Spaces:
Runtime error
Runtime error
File size: 36,691 Bytes
b65eda7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 |
"""
π¨π Apertus Swiss AI Transparency Dashboard
Gradio-based HuggingFace Spaces application
"""
import gradio as gr
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
import pandas as pd
import numpy as np
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import warnings
import os
# Set environment variables to reduce verbosity and warnings
os.environ['TRANSFORMERS_VERBOSITY'] = 'error'
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
warnings.filterwarnings('ignore')
# Global variables for model and tokenizer
model = None
tokenizer = None
def load_model(hf_token):
"""Load Apertus model with HuggingFace token"""
global model, tokenizer
if not hf_token or not hf_token.startswith("hf_"):
return "β Invalid HuggingFace token. Must start with 'hf_'"
model_name = "swiss-ai/Apertus-8B-Instruct-2509"
try:
tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(
model_name,
token=hf_token,
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
device_map="auto" if torch.cuda.is_available() else "cpu",
low_cpu_mem_usage=True,
output_attentions=True,
output_hidden_states=True,
trust_remote_code=True
)
total_params = sum(p.numel() for p in model.parameters())
memory_usage = torch.cuda.memory_allocated() / 1024**3 if torch.cuda.is_available() else 0
return f"β
Model loaded successfully!\nπ Parameters: {total_params:,}\nπΎ Memory: {memory_usage:.1f} GB" if memory_usage > 0 else f"β
Model loaded successfully!\nπ Parameters: {total_params:,}\nπΎ CPU mode"
except Exception as e:
return f"β Failed to load model: {str(e)}\nπ‘ Check your token and model access permissions."
def chat_with_apertus(message, max_tokens=300):
"""Simple chat function"""
global model, tokenizer
if model is None or tokenizer is None:
return "β Please load the model first by entering your HuggingFace token."
try:
formatted_prompt = f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### System:
You are Apertus, a helpful Swiss AI assistant. You are transparent, multilingual, and precise.
### Instruction:
{message}
### Response:
"""
inputs = tokenizer(formatted_prompt, return_tensors="pt", truncation=True, max_length=2048)
device = next(model.parameters()).device
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=max_tokens,
temperature=0.8,
top_p=0.9,
do_sample=True,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id
)
full_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
response = full_response.split("### Response:")[-1].strip()
return f"π¨π **Apertus:** {response}"
except Exception as e:
return f"β Error: {str(e)}"
def analyze_attention(text, layer=15):
"""Analyze attention patterns"""
global model, tokenizer
if model is None or tokenizer is None:
return None, "β Please load the model first."
try:
inputs = tokenizer(text, return_tensors="pt")
tokens = tokenizer.convert_ids_to_tokens(inputs['input_ids'][0])
device = next(model.parameters()).device
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs, output_attentions=True)
attention_weights = outputs.attentions[layer][0]
avg_attention = attention_weights.mean(dim=0).cpu()
if avg_attention.dtype == torch.bfloat16:
avg_attention = avg_attention.float()
avg_attention = avg_attention.numpy()
# Create attention heatmap
fig = px.imshow(
avg_attention,
x=tokens,
y=tokens,
color_continuous_scale='Blues',
title=f"Attention Patterns - Layer {layer}",
labels={'color': 'Attention Weight'}
)
fig.update_layout(height=500)
# Get insights
attention_received = avg_attention.sum(axis=0)
top_indices = np.argsort(attention_received)[-3:][::-1]
insights = "**π― Top Attended Tokens:**\n\n"
for i, idx in enumerate(top_indices):
if idx < len(tokens):
score = attention_received[idx]
token = tokens[idx]
# Use markdown code blocks to prevent any formatting issues
insights += f"{i+1}. Token: `{token}` β’ Score: {score:.3f}\n\n"
return fig, insights
except Exception as e:
return None, f"β Error analyzing attention: {str(e)}"
def analyze_token_predictions(text):
"""Analyze next token predictions"""
global model, tokenizer
if model is None or tokenizer is None:
return None, "β Please load the model first."
