Update app.py
Browse files
app.py
CHANGED
|
@@ -90,24 +90,24 @@ def encode_and_trace(text, selected_roles):
|
|
| 90 |
sel_ids = [tokenizer.convert_tokens_to_ids(t) for t in selected_roles]
|
| 91 |
sel_ids_tensor = torch.tensor(sel_ids, device="cuda")
|
| 92 |
|
| 93 |
-
# Tokenize
|
| 94 |
batch = tokenizer(text, return_tensors="pt").to("cuda")
|
| 95 |
ids, attn = batch.input_ids, batch.attention_mask
|
| 96 |
S = ids.shape[1]
|
| 97 |
|
| 98 |
-
#
|
| 99 |
def encode(input_ids, attn_mask):
|
| 100 |
x = embeddings(input_ids)
|
| 101 |
if emb_ln: x = emb_ln(x)
|
| 102 |
if emb_drop: x = emb_drop(x)
|
| 103 |
ext = full_model.bert.get_extended_attention_mask(attn_mask, x.shape[:-1])
|
| 104 |
-
return encoder(x, attention_mask=ext)[0]
|
| 105 |
|
| 106 |
encoded = encode(ids, attn)
|
| 107 |
|
| 108 |
-
#
|
| 109 |
-
symbolic_embeds = embeddings.word_embeddings(sel_ids_tensor) #
|
| 110 |
-
sim = cosine(encoded.unsqueeze(1), symbolic_embeds.unsqueeze(0)) # (S, R)
|
| 111 |
maxcos, argrole = sim.max(-1) # (S,)
|
| 112 |
top_roles = [selected_roles[i] for i in argrole.tolist()]
|
| 113 |
sort_idx = maxcos.argsort(descending=True)
|
|
@@ -116,7 +116,7 @@ def encode_and_trace(text, selected_roles):
|
|
| 116 |
|
| 117 |
MASK_ID = tokenizer.mask_token_id or tokenizer.convert_tokens_to_ids("[MASK]")
|
| 118 |
|
| 119 |
-
#
|
| 120 |
def evaluate_pool(idx_order, label, ids):
|
| 121 |
best_pool, best_acc = [], 0.0
|
| 122 |
ptr = 0
|
|
@@ -130,16 +130,17 @@ def encode_and_trace(text, selected_roles):
|
|
| 130 |
masked_input = ids.where(mask_flags, MASK_ID)
|
| 131 |
|
| 132 |
encoded_m = encode(masked_input, attn)
|
| 133 |
-
logits = mlm_head(encoded_m)
|
| 134 |
-
preds = logits.argmax(-1)
|
| 135 |
|
| 136 |
-
masked_positions = (~mask_flags[0]).nonzero(as_tuple=
|
| 137 |
if masked_positions.numel() == 0:
|
| 138 |
continue
|
| 139 |
|
| 140 |
-
#
|
| 141 |
-
|
| 142 |
-
|
|
|
|
| 143 |
acc = correct.mean().item()
|
| 144 |
|
| 145 |
if acc > best_acc:
|
|
@@ -149,18 +150,18 @@ def encode_and_trace(text, selected_roles):
|
|
| 149 |
|
| 150 |
return best_pool, best_acc
|
| 151 |
|
| 152 |
-
# Run both
|
| 153 |
pool_hi, acc_hi = evaluate_pool(hi_idx, "high", ids)
|
| 154 |
pool_lo, acc_lo = evaluate_pool(lo_idx, "low", ids)
|
| 155 |
|
| 156 |
-
#
|
| 157 |
decoded_tokens = tokenizer.convert_ids_to_tokens(ids[0])
|
| 158 |
role_trace = [
|
| 159 |
f"{tok:<15} β {role} cos={score:.4f}"
|
| 160 |
for tok, role, score in zip(decoded_tokens, top_roles, maxcos.tolist())
|
| 161 |
]
|
| 162 |
|
| 163 |
-
#
|
| 164 |
res_json = {
|
| 165 |
"High-pool tokens": tokenizer.decode(ids[0, pool_hi]),
|
| 166 |
"High accuracy": f"{acc_hi:.3f}",
|
|
@@ -174,6 +175,7 @@ def encode_and_trace(text, selected_roles):
|
|
| 174 |
|
| 175 |
|
| 176 |
|
|
|
|
| 177 |
# ------------------------------------------------------------------
|
| 178 |
# 4. Gradio UI -----------------------------------------------------
|
| 179 |
def build_interface():
