''' Copyright 2024 Image Processing Research Group of University Federico II of Naples ('GRIP-UNINA'). All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' import os import json import torch import bisect import numpy as np from torch.utils.data.sampler import WeightedRandomSampler, RandomSampler from torchvision import datasets from .processing import make_processing from PIL import Image, ImageFile ImageFile.LOAD_TRUNCATED_IMAGES = True def create_dataloader(opt, split=None): if split == "train": opt.split = 'train' is_train=True elif split == "val": opt.split = 'val' is_train=False elif split == "test": opt.split = 'test' is_train=False else: raise ValueError(f"Unknown split {split}") dataset = TrueFake_dataset(opt) data_loader = torch.utils.data.DataLoader( dataset, batch_size=opt.batch_size, shuffle=is_train, num_workers=int(opt.num_threads), ) return data_loader def parse_dataset(settings): gen_keys = { 'gan1':['StyleGAN'], 'gan2':['StyleGAN2'], 'gan3':['StyleGAN3'], 'sd15':['StableDiffusion1.5'], 'sd2':['StableDiffusion2'], 'sd3':['StableDiffusion3'], 'sdXL':['StableDiffusionXL'], 'flux':['FLUX.1'], 'realFFHQ':['FFHQ'], 'realFORLAB':['FORLAB'] } gen_keys['all'] = [gen_keys[key][0] for key in gen_keys.keys()] # gen_keys['gan'] = [gen_keys[key][0] for key in gen_keys.keys() if 'gan' in key] # gen_keys['sd'] = [gen_keys[key][0] for key in gen_keys.keys() if 'sd' in key] gen_keys['real'] = [gen_keys[key][0] for key in gen_keys.keys() if 'real' in key] mod_keys = { 'pre': ['PreSocial'], 'fb': ['Facebook'], 'tl': ['Telegram'], 'tw': ['X'], } mod_keys['all'] = [mod_keys[key][0] for key in mod_keys.keys()] mod_keys['shr'] = [mod_keys[key][0] for key in mod_keys.keys() if key in ['fb', 'tl', 'tw']] need_real = (settings.split in ['train', 'val'] and not len([data for data in settings.data_keys.split('&') if 'real' in data.split(':')[0]])) assert not need_real, 'Train task without real data, this will not get handeled automatically, terminating' dataset_list = [] for data in settings.data_keys.split('&'): gen, mod = data.split(':') dataset_list.append({'gen':gen_keys[gen], 'mod':mod_keys[mod]}) return dataset_list class TrueFake_dataset(datasets.DatasetFolder): def __init__(self, settings): self.data_root = settings.data_root self.split = settings.split with open(settings.split_file, "r") as f: split_list = sorted(json.load(f)[self.split]) dataset_list = parse_dataset(settings) self.samples = [] self.info = [] for dict in dataset_list: generators = dict['gen'] modifiers = dict['mod'] for mod in modifiers: for dataset_root, dataset_dirs, dataset_files in os.walk(os.path.join(self.data_root, mod), topdown=True, followlinks=True): if len(dataset_dirs): continue (label, gen, sub) = f'{dataset_root}/'.replace(os.path.join(self.data_root, mod) + os.sep, '').split(os.sep)[:3][:3] if gen in generators: for filename in sorted(dataset_files): if os.path.splitext(filename)[1].lower() in ['.png', '.jpg', '.jpeg']: if self._in_list(split_list, os.path.join(gen, sub, os.path.splitext(filename)[0])): self.samples.append(os.path.join(dataset_root, filename)) self.info.append((mod, label, gen, sub)) self.transform = make_processing(settings) print(self.transform) def _in_list(self, split, elem): i = bisect.bisect_left(split, elem) return i != len(split) and split[i] == elem def __len__(self): return len(self.samples) def __getitem__(self, index): path = self.samples[index] mod, label, gen, sub = self.info[index] sample = Image.open(path).convert('RGB') sample = self.transform(sample) target = 1.0 if label == 'Fake' else 0.0 return {'img':sample, 'target':target, 'path':path}