try:
inputs = tokenizer(text, return_tensors="pt")
device = next(model.parameters()).device
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits[0, -1, :]
probabilities = torch.nn.functional.softmax(logits, dim=-1)
top_probs, top_indices = torch.topk(probabilities, 10)
# Create prediction data
pred_data = []
for i in range(10):
token_id = top_indices[i].item()
token = tokenizer.decode([token_id])
# Keep original tokens - they show important tokenization info
if not token.strip():
token = f"[ID:{token_id}]"
prob = top_probs[i].item()
pred_data.append({"Rank": i+1, "Token": token, "Probability": prob})
df = pd.DataFrame(pred_data)
fig = px.bar(df, x="Token", y="Probability",
title="Top 10 Most Likely Next Tokens",
color="Probability", color_continuous_scale="viridis")
fig.update_layout(height=400)
# Create insights
insights = "**π Prediction Details:**\n\n"
for _, row in df.iterrows():
prob_pct = row["Probability"] * 100
confidence = "π₯" if prob_pct > 20 else "β
" if prob_pct > 5 else "β οΈ"
confidence_text = "Very confident" if prob_pct > 20 else "Confident" if prob_pct > 5 else "Uncertain"
token = str(row['Token'])
# Use markdown code blocks to prevent formatting issues
insights += f"{row['Rank']}. Token: `{token}` β’ {prob_pct:.1f}% {confidence} ({confidence_text})\n\n"
return fig, insights
except Exception as e:
return None, f"β Error analyzing predictions: {str(e)}"
def analyze_layer_evolution(text):
"""Analyze how representations evolve through layers"""
global model, tokenizer
if model is None or tokenizer is None:
return None, "β Please load the model first."
try:
inputs = tokenizer(text, return_tensors="pt")
device = next(model.parameters()).device
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs, output_hidden_states=True)
hidden_states = outputs.hidden_states
# Sample key layers
sample_layers = [0, 4, 8, 12, 16, 20, 24, 28, 31]
layer_stats = []
for layer_idx in sample_layers:
if layer_idx < len(hidden_states):
layer_state = hidden_states[layer_idx][0]
layer_cpu = layer_state.cpu()
if layer_cpu.dtype == torch.bfloat16:
layer_cpu = layer_cpu.float()
l2_norms = torch.norm(layer_cpu, dim=-1)
layer_stats.append({
"Layer": layer_idx,
"L2_Norm_Mean": l2_norms.mean().item(),
"L2_Norm_Max": l2_norms.max().item(),
"Hidden_Mean": layer_cpu.mean().item(),
"Hidden_Std": layer_cpu.std().item()
})
df = pd.DataFrame(layer_stats)
# Create evolution plots
fig = make_subplots(
rows=2, cols=2,
subplot_titles=('L2 Norm Evolution', 'Hidden State Mean',
'Hidden State Std', 'Layer Comparison'),
vertical_spacing=0.12
)
fig.add_trace(go.Scatter(x=df['Layer'], y=df['L2_Norm_Mean'],
mode='lines+markers', name='L2 Mean'), row=1, col=1)
fig.add_trace(go.Scatter(x=df['Layer'], y=df['Hidden_Mean'],
mode='lines+markers', name='Hidden Mean'), row=1, col=2)
fig.add_trace(go.Scatter(x=df['Layer'], y=df['Hidden_Std'],
mode='lines+markers', name='Hidden Std'), row=2, col=1)
fig.add_trace(go.Bar(x=df['Layer'], y=df['L2_Norm_Max'],
name='L2 Max'), row=2, col=2)
fig.update_layout(height=600, showlegend=False, title="Neural Representation Evolution")
# Create table
table_html = df.round(4).to_html(index=False, classes='table table-striped')
return fig, f"**π Layer Statistics:**\n{table_html}"
except Exception as e:
return None, f"β Error analyzing layer evolution: {str(e)}"
def analyze_weights(layer_num, layer_type):
"""Analyze weight distribution with research-based metrics"""
global model
if model is None:
return None, "β Please load the model first."
