 10px;
padding: 15px;
}
.eco-high { color: #10b981; font-weight: bold; }
.eco-medium { color: #f59e0b; font-weight: bold; }
.eco-low { color: #ef4444; font-weight: bold; }
"""
# Example images
examples = [
["examples/plastic_bottle.jpg"] if Path("examples/plastic_bottle.jpg").exists() else None,
["examples/cardboard_box.jpg"] if Path("examples/cardboard_box.jpg").exists() else None,
["examples/glass_jar.jpg"] if Path("examples/glass_jar.jpg").exists() else None,
]
examples = [ex for ex in examples if ex is not None]
# Create interface
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
<div id="title">
<h1>🌱 EcoScan - AI Waste Classifier</h1>
<p>Upload an image of waste material to get instant classification and recycling guidance</p>
</div>
""",
elem_id="title"
)
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(
label="📸 Upload Waste Image",
type="pil",
height=400
)
classify_btn = gr.Button(
"🔍 Classify Waste",
variant="primary",
size="lg"
)
gr.Markdown(
"""
### 📋 Instructions
1. Upload a clear image of waste material
2. Click "Classify Waste"
3. View classification and recycling tips
### 🎯 Supported Categories
Cardboard • Glass • Metal • Paper • Plastic • General Waste
"""
)
with gr.Column(scale=1):
with gr.Tab("📊 Results"):
predictions = gr.Label(
label="Classification Confidence",
num_top_classes=3
)
recycling_info = gr.Markdown(
label="Recycling Information",
elem_id="output-box"
)
with gr.Tab("🔥 AI Visualization"):
heatmap = gr.Image(
label="Attention Map (What the AI sees)",
height=400
)
gr.Markdown(
"""
**Grad-CAM Visualization**: Warmer colors (red/yellow) show regions
the AI focused on for classification. Cooler colors (blue) indicate
less important regions.
"""
)
# Examples section
if examples:
gr.Examples(
examples=examples,
inputs=input_image,
label="📷 Try These Examples"
)
# Footer
gr.Markdown(
"""
---
<div style="text-align: center; color: #666;">
<p>Built with ❤️ for a sustainable future | Powered by EfficientNet-B3 & PyTorch</p>
<p>💡 <strong>Tip:</strong> This AI model was trained on 2,500+ waste images with 90%+ accuracy</p>
</div>
"""
)
# Connect button
classify_btn.click(
fn=classify_image,
inputs=input_image,
outputs=[predictions, heatmap, recycling_info]
)
# ============================================================================
# LAUNCH
# ============================================================================
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
show_error=True,
debug=True
) |