|
|
from functools import wraps |
|
|
import torch |
|
|
import diffusers |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
original_fourier_filter = diffusers.utils.torch_utils.fourier_filter |
|
|
@wraps(diffusers.utils.torch_utils.fourier_filter) |
|
|
def fourier_filter(x_in, threshold, scale): |
|
|
return_dtype = x_in.dtype |
|
|
return original_fourier_filter(x_in.to(dtype=torch.float32), threshold, scale).to(dtype=return_dtype) |
|
|
|
|
|
|
|
|
|
|
|
class FluxPosEmbed(torch.nn.Module): |
|
|
def __init__(self, theta: int, axes_dim): |
|
|
super().__init__() |
|
|
self.theta = theta |
|
|
self.axes_dim = axes_dim |
|
|
|
|
|
def forward(self, ids: torch.Tensor) -> torch.Tensor: |
|
|
n_axes = ids.shape[-1] |
|
|
cos_out = [] |
|
|
sin_out = [] |
|
|
pos = ids.float() |
|
|
for i in range(n_axes): |
|
|
cos, sin = diffusers.models.embeddings.get_1d_rotary_pos_embed( |
|
|
self.axes_dim[i], |
|
|
pos[:, i], |
|
|
theta=self.theta, |
|
|
repeat_interleave_real=True, |
|
|
use_real=True, |
|
|
freqs_dtype=torch.float32, |
|
|
) |
|
|
cos_out.append(cos) |
|
|
sin_out.append(sin) |
|
|
freqs_cos = torch.cat(cos_out, dim=-1).to(ids.device) |
|
|
freqs_sin = torch.cat(sin_out, dim=-1).to(ids.device) |
|
|
return freqs_cos, freqs_sin |
|
|
|
|
|
|
|
|
def ipex_diffusers(device_supports_fp64=False, can_allocate_plus_4gb=False): |
|
|
diffusers.utils.torch_utils.fourier_filter = fourier_filter |
|
|
if not device_supports_fp64: |
|
|
diffusers.models.embeddings.FluxPosEmbed = FluxPosEmbed |
|
|
|