try:
selected_layer = f"model.layers.{layer_num}.{layer_type}"
# Get weights directly
layer_dict = dict(model.named_modules())
if selected_layer not in layer_dict:
return None, f"β Layer '{selected_layer}' not found"
layer_obj = layer_dict[selected_layer]
if not hasattr(layer_obj, 'weight'):
return None, f"β Layer has no weights"
weights = layer_obj.weight.data.cpu()
if weights.dtype == torch.bfloat16:
weights = weights.float()
weights = weights.numpy()
# Research-based analysis
l1_norm = np.sum(np.abs(weights))
l2_norm = np.sqrt(np.sum(weights**2))
zero_weights = np.sum(np.abs(weights) < 1e-8)
dead_ratio = zero_weights / weights.size * 100
weight_range = np.max(weights) - np.min(weights)
# Sparsity analysis with LLM-appropriate thresholds
sparse_001 = np.mean(np.abs(weights) < 0.001) * 100 # Tiny weights
sparse_01 = np.mean(np.abs(weights) < 0.01) * 100 # Very small weights
sparse_1 = np.mean(np.abs(weights) < 0.1) * 100 # Small weights
# Percentiles
p25, p50, p75, p95 = np.percentile(np.abs(weights), [25, 50, 75, 95])
# Smart visualization for different layer sizes
if weights.size < 500000: # Small layers - full histogram
fig = px.histogram(weights.flatten(), bins=50,
title=f"Weight Distribution - {selected_layer}",
labels={'x': 'Weight Value', 'y': 'Frequency'},
color_discrete_sequence=['#2E86AB'])
fig.add_vline(x=np.mean(weights), line_dash="dash", line_color="red",
annotation_text=f"Mean: {np.mean(weights):.6f}")
elif weights.size < 2000000: # Medium layers - sampled histogram
# Sample 100k weights for visualization
sample_size = min(100000, weights.size)
sampled_weights = np.random.choice(weights.flatten(), sample_size, replace=False)
fig = px.histogram(sampled_weights, bins=50,
title=f"Weight Distribution - {selected_layer} (Sampled: {sample_size:,}/{weights.size:,})",
labels={'x': 'Weight Value', 'y': 'Frequency'},
color_discrete_sequence=['#2E86AB'])
fig.add_vline(x=np.mean(weights), line_dash="dash", line_color="red",
annotation_text=f"Mean: {np.mean(weights):.6f}")
else: # Large layers - statistical summary plot
# Create a multi-panel statistical visualization
fig = make_subplots(
rows=2, cols=2,
subplot_titles=(
'Weight Statistics Summary',
'Sparsity Analysis',
'Distribution Percentiles',
'Health Indicators'
),
specs=[[{"type": "bar"}, {"type": "bar"}],
[{"type": "bar"}, {"type": "indicator"}]]
)
# Panel 1: Basic statistics
fig.add_trace(go.Bar(
x=['Mean', 'Std', 'Min', 'Max'],
y=[np.mean(weights), np.std(weights), np.min(weights), np.max(weights)],
name='Statistics',
marker_color='#2E86AB'
), row=1, col=1)
# Panel 2: Sparsity levels (Updated for 8B LLM standards)
fig.add_trace(go.Bar(
x=['<0.001', '<0.01', '<0.1'],
y=[sparse_001, sparse_01, sparse_1],
name='Sparsity %',
marker_color=[
'#28a745' if sparse_001 < 25 else '#ffc107' if sparse_001 < 40 else '#ff8c00' if sparse_001 < 55 else '#dc3545',
'#28a745' if sparse_01 < 50 else '#ffc107' if sparse_01 < 65 else '#ff8c00' if sparse_01 < 80 else '#dc3545',
'#28a745' if sparse_1 < 75 else '#ffc107' if sparse_1 < 85 else '#ff8c00' if sparse_1 < 92 else '#dc3545'
]
), row=1, col=2)
# Panel 3: Percentiles
fig.add_trace(go.Bar(
x=['25th', '50th', '75th', '95th'],
y=[p25, p50, p75, p95],
name='Percentiles',
marker_color='#17a2b8'
), row=2, col=1)
# Panel 4: Health score gauge
health_score = 100
if dead_ratio > 15: health_score -= 30
elif dead_ratio > 5: health_score -= 15
