import gradio as gr import numpy as np import os, random, json, spaces, torch, time, subprocess import torch # from transformers import AutoProcessor, AutoTokenizer # from diffusers import DiffusionPipeline from diffusers import NewbiePipeline from transformers import AutoModel """ for anyone having problem with flash_attn, you need to build it from source. This compiles the library against your specific environment: git clone https://github.com/Dao-AILab/flash-attention.git pip install --no-build-isolation flash-attention/. """ from utils import prompt_utils MAX_SEED = np.iinfo(np.int32).max device = "cuda" MODEL_REPO = "Disty0/NewBie-image-Exp0.1-Diffusers" text_encoder_2 = AutoModel.from_pretrained( MODEL_REPO, subfolder="text_encoder_2", trust_remote_code=True, torch_dtype=torch.bfloat16, device_map="cuda", ) pipe = NewbiePipeline.from_pretrained( MODEL_REPO, text_encoder_2=text_encoder_2, torch_dtype=torch.bfloat16 ).to("cuda") del text_encoder_2 def read_file(path: str) -> str: with open(path, 'r', encoding='utf-8') as f: content = f.read() return content def prepare(prompt, is_polish_prompt): if not is_polish_prompt: return prompt, False system_prompt = read_file('system_prompt.md') polished_prompt = prompt_utils.polish_prompt(prompt, system_prompt) return polished_prompt, True @spaces.GPU def inference( prompt, negative_prompt="blurry ugly bad", width=1024, height=1024, seed=42, randomize_seed=True, guidance_scale=3.5, num_inference_steps=8, progress=gr.Progress(track_tqdm=True), ): timestamp = time.time() print(f"timestamp: {timestamp}") # generation if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) image = pipe( prompt= prompt, negative_prompt = negative_prompt, width=width, height=height, generator=generator, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps ).images[0] return image, seed css = """ #col-container { margin: 0 auto; max-width: 960px; } """ with open('examples/0_examples.json', 'r') as file: examples = json.load(file) with gr.Blocks() as demo: with gr.Column(elem_id="col-container"): with gr.Column(): gr.HTML(read_file("static/header.html")) with gr.Row(): with gr.Column(): prompt = gr.Textbox( label="Prompt", show_label=False, lines=2, placeholder="Enter your prompt", # container=False, ) is_polish_prompt = gr.Checkbox(label="Polish prompt", value=True) run_button = gr.Button("Generate", variant="primary") with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Textbox( label="Negative prompt", lines=2, container=False, placeholder="Enter your negative prompt", value="blurry ugly bad" ) num_inference_steps = gr.Slider( label="Steps", minimum=1, maximum=50, step=1, value=20, ) with gr.Row(): width = gr.Slider( label="Width", minimum=512, maximum=1280, step=32, value=768, ) height = gr.Slider( label="Height", minimum=512, maximum=1280, step=32, value=1024, ) with gr.Row(): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, ) guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=3.5, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Column(): output_image = gr.Image(label="Generated image", show_label=False) polished_prompt = gr.Textbox(label="Final prompt",lines=2, interactive=False) gr.Examples(examples=examples, inputs=[prompt]) gr.Markdown(read_file("static/footer.md")) run_button.click( fn=prepare, inputs=[prompt, is_polish_prompt], outputs=[polished_prompt, is_polish_prompt] ).then( fn=inference, inputs=[ polished_prompt, negative_prompt, width, height, seed, randomize_seed, guidance_scale, num_inference_steps, ], outputs=[output_image, seed], ) if __name__ == "__main__": demo.launch(mcp_server=True, css=css)