|
|
|
|
| 90 |
sel_ids = [tokenizer.convert_tokens_to_ids(t) for t in selected_roles]
|
| 91 |
sel_ids_tensor = torch.tensor(sel_ids, device="cuda")
|
| 92 |
|
| 93 |
+
# Tokenize
|
| 94 |
batch = tokenizer(text, return_tensors="pt").to("cuda")
|
| 95 |
ids, attn = batch.input_ids, batch.attention_mask
|
| 96 |
S = ids.shape[1]
|
| 97 |
|
| 98 |
+
# Encode helper
|
| 99 |
def encode(input_ids, attn_mask):
|
| 100 |
x = embeddings(input_ids)
|
| 101 |
if emb_ln: x = emb_ln(x)
|
| 102 |
if emb_drop: x = emb_drop(x)
|
| 103 |
ext = full_model.bert.get_extended_attention_mask(attn_mask, x.shape[:-1])
|
| 104 |
+
return encoder(x, attention_mask=ext)[0] # shape: (1, S, H)
|
| 105 |
|
| 106 |
encoded = encode(ids, attn)
|
| 107 |
|
| 108 |
+
# Project symbolic token embeddings
|
| 109 |
+
symbolic_embeds = embeddings.word_embeddings(sel_ids_tensor) # shape: (R, H)
|
| 110 |
+
sim = cosine(encoded[0].unsqueeze(1), symbolic_embeds.unsqueeze(0)) # (S, R)
|
| 111 |
maxcos, argrole = sim.max(-1) # (S,)
|
| 112 |
top_roles = [selected_roles[i] for i in argrole.tolist()]
|
| 113 |
sort_idx = maxcos.argsort(descending=True)
|
|
|
|
| 116 |
|
| 117 |
MASK_ID = tokenizer.mask_token_id or tokenizer.convert_tokens_to_ids("[MASK]")
|
| 118 |
|
| 119 |
+
# Final pool evaluator
|
| 120 |
def evaluate_pool(idx_order, label, ids):
|
| 121 |
best_pool, best_acc = [], 0.0
|
| 122 |
ptr = 0
|
|
|
|
| 130 |
masked_input = ids.where(mask_flags, MASK_ID)
|
| 131 |
|
| 132 |
encoded_m = encode(masked_input, attn)
|
| 133 |
+
logits = mlm_head(encoded_m) # (1, S, V)
|
| 134 |
+
preds = logits.argmax(-1) # (1, S)
|
| 135 |
|
| 136 |
+
masked_positions = (~mask_flags[0]).nonzero(as_tuple=True)[0] # 1D tensor
|
| 137 |
if masked_positions.numel() == 0:
|
| 138 |
continue
|
| 139 |
|
| 140 |
+
# Extract both predicted and gold tokens
|
| 141 |
+
pred_tokens = preds[0, masked_positions]
|
| 142 |
+
gold_tokens = ids[0, masked_positions]
|
| 143 |
+
correct = (pred_tokens == gold_tokens).float()
|
| 144 |
acc = correct.mean().item()
|
| 145 |
|
| 146 |
if acc > best_acc:
|
|
|
|
| 150 |
|
| 151 |
return best_pool, best_acc
|
| 152 |
|
| 153 |
+
# Run both pools
|
| 154 |
pool_hi, acc_hi = evaluate_pool(hi_idx, "high", ids)
|
| 155 |
pool_lo, acc_lo = evaluate_pool(lo_idx, "low", ids)
|
| 156 |
|
| 157 |
+
# Alignment trace
|
| 158 |
decoded_tokens = tokenizer.convert_ids_to_tokens(ids[0])
|
| 159 |
role_trace = [
|
| 160 |
f"{tok:<15} β {role} cos={score:.4f}"
|
| 161 |
for tok, role, score in zip(decoded_tokens, top_roles, maxcos.tolist())
|
| 162 |
]
|
| 163 |
|
| 164 |
+
# Return results
|
| 165 |
res_json = {
|
| 166 |
"High-pool tokens": tokenizer.decode(ids[0, pool_hi]),
|
| 167 |
"High accuracy": f"{acc_hi:.3f}",
|
|
|
|
| 175 |
|
| 176 |
|
| 177 |
|
| 178 |
+
|
| 179 |
# ------------------------------------------------------------------
|
| 180 |
# 4. Gradio UI -----------------------------------------------------
|
| 181 |
def build_interface():
|