if sparse_001 > 30: health_score -= 20
elif sparse_001 > 10: health_score -= 10
if weight_range < 0.001: health_score -= 25
if weight_range > 10: health_score -= 25
fig.add_trace(go.Indicator(
mode = "gauge+number",
value = health_score,
title = {'text': "Health Score"},
gauge = {
'axis': {'range': [None, 100]},
'bar': {'color': '#2E86AB'},
'steps': [
{'range': [0, 60], 'color': "lightgray"},
{'range': [60, 80], 'color': "gray"}],
'threshold': {
'line': {'color': "red", 'width': 4},
'thickness': 0.75,
'value': 90}}
), row=2, col=2)
fig.update_layout(height=600, showlegend=False,
title=f"Statistical Analysis - {selected_layer} ({weights.size:,} parameters)")
fig.update_layout(height=500, showlegend=False)
# Health assessment (updated for 8B LLM standards)
health_score = 100
# Dead weights - very strict since truly dead weights are bad
if dead_ratio > 15: health_score -= 30
elif dead_ratio > 5: health_score -= 15
# Tiny weights (<0.001) - updated thresholds based on LLM research
if sparse_001 > 55: health_score -= 25 # >55% is concerning
elif sparse_001 > 40: health_score -= 15 # >40% needs attention
elif sparse_001 > 25: health_score -= 5 # >25% is acceptable
# Weight range - extreme ranges indicate problems
if weight_range < 0.001: health_score -= 20 # Too compressed
elif weight_range > 10: health_score -= 20 # Too wide
health_color = "π’" if health_score >= 80 else "π‘" if health_score >= 60 else "π΄"
health_status = "Excellent" if health_score >= 90 else "Good" if health_score >= 80 else "Fair" if health_score >= 60 else "Poor"
# Format results
results = f"""
## βοΈ Weight Analysis: {selected_layer}
### π Core Statistics
- **Shape:** {weights.shape}
- **Parameters:** {weights.size:,}
- **Mean:** {np.mean(weights):+.6f}
- **Std:** {np.std(weights):.6f}
### π¬ Weight Health Analysis
- **L1 Norm:** {l1_norm:.3f} (Manhattan distance - sparsity indicator)
- **L2 Norm:** {l2_norm:.3f} (Euclidean distance - magnitude measure)
- **Dead Weights:** {dead_ratio:.1f}% (weights β 0)
- **Range:** {weight_range:.6f} (Max - Min weight values)
### πΈοΈ Sparsity Analysis (8B LLM Research-Based Thresholds)
- **Tiny (<0.001):** {sparse_001:.1f}% {'π’ Excellent' if sparse_001 < 25 else 'π‘ Good' if sparse_001 < 40 else 'β οΈ Watch' if sparse_001 < 55 else 'π΄ Concerning'}
- **Very Small (<0.01):** {sparse_01:.1f}% {'π’ Excellent' if sparse_01 < 50 else 'π‘ Good' if sparse_01 < 65 else 'β οΈ Acceptable' if sparse_01 < 80 else 'π΄ High'}
- **Small (<0.1):** {sparse_1:.1f}% {'π’ Excellent' if sparse_1 < 75 else 'π‘ Good' if sparse_1 < 85 else 'β οΈ Normal' if sparse_1 < 92 else 'π΄ Very High'}
### π Distribution Characteristics
- **25th Percentile:** {p25:.6f}
- **Median:** {p50:.6f}
- **75th Percentile:** {p75:.6f}
- **95th Percentile:** {p95:.6f}
### π₯ Layer Health Assessment: {health_color} {health_status} ({health_score}/100)
**Key Insights (8B LLM Standards):**
- **Weight Activity:** {100-dead_ratio:.1f}% of weights are active (target: >95%)
- **Sparsity Pattern:** {sparse_1:.1f}% small weights (8B LLMs: 70-85% is normal)
- **Distribution Health:** L2/L1 ratio = {l2_norm/l1_norm:.3f} (balanced β 0.1-1.0)
- **Learning Capacity:** Weight range suggests {'good' if 0.01 < weight_range < 5 else 'limited'} learning capacity
π‘ **Research Note:** High sparsity (70-90%) is **normal** for large transformers and indicates efficient learned representations, not poor health.
