import gradio as gr import numpy as np import os, random, json, spaces, torch, time, subprocess import torch # from transformers import AutoProcessor, AutoTokenizer from diffusers import DiffusionPipeline from diffusers import NewbiePipeline from utils.image_utils import rescale_image from utils.prompt_utils import polish_prompt MODEL_REPO = "NewBie-AI/NewBie-image-Exp0.1" MAX_SEED = np.iinfo(np.int32).max # pipe = NewbiePipeline.from_pretrained( # MODEL_REPO, # torch_dtype=torch.bfloat16, # ) # pipe.to("cuda") # def prepare(prompt, is_polish_prompt): # if not is_polish_prompt: return prompt, False # polished_prompt = polish_prompt(prompt) # return polished_prompt, True # @spaces.GPU # def inference( # prompt, # negative_prompt="blurry ugly bad", # width=1024, # height=1024, # seed=42, # randomize_seed=True, # guidance_scale=1.5, # num_inference_steps=8, # progress=gr.Progress(track_tqdm=True), # ): # timestamp = time.time() # print(f"timestamp: {timestamp}") # # generation # if randomize_seed: seed = random.randint(0, MAX_SEED) # generator = torch.Generator().manual_seed(seed) # image = pipe( # prompt= prompt, # negative_prompt = negative_prompt, # width=width, # height=height, # generator=generator, # guidance_scale=guidance_scale, # num_inference_steps=num_inference_steps, # enable_prompt_rewrite= False # ).images[0] # return image, seed def read_file(path: str) -> str: with open(path, 'r', encoding='utf-8') as f: content = f.read() return content css = """ #col-container { margin: 0 auto; max-width: 960px; } """ with open('static/data.json', 'r') as file: data = json.load(file) examples = data['examples'] with gr.Blocks() as demo: with gr.Column(elem_id="col-container"): with gr.Column(): gr.HTML(read_file("static/header.html")) # with gr.Row(): # with gr.Column(): # prompt = gr.Textbox( # label="Prompt", # show_label=False, # lines=2, # placeholder="Enter your prompt", # # container=False, # ) # is_polish_prompt = gr.Checkbox(label="Polish prompt", value=False) # run_button = gr.Button("Generate", variant="primary") # with gr.Accordion("Advanced Settings", open=False): # negative_prompt = gr.Textbox( # label="Negative prompt", # lines=2, # container=False, # placeholder="Enter your negative prompt", # value="blurry ugly bad" # ) # num_inference_steps = gr.Slider( # label="Steps", # minimum=1, # maximum=50, # step=1, # value=20, # ) # with gr.Row(): # width = gr.Slider( # label="Width", # minimum=512, # maximum=1280, # step=32, # value=768, # ) # height = gr.Slider( # label="Height", # minimum=512, # maximum=1280, # step=32, # value=1024, # ) # with gr.Row(): # seed = gr.Slider( # label="Seed", # minimum=0, # maximum=MAX_SEED, # step=1, # value=42, # ) # guidance_scale = gr.Slider( # label="Guidance scale", # minimum=0.0, # maximum=10.0, # step=0.1, # value=1.0, # ) # randomize_seed = gr.Checkbox(label="Randomize seed", value=True) # with gr.Column(): # output_image = gr.Image(label="Generated image", show_label=False) # polished_prompt = gr.Textbox(label="Final prompt",lines=2, interactive=False) # gr.Examples(examples=examples, inputs=[prompt]) # gr.Markdown(read_file("static/footer.md")) # run_button.click( # fn=prepare, # inputs=[prompt, is_polish_prompt], # outputs=[polished_prompt, is_polish_prompt] # ).then( # fn=inference, # inputs=[ # polished_prompt, # negative_prompt, # width, # height, # seed, # randomize_seed, # guidance_scale, # num_inference_steps, # ], # outputs=[output_image, seed], # ) if __name__ == "__main__": demo.launch(mcp_server=True, css=css)