Update app.py
Browse files
app.py
CHANGED
|
@@ -4,35 +4,12 @@ from transformers import AutoTokenizer, AutoModelForMaskedLM
|
|
| 4 |
import torch
|
| 5 |
import gradio as gr
|
| 6 |
import re
|
| 7 |
-
from dataclasses import dataclass
|
| 8 |
from pathlib import Path
|
| 9 |
import spaces
|
| 10 |
|
| 11 |
@spaces.GPU
|
| 12 |
-
@dataclass
|
| 13 |
-
class SymbolicConfig:
|
| 14 |
-
repo_id: str = "AbstractPhil/bert-beatrix-2048"
|
| 15 |
-
revision: str = "main"
|
| 16 |
-
symbolic_roles: list = (
|
| 17 |
-
"<subject>", "<subject1>", "<subject2>", "<pose>", "<emotion>",
|
| 18 |
-
"<surface>", "<lighting>", "<material>", "<accessory>", "<footwear>",
|
| 19 |
-
"<upper_body_clothing>", "<hair_style>", "<hair_length>", "<headwear>",
|
| 20 |
-
"<texture>", "<pattern>", "<grid>", "<zone>", "<offset>",
|
| 21 |
-
"<object_left>", "<object_right>", "<relation>", "<intent>", "<style>",
|
| 22 |
-
"<fabric>", "<jewelry>"
|
| 23 |
-
)
|
| 24 |
-
|
| 25 |
-
config = SymbolicConfig()
|
| 26 |
-
tokenizer = AutoTokenizer.from_pretrained(config.repo_id, revision=config.revision)
|
| 27 |
-
model = AutoModelForMaskedLM.from_pretrained(
|
| 28 |
-
config.repo_id,
|
| 29 |
-
revision=config.revision,
|
| 30 |
-
trust_remote_code=True
|
| 31 |
-
).eval().cuda()
|
| 32 |
-
|
| 33 |
-
MASK_TOKEN = tokenizer.mask_token or "[MASK]"
|
| 34 |
-
|
| 35 |
def mask_and_predict(text: str, selected_roles: list[str]):
|
|
|
|
| 36 |
results = []
|
| 37 |
masked_text = text
|
| 38 |
token_ids = tokenizer.encode(text, return_tensors="pt").cuda()
|
|
@@ -64,16 +41,32 @@ def mask_and_predict(text: str, selected_roles: list[str]):
|
|
| 64 |
accuracy = sum(1 for r in results if r["Match"] == "β
") / max(len(results), 1)
|
| 65 |
return results, f"Accuracy: {accuracy:.1%}"
|
| 66 |
|
| 67 |
-
|
| 68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
|
|
|
| 70 |
with gr.Blocks() as demo:
|
| 71 |
gr.Markdown("## π Symbolic BERT Inference Test")
|
| 72 |
with gr.Row():
|
| 73 |
with gr.Column():
|
| 74 |
input_text = gr.Textbox(label="Symbolic Input Caption", lines=3)
|
| 75 |
selected_roles = gr.CheckboxGroup(
|
| 76 |
-
choices=
|
| 77 |
label="Mask these symbolic roles"
|
| 78 |
)
|
| 79 |
run_btn = gr.Button("Run Mask Inference")
|
|
@@ -85,7 +78,6 @@ def build_interface():
|
|
| 85 |
|
| 86 |
return demo
|
| 87 |
|
| 88 |
-
|
| 89 |
if __name__ == "__main__":
|
| 90 |
demo = build_interface()
|
| 91 |
demo.launch()
|
|
|
|
| 4 |
import torch
|
| 5 |
import gradio as gr
|
| 6 |
import re
|
|
|
|
| 7 |
from pathlib import Path
|
| 8 |
import spaces
|
| 9 |
|
| 10 |
@spaces.GPU
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
def mask_and_predict(text: str, selected_roles: list[str]):
|
| 12 |
+
MASK_TOKEN = tokenizer.mask_token or "[MASK]"
|
| 13 |
results = []
|
| 14 |
masked_text = text
|
| 15 |
token_ids = tokenizer.encode(text, return_tensors="pt").cuda()
|
|
|
|
| 41 |
accuracy = sum(1 for r in results if r["Match"] == "β
") / max(len(results), 1)
|
| 42 |
return results, f"Accuracy: {accuracy:.1%}"
|
| 43 |
|
| 44 |
+
symbolic_roles = [
|
| 45 |
+
"<subject>", "<subject1>", "<subject2>", "<pose>", "<emotion>",
|
| 46 |
+
"<surface>", "<lighting>", "<material>", "<accessory>", "<footwear>",
|
| 47 |
+
"<upper_body_clothing>", "<hair_style>", "<hair_length>", "<headwear>",
|
| 48 |
+
"<texture>", "<pattern>", "<grid>", "<zone>", "<offset>",
|
| 49 |
+
"<object_left>", "<object_right>", "<relation>", "<intent>", "<style>",
|
| 50 |
+
"<fabric>", "<jewelry>"
|
| 51 |
+
]
|
| 52 |
+
|
| 53 |
+
REPO_ID = "AbstractPhil/bert-beatrix-2048"
|
| 54 |
+
REVISION = "main"
|
| 55 |
+
tokenizer = AutoTokenizer.from_pretrained(REPO_ID, revision=REVISION)
|
| 56 |
+
model = AutoModelForMaskedLM.from_pretrained(
|
| 57 |
+
REPO_ID,
|
| 58 |
+
revision=REVISION,
|
| 59 |
+
trust_remote_code=True
|
| 60 |
+
).eval().cuda()
|
| 61 |
|
| 62 |
+
def build_interface():
|
| 63 |
with gr.Blocks() as demo:
|
| 64 |
gr.Markdown("## π Symbolic BERT Inference Test")
|
| 65 |
with gr.Row():
|
| 66 |
with gr.Column():
|
| 67 |
input_text = gr.Textbox(label="Symbolic Input Caption", lines=3)
|
| 68 |
selected_roles = gr.CheckboxGroup(
|
| 69 |
+
choices=symbolic_roles,
|
| 70 |
label="Mask these symbolic roles"
|
| 71 |
)
|
| 72 |
run_btn = gr.Button("Run Mask Inference")
|
|
|
|
| 78 |
|
| 79 |
return demo
|
| 80 |
|
|
|
|
| 81 |
if __name__ == "__main__":
|
| 82 |
demo = build_interface()
|
| 83 |
demo.launch()
|