"""
return fig, results
except Exception as e:
return None, f"β Error analyzing weights: {str(e)}"
# Create Gradio interface with custom CSS
def create_interface():
# Custom CSS for dark Swiss theme
custom_css = """
/* Dark Swiss-inspired styling */
.gradio-container {
background: linear-gradient(135deg, #1a1a2e 0%, #16213e 100%);
font-family: 'Helvetica Neue', 'Arial', sans-serif;
color: #f8f9fa;
}
.main-header {
background: linear-gradient(135deg, #dc3545 0%, #8B0000 100%);
padding: 30px;
border-radius: 15px;
margin: 20px 0;
box-shadow: 0 8px 32px rgba(220, 53, 69, 0.4);
border: 1px solid rgba(220, 53, 69, 0.3);
}
.feature-box {
background: rgba(25, 25, 46, 0.95);
padding: 25px;
border-radius: 12px;
margin: 15px 0;
box-shadow: 0 4px 20px rgba(0, 0, 0, 0.3);
border-left: 4px solid #dc3545;
border: 1px solid rgba(255, 255, 255, 0.1);
}
.auth-section {
background: rgba(25, 25, 46, 0.9);
padding: 20px;
border-radius: 10px;
border: 2px solid #dc3545;
margin: 20px 0;
box-shadow: 0 4px 15px rgba(220, 53, 69, 0.2);
}
.footer-section {
background: linear-gradient(135deg, #0d1421 0%, #1a1a2e 100%);
padding: 30px;
border-radius: 15px;
margin-top: 40px;
color: #f8f9fa;
text-align: center;
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.5);
border: 1px solid rgba(255, 255, 255, 0.1);
}
/* Tab styling */
.tab-nav {
background: rgba(25, 25, 46, 0.95);
border-radius: 10px;
padding: 5px;
margin: 20px 0;
border: 1px solid rgba(255, 255, 255, 0.1);
}
/* Button improvements */
.gr-button {
background: linear-gradient(135deg, #dc3545 0%, #8B0000 100%);
border: none;
padding: 12px 24px;
font-weight: 600;
border-radius: 8px;
transition: all 0.3s ease;
color: white;
box-shadow: 0 2px 8px rgba(220, 53, 69, 0.3);
}
.gr-button:hover {
transform: translateY(-2px);
box-shadow: 0 6px 20px rgba(220, 53, 69, 0.6);
background: linear-gradient(135deg, #e74c3c 0%, #c0392b 100%);
}
/* Input field styling */
.gr-textbox, .gr-dropdown {
background: rgba(25, 25, 46, 0.8);
border-radius: 8px;
border: 2px solid rgba(255, 255, 255, 0.2);
transition: border-color 0.3s ease;
color: #f8f9fa;
}
.gr-textbox:focus, .gr-dropdown:focus {
border-color: #dc3545;
box-shadow: 0 0 0 3px rgba(220, 53, 69, 0.2);
background: rgba(25, 25, 46, 0.9);
}
/* Tab content styling */
.gr-tab-item {
background: rgba(25, 25, 46, 0.5);
border-radius: 10px;
padding: 20px;
margin: 10px 0;
}
/* Text color improvements */
.gr-markdown, .gr-html, .gr-textbox label {
color: #f8f9fa;
}
/* Plot background */
.gr-plot {
background: rgba(25, 25, 46, 0.8);
border-radius: 8px;
border: 1px solid rgba(255, 255, 255, 0.1);
}
"""
with gr.Blocks(
title="π¨π Apertus Swiss AI Transparency Dashboard",
theme=gr.themes.Default(
primary_hue="red",
secondary_hue="gray",
neutral_hue="gray",
font=gr.themes.GoogleFont("Inter")
),
css=custom_css
) as demo:
# Main Header
gr.HTML("""
<div class="main-header">
<div style="text-align: center; max-width: 1200px; margin: 0 auto;">
<h1 style="color: white; font-size: 3em; margin: 0; text-shadow: 2px 2px 4px rgba(0,0,0,0.3);">
π¨π Apertus Swiss AI Transparency Dashboard
