apertus-swiss-transparency / src /apertus_core.py
Markus Clauss DIRU Vetsuisse
Initial commit - Apertus Swiss AI Transparency Dashboard
b65eda7
"""
Core Apertus Swiss AI wrapper class
Provides unified interface for model loading and basic operations
"""
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from typing import Dict, List, Optional, Union
import logging
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class ApertusCore:
"""
Core wrapper for Apertus Swiss AI model
Provides unified interface for model loading, configuration,
and basic text generation with Swiss engineering standards.
"""
def __init__(
self,
model_name: str = "swiss-ai/Apertus-8B-Instruct-2509",
device_map: str = "auto",
torch_dtype: Optional[torch.dtype] = None,
enable_transparency: bool = True,
load_in_8bit: bool = False,
load_in_4bit: bool = False,
max_memory: Optional[Dict[int, str]] = None,
low_cpu_mem_usage: bool = True
):
"""
Initialize Apertus model with flexible GPU optimization
Args:
model_name: HuggingFace model identifier (requires registration at HF)
device_map: Device mapping strategy ("auto" recommended)
torch_dtype: Precision (None=auto-detect based on GPU capabilities)
enable_transparency: Enable attention/hidden state outputs
load_in_8bit: Use 8-bit quantization (for memory-constrained GPUs)
load_in_4bit: Use 4-bit quantization (for lower-end GPUs)
max_memory: Memory limits per GPU (auto-detected if not specified)
low_cpu_mem_usage: Minimize CPU memory usage during loading
Note:
Automatically optimizes for available GPU. The swiss-ai/Apertus-8B-Instruct-2509
model requires providing name, country, and affiliation on Hugging Face to access.
Run 'huggingface-cli login' after approval to authenticate.
"""
self.model_name = model_name
self.device_map = device_map
self.load_in_8bit = load_in_8bit
self.load_in_4bit = load_in_4bit
self.max_memory = max_memory
self.low_cpu_mem_usage = low_cpu_mem_usage
self.enable_transparency = enable_transparency
# Auto-detect optimal dtype based on GPU capabilities
if torch_dtype is None:
if torch.cuda.is_available() and torch.cuda.is_bf16_supported():
self.torch_dtype = torch.bfloat16 # Best for modern GPUs
else:
self.torch_dtype = torch.float16 # Fallback
else:
self.torch_dtype = torch_dtype
# Initialize components
self.tokenizer = None
self.model = None
self.conversation_history = []
self.device_info = self._detect_gpu_info()
# Load model
self._load_model()
logger.info(f"🇨🇭 Apertus loaded successfully: {model_name}")
def _detect_gpu_info(self) -> Dict[str, any]:
"""Detect GPU information for automatic optimization"""
info = {"has_gpu": False, "gpu_name": None, "gpu_memory_gb": 0, "supports_bf16": False}
if torch.cuda.is_available():
info["has_gpu"] = True
info["gpu_name"] = torch.cuda.get_device_name(0)
info["gpu_memory_gb"] = torch.cuda.get_device_properties(0).total_memory / 1024**3
info["supports_bf16"] = torch.cuda.is_bf16_supported()
logger.info(f"🎯 GPU detected: {info['gpu_name']}")
logger.info(f"📊 GPU Memory: {info['gpu_memory_gb']:.1f} GB")
logger.info(f"🔧 bfloat16 support: {info['supports_bf16']}")
# Memory-based recommendations
if info["gpu_memory_gb"] >= 40:
logger.info("🚀 High-memory GPU - optimal settings enabled")
elif info["gpu_memory_gb"] >= 20:
logger.info("⚡ Mid-range GPU - balanced settings enabled")
else:
logger.info("💾 Lower-memory GPU - consider using quantization")
else:
logger.warning("⚠️ No GPU detected - falling back to CPU")
return info
def _load_model(self):
"""Load tokenizer and model with specified configuration"""
try:
# Load tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
# Configure padding token
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
# Load model with transparency options
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name,
torch_dtype=self.torch_dtype,
device_map=self.device_map,
trust_remote_code=True,
output_attentions=self.enable_transparency,
output_hidden_states=self.enable_transparency
)
# Set to evaluation mode
self.model.eval()
# Log model information
self._log_model_info()
except Exception as e:
logger.error(f"Failed to load model {self.model_name}: {str(e)}")
raise
def _log_model_info(self):
"""Log model architecture and memory information"""
config = self.model.config
total_params = sum(p.numel() for p in self.model.parameters())
logger.info(f"Model Architecture:")
logger.info(f" - Layers: {config.num_hidden_layers}")
logger.info(f" - Attention Heads: {config.num_attention_heads}")
logger.info(f" - Hidden Size: {config.hidden_size}")
logger.info(f" - Total Parameters: {total_params:,}")
if torch.cuda.is_available():
memory_allocated = torch.cuda.memory_allocated() / 1024**3
logger.info(f" - GPU Memory: {memory_allocated:.2f} GB")
def generate_response(
self,
prompt: str,
max_new_tokens: int = 300,
temperature: float = 0.7,
top_p: float = 0.95,
top_k: int = 50,
repetition_penalty: float = 1.1,
do_sample: bool = True,
system_message: str = "You are a helpful Swiss AI assistant."
