File size: 5,389 Bytes
effa2ec
e642c7f
 
effa2ec
e642c7f
 
c46c37a
2d1f556
effa2ec
e642c7f
 
 
8a599c9
 
e642c7f
5483c20
 
 
 
 
e642c7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import gradio as gr
import numpy as np
import os, random, json, spaces, torch, time, subprocess

import torch
# from transformers import AutoProcessor, AutoTokenizer
# from diffusers import DiffusionPipeline
from diffusers import NewbiePipeline

from utils.image_utils import rescale_image
from utils.prompt_utils import polish_prompt

MODEL_REPO = "NewBie-AI/NewBie-image-Exp0.1"
MAX_SEED = np.iinfo(np.int32).max

# pipe = NewbiePipeline.from_pretrained(
#     MODEL_REPO,
#     torch_dtype=torch.bfloat16,
# )
# pipe.to("cuda")

# def prepare(prompt, is_polish_prompt):
#     if not is_polish_prompt: return prompt, False
#     polished_prompt = polish_prompt(prompt)
#     return polished_prompt, True

# @spaces.GPU
# def inference(
#     prompt,
#     negative_prompt="blurry ugly bad",
#     width=1024,
#     height=1024,
#     seed=42,
#     randomize_seed=True,
#     guidance_scale=1.5,
#     num_inference_steps=8,
#     progress=gr.Progress(track_tqdm=True),
# ):
#     timestamp = time.time()
#     print(f"timestamp: {timestamp}")


#     # generation
#     if randomize_seed: seed = random.randint(0, MAX_SEED)
#     generator = torch.Generator().manual_seed(seed)

#     image = pipe(
#         prompt= prompt,
#         negative_prompt = negative_prompt,
#         width=width,
#         height=height,
#         generator=generator,
#         guidance_scale=guidance_scale,
#         num_inference_steps=num_inference_steps,
#         enable_prompt_rewrite= False
#     ).images[0]

#     return image, seed


def read_file(path: str) -> str:
    with open(path, 'r', encoding='utf-8') as f:
        content = f.read()
    return content


css = """
#col-container {
    margin: 0 auto;
    max-width: 960px;
}
"""

with open('static/data.json', 'r') as file:
    data = json.load(file)
examples = data['examples']

with gr.Blocks() as demo:
    with gr.Column(elem_id="col-container"):
        with gr.Column():
            gr.HTML(read_file("static/header.html"))
        # with gr.Row():
        #     with gr.Column():
        #         prompt = gr.Textbox(
        #             label="Prompt",
        #             show_label=False,
        #             lines=2,
        #             placeholder="Enter your prompt",
        #             # container=False,
        #         )
        #         is_polish_prompt = gr.Checkbox(label="Polish prompt", value=False)
        #         run_button = gr.Button("Generate", variant="primary")
        #         with gr.Accordion("Advanced Settings", open=False):
                    
        #             negative_prompt = gr.Textbox(
        #                 label="Negative prompt",
        #                 lines=2,
        #                 container=False,
        #                 placeholder="Enter your negative prompt",
        #                 value="blurry ugly bad"
        #             )
        #             num_inference_steps = gr.Slider(
        #                 label="Steps",
        #                 minimum=1,
        #                 maximum=50,
        #                 step=1,
        #                 value=20,
        #             )
        #             with gr.Row():
        #                 width = gr.Slider(
        #                     label="Width",
        #                     minimum=512,
        #                     maximum=1280,
        #                     step=32,
        #                     value=768, 
        #                 )

        #                 height = gr.Slider(
        #                     label="Height",
        #                     minimum=512,
        #                     maximum=1280,
        #                     step=32,
        #                     value=1024,
        #                 )
        #             with gr.Row():
        #                 seed = gr.Slider(
        #                     label="Seed",
        #                     minimum=0,
        #                     maximum=MAX_SEED,
        #                     step=1,
        #                     value=42,
        #                 )
        #                 guidance_scale = gr.Slider(
        #                     label="Guidance scale",
        #                     minimum=0.0,
        #                     maximum=10.0,
        #                     step=0.1,
        #                     value=1.0,
        #                 )

                    
        #             randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

        #     with gr.Column():
        #         output_image = gr.Image(label="Generated image", show_label=False)
        #         polished_prompt = gr.Textbox(label="Final prompt",lines=2, interactive=False)

                    
        # gr.Examples(examples=examples, inputs=[prompt])
        # gr.Markdown(read_file("static/footer.md"))

    # run_button.click(
    #     fn=prepare,
    #     inputs=[prompt, is_polish_prompt],
    #     outputs=[polished_prompt, is_polish_prompt]
    # ).then(
    #     fn=inference,
    #     inputs=[
    #         polished_prompt,
    #         negative_prompt,
    #         width,
    #         height,
    #         seed,
    #         randomize_seed,
    #         guidance_scale,
    #         num_inference_steps,
    #     ],
    #     outputs=[output_image, seed],
    # )


if __name__ == "__main__":
    demo.launch(mcp_server=True, css=css)