</h1>
<h2 style="color: white; margin: 10px 0; text-shadow: 1px 1px 2px rgba(0,0,0,0.3);">
The World's Most Transparent Language Model
</h2>
<p style="color: white; font-size: 1.2em; margin: 15px 0; text-shadow: 1px 1px 2px rgba(0,0,0,0.3);">
<strong>Explore the internal workings of Switzerland's open-source 8B parameter AI model</strong>
</p>
</div>
</div>
""")
# Feature Overview
gr.HTML("""
<div class="feature-box">
<h3 style="color: #ff6b6b; margin-bottom: 20px; font-size: 1.5em;">π― What makes Apertus special?</h3>
<p style="font-size: 1.1em; margin-bottom: 15px; color: #f8f9fa; font-weight: 500;">
Unlike ChatGPT or Claude, you can see <strong>EVERYTHING</strong> happening inside the AI model:
</p>
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(300px, 1fr)); gap: 15px; margin: 20px 0;">
<div style="background: rgba(13, 20, 33, 0.8); padding: 20px; border-radius: 10px; border-left: 4px solid #4dabf7; box-shadow: 0 4px 12px rgba(77, 171, 247, 0.2); border: 1px solid rgba(77, 171, 247, 0.3);">
<strong style="color: #74c0fc; font-size: 1.1em;">π§ Attention Patterns</strong><br>
<span style="color: #ced4da; line-height: 1.4;">Which words the AI focuses on (like eye-tracking during reading)</span>
</div>
<div style="background: rgba(13, 20, 33, 0.8); padding: 20px; border-radius: 10px; border-left: 4px solid #51cf66; box-shadow: 0 4px 12px rgba(81, 207, 102, 0.2); border: 1px solid rgba(81, 207, 102, 0.3);">
<strong style="color: #8ce99a; font-size: 1.1em;">βοΈ Neural Weights</strong><br>
<span style="color: #ced4da; line-height: 1.4;">The "brain connections" that control decisions</span>
</div>
<div style="background: rgba(13, 20, 33, 0.8); padding: 20px; border-radius: 10px; border-left: 4px solid #ffd43b; box-shadow: 0 4px 12px rgba(255, 212, 59, 0.2); border: 1px solid rgba(255, 212, 59, 0.3);">
<strong style="color: #ffec99; font-size: 1.1em;">π² Prediction Probabilities</strong><br>
<span style="color: #ced4da; line-height: 1.4;">How confident the AI is about each word choice</span>
</div>
<div style="background: rgba(13, 20, 33, 0.8); padding: 20px; border-radius: 10px; border-left: 4px solid #22b8cf; box-shadow: 0 4px 12px rgba(34, 184, 207, 0.2); border: 1px solid rgba(34, 184, 207, 0.3);">
<strong style="color: #66d9ef; font-size: 1.1em;">π Thinking Process</strong><br>
<span style="color: #ced4da; line-height: 1.4;">Step-by-step how responses are generated</span>
</div>
</div>
<p style="text-align: center; font-size: 1.3em; margin-top: 25px; color: #ff6b6b; font-weight: 600;">
<strong>This is complete AI transparency - no black boxes! π¨π</strong>
</p>
</div>
""")
# Authentication Section
gr.HTML("""
<div class="auth-section">
<h3 style="color: #ff6b6b; margin-bottom: 15px; text-align: center; font-size: 1.4em;">π Model Authentication</h3>
<p style="text-align: center; color: #f8f9fa; margin-bottom: 20px; font-size: 1.1em; font-weight: 500;">
Enter your HuggingFace token to access the Apertus-8B-Instruct-2509 model
</p>
</div>
""")
with gr.Row():
with gr.Column(scale=2):
