Spaces:
Runtime error
Runtime error
Upload llama.cpp/ggml/src/ggml-cuda/diagmask.cu with huggingface_hub
Browse files
llama.cpp/ggml/src/ggml-cuda/diagmask.cu
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#include "diagmask.cuh"
|
| 2 |
+
|
| 3 |
+
static __global__ void diag_mask_inf_f32(const float * x, float * dst, const int ncols, const int rows_per_channel, const int n_past) {
|
| 4 |
+
const int col = blockDim.y*blockIdx.y + threadIdx.y;
|
| 5 |
+
const int row = blockDim.x*blockIdx.x + threadIdx.x;
|
| 6 |
+
|
| 7 |
+
if (col >= ncols) {
|
| 8 |
+
return;
|
| 9 |
+
}
|
| 10 |
+
|
| 11 |
+
const int i = row*ncols + col;
|
| 12 |
+
//dst[i] = col > (n_past + row % rows_per_channel) ? -INFINITY : x[i];
|
| 13 |
+
//dst[i] = x[i] - (col > n_past + row % rows_per_channel) * INT_MAX; // equivalent within rounding error but slightly faster on GPU
|
| 14 |
+
dst[i] = x[i] - (col > n_past + row % rows_per_channel) * FLT_MAX;
|
| 15 |
+
}
|
| 16 |
+
|
| 17 |
+
static void diag_mask_inf_f32_cuda(const float * x, float * dst, const int ncols_x, const int nrows_x, const int rows_per_channel, const int n_past, cudaStream_t stream) {
|
| 18 |
+
const dim3 block_dims(1, CUDA_DIAG_MASK_INF_BLOCK_SIZE, 1);
|
| 19 |
+
const int block_num_x = (ncols_x + CUDA_DIAG_MASK_INF_BLOCK_SIZE - 1) / CUDA_DIAG_MASK_INF_BLOCK_SIZE;
|
| 20 |
+
const dim3 block_nums(nrows_x, block_num_x, 1);
|
| 21 |
+
diag_mask_inf_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x, rows_per_channel, n_past);
|
| 22 |
+
}
|
| 23 |
+
|
| 24 |
+
void ggml_cuda_op_diag_mask_inf(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
| 25 |
+
const ggml_tensor * src0 = dst->src[0];
|
| 26 |
+
const float * src0_d = (const float *)src0->data;
|
| 27 |
+
float * dst_d = (float *)dst->data;
|
| 28 |
+
cudaStream_t stream = ctx.stream();
|
| 29 |
+
|
| 30 |
+
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
| 31 |
+
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
| 32 |
+
|
| 33 |
+
const int64_t ne00 = src0->ne[0];
|
| 34 |
+
const int64_t ne01 = src0->ne[1];
|
| 35 |
+
const int nrows0 = ggml_nrows(src0);
|
| 36 |
+
|
| 37 |
+
const int n_past = ((int32_t *) dst->op_params)[0];
|
| 38 |
+
|
| 39 |
+
diag_mask_inf_f32_cuda(src0_d, dst_d, ne00, nrows0, ne01, n_past, stream);
|
| 40 |
+
}
|