Arrcttacsrks commited on
Commit
deb4179
·
verified ·
1 Parent(s): 84abeb6

Upload llama.cpp/ggml/src/ggml-cuda/getrows.cu with huggingface_hub

Browse files
llama.cpp/ggml/src/ggml-cuda/getrows.cu ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include "getrows.cuh"
2
+ #include "dequantize.cuh"
3
+
4
+ template<int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
5
+ static __global__ void k_get_rows(
6
+ const void * src0, const int32_t * src1, dst_t * dst,
7
+ int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
8
+ /*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
9
+ /*size_t s0,*/ size_t s1, size_t s2, size_t s3,
10
+ /*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
11
+ size_t s10, size_t s11, size_t s12/*, size_t s13*/) {
12
+
13
+ const int i00 = (blockIdx.x*blockDim.x + threadIdx.x)*2;
14
+ const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
15
+ const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12;
16
+ const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12;
17
+
18
+ if (i00 >= ne00) {
19
+ return;
20
+ }
21
+
22
+ const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
23
+
24
+ dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
25
+ const void * src0_row = (const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03;
26
+
27
+ const int ib = i00/qk; // block index
28
+ const int iqs = (i00%qk)/qr; // quant index
29
+ const int iybs = i00 - i00%qk; // dst block start index
30
+ const int y_offset = qr == 1 ? 1 : qk/2;
31
+
32
+ // dequantize
33
+ dfloat2 v;
34
+ dequantize_kernel(src0_row, ib, iqs, v);
35
+
36
+ dst_row[iybs + iqs + 0] = v.x;
37
+ dst_row[iybs + iqs + y_offset] = v.y;
38
+ }
39
+
40
+ template<typename src0_t, typename dst_t>
41
+ static __global__ void k_get_rows_float(
42
+ const src0_t * src0, const int32_t * src1, dst_t * dst,
43
+ int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
44
+ /*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
45
+ /*size_t s0,*/ size_t s1, size_t s2, size_t s3,
46
+ /*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
47
+ size_t s10, size_t s11, size_t s12/*, size_t s13*/) {
48
+
49
+ const int i00 = blockIdx.x*blockDim.x + threadIdx.x;
50
+ const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
51
+ const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12;
52
+ const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12;
53
+
54
+ if (i00 >= ne00) {
55
+ return;
56
+ }
57
+
58
+ const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
59
+
60
+ dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
61
+ const src0_t * src0_row = (const src0_t *)((const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03);
62
+
63
+ dst_row[i00] = src0_row[i00];
64
+ }
65
+
66
+ template<int qk, int qr, dequantize_kernel_t dq>
67
+ static void get_rows_cuda(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
68
+ const void * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
69
+
70
+ GGML_TENSOR_BINARY_OP_LOCALS
71
+
72
+ const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
73
+ const int block_num_x = (ne00 + 2*CUDA_GET_ROWS_BLOCK_SIZE - 1) / (2*CUDA_GET_ROWS_BLOCK_SIZE);
74
+ const dim3 block_nums(block_num_x, ne10, ne11*ne12);
75
+
76
+ // strides in elements
77
+ //const size_t s0 = nb0 / ggml_element_size(dst);
78
+ const size_t s1 = nb1 / ggml_element_size(dst);
79
+ const size_t s2 = nb2 / ggml_element_size(dst);
80
+ const size_t s3 = nb3 / ggml_element_size(dst);
81
+
82
+ const size_t s10 = nb10 / ggml_element_size(src1);
83
+ const size_t s11 = nb11 / ggml_element_size(src1);
84