hf_token = gr.Textbox(
label="ποΈ HuggingFace Token",
placeholder="hf_...",
type="password",
info="Required to access swiss-ai/Apertus-8B-Instruct-2509. Get your token from: https://huggingface.co/settings/tokens",
container=True
)
with gr.Column(scale=1):
load_btn = gr.Button(
"π¨π Load Apertus Model",
variant="primary",
size="lg",
elem_classes="auth-button"
)
with gr.Row():
model_status = gr.Textbox(
label="π Model Status",
interactive=False,
container=True
)
load_btn.click(load_model, inputs=[hf_token], outputs=[model_status])
# Main Interface Tabs
with gr.Tabs():
# Chat Tab
with gr.TabItem("π¬ Chat with Apertus"):
with gr.Row():
with gr.Column(scale=2):
chat_input = gr.Textbox(
label="Your message (any language)",
placeholder="ErklΓ€re mir Transparenz in der KI...\nExplique-moi la transparence en IA...\nSpiegami la trasparenza nell'IA...",
lines=3
)
max_tokens = gr.Slider(50, 500, value=300, label="Max Tokens")
chat_btn = gr.Button("π¨π Chat", variant="primary")
with gr.Column(scale=3):
chat_output = gr.Markdown(label="Apertus Response")
chat_btn.click(chat_with_apertus, inputs=[chat_input, max_tokens], outputs=[chat_output])
# Attention Analysis Tab
with gr.TabItem("ποΈ Attention Patterns"):
gr.HTML("<p><strong>π What you'll see:</strong> Heatmap showing which words the AI 'looks at' while thinking - like tracking eye movements during reading</p>")
with gr.Row():
with gr.Column(scale=1):
attention_text = gr.Textbox(
label="Text to analyze",
value="Die Schweiz ist",
info="Enter text to see internal model processing"
)
attention_layer = gr.Slider(0, 31, value=15, step=1, label="Attention Layer")
attention_btn = gr.Button("ποΈ Analyze Attention", variant="secondary")
with gr.Column(scale=2):
attention_plot = gr.Plot(label="Attention Heatmap")
attention_insights = gr.Markdown(label="Attention Insights")
attention_btn.click(
analyze_attention,
inputs=[attention_text, attention_layer],
outputs=[attention_plot, attention_insights]
)
# Token Predictions Tab
with gr.TabItem("π² Token Predictions"):
gr.HTML("<p><strong>π What you'll see:</strong> Top-10 most likely next words with confidence levels - see the AI's 'thought process' for each word</p>")
with gr.Row():
with gr.Column(scale=1):
prediction_text = gr.Textbox(
label="Text to analyze",
value="Die wichtigste Eigenschaft von Apertus ist",
info="Enter partial text to see next word predictions"
)
prediction_btn = gr.Button("π² Analyze Predictions", variant="secondary")
with gr.Column(scale=2):
prediction_plot = gr.Plot(label="Prediction Probabilities")
prediction_insights = gr.Markdown(label="Prediction Details")
prediction_btn.click(
analyze_token_predictions,
inputs=[prediction_text],
outputs=[prediction_plot, prediction_insights]
)
# Layer Evolution Tab
with gr.TabItem("π§ Layer Evolution"):
gr.HTML("<p><strong>π What you'll see:</strong> How the AI's 'understanding' develops through 32 neural layers - from basic recognition to deep comprehension</p>")
with gr.Row():
with gr.Column(scale=1):
evolution_text = gr.Textbox(
label="Text to analyze",
