Spaces:
Running
Running
File size: 1,378 Bytes
9c4b1c4 77570f0 d8aadee 77570f0 0b6865a 77570f0 9c4b1c4 77570f0 9c4b1c4 77570f0 9c4b1c4 77570f0 9c4b1c4 77570f0 9c4b1c4 77570f0 9c4b1c4 77570f0 9c4b1c4 77570f0 9c4b1c4 77570f0 9c4b1c4 77570f0 9c4b1c4 77570f0 9c4b1c4 77570f0 9c4b1c4 77570f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
---
title: Deepfake Detection Library
emoji: 🔍
colorFrom: red
colorTo: yellow
sdk: gradio
sdk_version: 4.36.0
app_file: app.py
pinned: false
license: mit
---
# Deepfake Detection Library
This Space provides a unified interface to test multiple state-of-the-art deepfake detection models on your images.
## Available Detectors
- **R50_TF** - ResNet-50 based detector trained on TrueFake dataset
- **R50_nodown** - ResNet-50 without downsampling operations
- **CLIP-D** - CLIP-based deepfake detector
- **P2G** - Prompt2Guard: Conditioned prompt-optimization for continual deepfake detection
- **NPR** - Neural Posterior Regularization
## Usage
1. Upload an image
2. Select a detector from the dropdown
3. Click "Detect" to get the prediction
The detector will return:
- **Prediction**: Real or Fake
- **Confidence**: Model confidence score (0-1)
- **Elapsed Time**: Processing time
## Models
All models have been pretrained on images generated with StyleGAN2 and StableDiffusionXL, and real images from the FFHQ Dataset and the FORLAB Dataset.
## References
For more information about the implementation and benchmarking, visit the [GitHub repository](https://github.com/truebees-ai/Image-Deepfake-Detectors-Public-Library).
## Note
⚠️ Due to file size limitations, model weights need to be downloaded automatically on first use. This may take a few moments.
|