+ const size_t s12 = nb12 / ggml_element_size(src1);
85
+ //const size_t s13 = nb13 / ggml_element_size(src1);
86
+
87
+ GGML_ASSERT(ne00 % 2 == 0);
88
+
89
+ k_get_rows<qk, qr, dq><<<block_nums, block_dims, 0, stream>>>(
90
+ src0_dd, src1_dd, dst_dd,
91
+ ne00, /*ne01, ne02, ne03,*/
92
+ /*ne10, ne11,*/ ne12, /*ne13,*/
93
+ /* s0,*/ s1, s2, s3,
94
+ /* nb00,*/ nb01, nb02, nb03,
95
+ s10, s11, s12/*, s13*/);
96
+
97
+ GGML_UNUSED(dst);
98
+ }
99
+
100
+ template<typename src0_t>
101
+ static void get_rows_cuda_float(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
102
+ const src0_t * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
103
+
104
+ GGML_TENSOR_BINARY_OP_LOCALS
105
+
106
+ const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
107
+ const int block_num_x = (ne00 + CUDA_GET_ROWS_BLOCK_SIZE - 1) / CUDA_GET_ROWS_BLOCK_SIZE;
108
+ const dim3 block_nums(block_num_x, ne10, ne11*ne12);
109
+
110
+ // strides in elements
111
+ //const size_t s0 = nb0 / ggml_element_size(dst);
112
+ const size_t s1 = nb1 / ggml_element_size(dst);
113
+ const size_t s2 = nb2 / ggml_element_size(dst);
114
+ const size_t s3 = nb3 / ggml_element_size(dst);
115
+
116
+ const size_t s10 = nb10 / ggml_element_size(src1);
117
+ const size_t s11 = nb11 / ggml_element_size(src1);
118
+ const size_t s12 = nb12 / ggml_element_size(src1);
119
+ //const size_t s13 = nb13 / ggml_element_size(src1);
120
+
121
+ k_get_rows_float<<<block_nums, block_dims, 0, stream>>>(
122
+ src0_dd, src1_dd, dst_dd,
123
+ ne00, /*ne01, ne02, ne03,*/
124
+ /*ne10, ne11,*/ ne12, /*ne13,*/
125
+ /* s0,*/ s1, s2, s3,
126
+ /* nb00,*/ nb01, nb02, nb03,
127
+ s10, s11, s12/*, s13*/);
128
+
129
+ GGML_UNUSED(dst);
130
+ }
131
+
132
+ void ggml_cuda_op_get_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
133
+ const ggml_tensor * src0 = dst->src[0];
134
+ const ggml_tensor * src1 = dst->src[1];
135
+ const float * src0_d = (const float *)src0->data;
136
+ const float * src1_d = (const float *)src1->data;
137
+ float * dst_d = (float *)dst->data;
138
+ cudaStream_t stream = ctx.stream();
139
+
140
+
141
+ GGML_ASSERT(src1->type == GGML_TYPE_I32);
142
+ GGML_ASSERT(dst->type == GGML_TYPE_F32);
143
+
144
+ GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
145
+ GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
146
+ GGML_ASSERT(dst->nb[0] == ggml_type_size(dst->type));
147
+
148
+ const int32_t * src1_i32 = (const int32_t *) src1_d;
149
+
150
+ switch (src0->type) {
151
+ case GGML_TYPE_F16:
152
+ get_rows_cuda_float(src0, src1, dst, (const half *)src0_d, src1_i32, dst_d, stream);
153
+ break;
154
+ case GGML_TYPE_F32:
155
+ get_rows_cuda_float(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
156
+ break;
157
+ case GGML_TYPE_Q4_0:
158
+ get_rows_cuda<QK4_0, QR4_0, dequantize_q4_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
159
+ break;
160
+ case GGML_TYPE_Q4_1:
161
+ get_rows_cuda<QK4_1, QR4_1, dequantize_q4_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
162
+ break;
163
+ case GGML_TYPE_Q5_0:
164
+ get_rows_cuda<QK5_0, QR5_0, dequantize_q5_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
165
+ break;
166
+ case GGML_TYPE_Q5_1:
167
+ get_rows_cuda<QK5_1, QR5_1, dequantize_q5_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
168
+ break;
169
+ case GGML_TYPE_Q8_0:
170
+ get_rows_cuda<QK8_0, QR8_0, dequantize_q8_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
171
+ break;
172
+ default:
173
+ // TODO: k-quants
174
+ GGML_ABORT("%s: unsupported type: %s\n", __func__, ggml_type_name(src0->type));
175
+ break;
176
+ }
177
+ }