value="Schweizer KI-Innovation revolutioniert Transparenz.",
info="Enter text to see layer evolution"
)
evolution_btn = gr.Button("π§ Analyze Evolution", variant="secondary")
with gr.Column(scale=2):
evolution_plot = gr.Plot(label="Layer Evolution")
evolution_stats = gr.HTML(label="Layer Statistics")
evolution_btn.click(
analyze_layer_evolution,
inputs=[evolution_text],
outputs=[evolution_plot, evolution_stats]
)
# Weight Analysis Tab
with gr.TabItem("βοΈ Weight Analysis"):
gr.HTML("<p><strong>π What you'll see:</strong> The actual 'brain connections' (neural weights) that control AI decisions - the learned parameters</p>")
gr.HTML("<p><em>Real-time analysis of neural network weights following research best practices</em></p>")
with gr.Row():
with gr.Column(scale=1):
weight_layer_num = gr.Dropdown(
choices=list(range(32)),
value=15,
label="Layer Number"
)
weight_layer_type = gr.Dropdown(
choices=["self_attn.q_proj", "self_attn.k_proj", "self_attn.v_proj", "self_attn.o_proj", "mlp.up_proj", "mlp.down_proj"],
value="self_attn.q_proj",
label="Layer Component"
)
weight_btn = gr.Button("βοΈ Analyze Weights", variant="secondary")
with gr.Column(scale=2):
weight_plot = gr.Plot(label="Weight Distribution")
weight_analysis = gr.Markdown(label="Weight Analysis")
# Gradio handles state much better - no disappearing output!
weight_btn.click(
analyze_weights,
inputs=[weight_layer_num, weight_layer_type],
outputs=[weight_plot, weight_analysis]
)
# Footer
gr.HTML("""
<div class="footer-section">
<h2 style="color: white; margin-bottom: 20px; font-size: 2.2em;">π¨π Apertus Swiss AI</h2>
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(250px, 1fr)); gap: 30px; margin: 30px 0;">
<div>
<h4 style="color: #f8f9fa; margin-bottom: 10px;">ποΈ Swiss Excellence</h4>
<p style="color: #bdc3c7; line-height: 1.6;">
Built with Swiss precision engineering principles - reliable, transparent, and innovative.
</p>
</div>
<div>
<h4 style="color: #f8f9fa; margin-bottom: 10px;">π¬ Research Grade</h4>
<p style="color: #bdc3c7; line-height: 1.6;">
Complete model transparency with research-based metrics and analysis tools.
</p>
</div>
<div>
<h4 style="color: #f8f9fa; margin-bottom: 10px;">π Multilingual</h4>
<p style="color: #bdc3c7; line-height: 1.6;">
Supports German, French, Italian, English, Romansh and Swiss dialects.
</p>
</div>
<div>
<h4 style="color: #f8f9fa; margin-bottom: 10px;">π Educational</h4>
<p style="color: #bdc3c7; line-height: 1.6;">
Perfect for students, researchers, and anyone curious about AI internals.
</p>
</div>
</div>
<div style="border-top: 1px solid #546e7a; padding-top: 20px; margin-top: 30px;">
<p style="color: #ecf0f1; font-size: 1.3em; margin: 0;">
<strong>Experience true AI transparency - Swiss precision meets artificial intelligence</strong>
</p>
<p style="color: #95a5a6; margin: 10px 0 0 0;">
Powered by Apertus-8B-Instruct-2509 β’ 8B Parameters β’ Complete Transparency
</p>
</div>
</div>
""")
return demo
# Launch the app
if __name__ == "__main__":
demo = create_interface()
demo.launch(server_port=8501, server_name="0.0.0.0") |