) -> str:
"""
Generate response to user prompt
Args:
prompt: User input text
max_new_tokens: Maximum tokens to generate
temperature: Sampling temperature (0.0 = deterministic)
top_p: Nucleus sampling parameter
top_k: Top-k sampling parameter
repetition_penalty: Penalty for repetition
do_sample: Whether to use sampling
system_message: System context for the conversation
Returns:
Generated response text
"""
try:
# Format prompt with instruction template
formatted_prompt = f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### System:
{system_message}
### Instruction:
{prompt}
### Response:
"""
# Tokenize input
inputs = self.tokenizer(
formatted_prompt,
return_tensors="pt",
max_length=2048,
truncation=True
)
# Move inputs to same device as model
device = next(self.model.parameters()).device
inputs = {k: v.to(device) for k, v in inputs.items()}
# Generate response
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
top_k=top_k,
repetition_penalty=repetition_penalty,
do_sample=do_sample,
pad_token_id=self.tokenizer.eos_token_id,
eos_token_id=self.tokenizer.eos_token_id
)
# Decode and extract response
full_response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
response = full_response.split("### Response:")[-1].strip()
return response
except Exception as e:
logger.error(f"Generation failed: {str(e)}")
return f"Error generating response: {str(e)}"
def chat(
self,
message: str,
maintain_history: bool = True,
**generation_kwargs
) -> str:
"""
Simple chat interface with optional history maintenance
Args:
message: User message
maintain_history: Whether to maintain conversation context
**generation_kwargs: Additional generation parameters
Returns:
Assistant response
"""
# Build context from history if enabled
context = ""
if maintain_history and self.conversation_history:
recent_history = self.conversation_history[-5:] # Last 5 exchanges
context = "\n".join([
f"Human: {h['human']}\nAssistant: {h['assistant']}"
for h in recent_history
]) + "\n\n"
# Generate response
full_prompt = context + f"Human: {message}\nAssistant:"
response = self.generate_response(full_prompt, **generation_kwargs)
# Update history if enabled
if maintain_history:
self.conversation_history.append({
"human": message,
"assistant": response
})
return response
def clear_history(self):
"""Clear conversation history"""
self.conversation_history = []
logger.info("Conversation history cleared")
def get_model_info(self) -> Dict:
"""
Get comprehensive model information
Returns:
Dictionary with model architecture and performance info
"""
if not self.model:
return {"error": "Model not loaded"}
config = self.model.config
total_params = sum(p.numel() for p in self.model.parameters())
trainable_params = sum(p.numel() for p in self.model.parameters() if p.requires_grad)
info = {
"model_name": self.model_name,
"model_type": config.model_type,
"num_layers": config.num_hidden_layers,
"num_attention_heads": config.num_attention_heads,
"hidden_size": config.hidden_size,
"intermediate_size": config.intermediate_size,
"vocab_size": config.vocab_size,
"max_position_embeddings": config.max_position_embeddings,
"total_parameters": total_params,
"trainable_parameters": trainable_params,
"model_size_gb": total_params * 2 / 1e9, # Approximate for float16
}
# Add GPU memory info if available
if torch.cuda.is_available():
info.update({
"gpu_memory_allocated_gb": torch.cuda.memory_allocated() / 1024**3,
"gpu_memory_reserved_gb": torch.cuda.memory_reserved() / 1024**3,
"device": str(next(self.model.parameters()).device)
})
return info
def get_tokenizer_info(self) -> Dict:
"""
Get tokenizer information and capabilities
Returns:
Dictionary with tokenizer details
"""
if not self.tokenizer:
return {"error": "Tokenizer not loaded"}
return {
"vocab_size": self.tokenizer.vocab_size,
"model_max_length": self.tokenizer.model_max_length,
"pad_token": self.tokenizer.pad_token,
"eos_token": self.tokenizer.eos_token,
"bos_token": self.tokenizer.bos_token,
"unk_token": self.tokenizer.unk_token,
"tokenizer_class": self.tokenizer.__class__.__name__
}
def test_multilingual_capabilities(self) -> Dict[str, str]:
"""
Test model's multilingual capabilities with sample prompts
Returns:
Dictionary with responses in different languages
"""
test_prompts = {
"German": "Erkläre maschinelles Lernen in einfachen Worten.",
"French": "Explique l'apprentissage automatique simplement.",
"Italian": "Spiega l'apprendimento automatico in modo semplice.",
"English": "Explain machine learning in simple terms.",
"Romansh": "Explitgescha l'emprender automatica simplamain."
}
results = {}
for language, prompt in test_prompts.items():
try:
response = self.generate_response(
prompt,
max_new_tokens=150,
temperature=0.7
)
results[language] = response
except Exception as e:
results[language] = f"Error: {str(e)}"
return results
def __repr__(self):
"""String representation of the model"""
if self.model:
total_params = sum(p.numel() for p in self.model.parameters())
return f"ApertusCore(model={self.model_name}, params={total_params:,})"
else:
return f"ApertusCore(model={self.model_name}, status=not_loaded)"