Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,389 Bytes
effa2ec e642c7f effa2ec e642c7f c46c37a 2d1f556 effa2ec e642c7f 8a599c9 e642c7f 5483c20 e642c7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import gradio as gr
import numpy as np
import os, random, json, spaces, torch, time, subprocess
import torch
# from transformers import AutoProcessor, AutoTokenizer
# from diffusers import DiffusionPipeline
from diffusers import NewbiePipeline
from utils.image_utils import rescale_image
from utils.prompt_utils import polish_prompt
MODEL_REPO = "NewBie-AI/NewBie-image-Exp0.1"
MAX_SEED = np.iinfo(np.int32).max
# pipe = NewbiePipeline.from_pretrained(
# MODEL_REPO,
# torch_dtype=torch.bfloat16,
# )
# pipe.to("cuda")
# def prepare(prompt, is_polish_prompt):
# if not is_polish_prompt: return prompt, False
# polished_prompt = polish_prompt(prompt)
# return polished_prompt, True
# @spaces.GPU
# def inference(
# prompt,
# negative_prompt="blurry ugly bad",
# width=1024,
# height=1024,
# seed=42,
# randomize_seed=True,
# guidance_scale=1.5,
# num_inference_steps=8,
# progress=gr.Progress(track_tqdm=True),
# ):
# timestamp = time.time()
# print(f"timestamp: {timestamp}")
# # generation
# if randomize_seed: seed = random.randint(0, MAX_SEED)
# generator = torch.Generator().manual_seed(seed)
# image = pipe(
# prompt= prompt,
# negative_prompt = negative_prompt,
# width=width,
# height=height,
# generator=generator,
# guidance_scale=guidance_scale,
# num_inference_steps=num_inference_steps,
# enable_prompt_rewrite= False
# ).images[0]
# return image, seed
def read_file(path: str) -> str:
with open(path, 'r', encoding='utf-8') as f:
content = f.read()
return content
css = """
#col-container {
margin: 0 auto;
max-width: 960px;
}
"""
with open('static/data.json', 'r') as file:
data = json.load(file)
examples = data['examples']
with gr.Blocks() as demo:
with gr.Column(elem_id="col-container"):
with gr.Column():
gr.HTML(read_file("static/header.html"))
# with gr.Row():
# with gr.Column():
# prompt = gr.Textbox(
# label="Prompt",
# show_label=False,
# lines=2,
# placeholder="Enter your prompt",
# # container=False,
# )
# is_polish_prompt = gr.Checkbox(label="Polish prompt", value=False)
# run_button = gr.Button("Generate", variant="primary")
# with gr.Accordion("Advanced Settings", open=False):
# negative_prompt = gr.Textbox(
# label="Negative prompt",
# lines=2,
# container=False,
# placeholder="Enter your negative prompt",
# value="blurry ugly bad"
# )
# num_inference_steps = gr.Slider(
# label="Steps",
# minimum=1,
# maximum=50,
# step=1,
# value=20,
# )
# with gr.Row():
# width = gr.Slider(
# label="Width",
# minimum=512,
# maximum=1280,
# step=32,
# value=768,
# )
# height = gr.Slider(
# label="Height",
# minimum=512,
# maximum=1280,
# step=32,
# value=1024,
# )
# with gr.Row():
# seed = gr.Slider(
# label="Seed",
# minimum=0,
# maximum=MAX_SEED,
# step=1,
# value=42,
# )
# guidance_scale = gr.Slider(
# label="Guidance scale",
# minimum=0.0,
# maximum=10.0,
# step=0.1,
# value=1.0,
# )
# randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
# with gr.Column():
# output_image = gr.Image(label="Generated image", show_label=False)
# polished_prompt = gr.Textbox(label="Final prompt",lines=2, interactive=False)
# gr.Examples(examples=examples, inputs=[prompt])
# gr.Markdown(read_file("static/footer.md"))
# run_button.click(
# fn=prepare,
# inputs=[prompt, is_polish_prompt],
# outputs=[polished_prompt, is_polish_prompt]
# ).then(
# fn=inference,
# inputs=[
# polished_prompt,
# negative_prompt,
# width,
# height,
# seed,
# randomize_seed,
# guidance_scale,
# num_inference_steps,
# ],
# outputs=[output_image, seed],
# )
if __name__ == "__main__":
demo.launch(mcp_server=True, css=css)
|