import gradio as gr import pandas as pd import numpy as np import os import re from typing import Dict, Tuple, List, Optional, Callable import plotly.graph_objects as go from plotly.subplots import make_subplots import plotly.io as pio # ====================================== # 設定(添付CSVの既定パス:必要に応じて変更可) # ====================================== DEFAULT_CSV_PATH = "/mnt/data/mock_data_id_9999.csv" # ====================================== # ユーティリティ # ====================================== def normalize(s: str) -> str: return str(s).replace("\u3000", " ").replace("\n", "").replace("\r", "").strip() def try_read_csv_3header(path_or_file) -> pd.DataFrame: """ 3行ヘッダーCSVを読み込む(cp932/utf-8-sig フォールバック)。 1列目は timestamp として datetime 変換。 2列目以降は (ID, ItemName, ProcessName) の3段。 """ last_err = None for enc in ["cp932", "utf-8-sig", "utf-8"]: try: df = pd.read_csv(path_or_file, header=[0, 1, 2], encoding=enc) break except Exception as e: last_err = e df = None if df is None: raise last_err # 先頭列を timestamp に ts = pd.to_datetime(df.iloc[:, 0], errors="coerce") df = df.drop(df.columns[0], axis=1) df.insert(0, "timestamp", ts) return df def col_tuple_to_str(col) -> str: if isinstance(col, tuple): return "_".join([str(x) for x in col if x]) return str(col) def build_index_maps(df: pd.DataFrame): """ プロセス(3行目=タプルの3つ目)→ 該当列情報 の辞書を作る。 各列は (col_tuple, id, item, process, col_str) """ process_map = {} for col in df.columns: if col == "timestamp": continue if isinstance(col, tuple) and len(col) >= 3: col_id, item_name, process_name = str(col[0]), str(col[1]), str(col[2]) else: parts = str(col).split("_") if len(parts) >= 3: col_id, item_name, process_name = parts[0], "_".join(parts[1:-1]), parts[-1] else: continue rec = { "col_tuple": col, "id": col_id, "item": item_name, "process": process_name, "col_str": col_tuple_to_str(col), } process_map.setdefault(process_name, []).append(rec) processes = sorted(list(process_map.keys()), key=lambda x: normalize(x)) return process_map, processes def extract_measure_tag(item_name: str) -> str: """ 項目名末尾の計測項目タグを抽出。([...]優先→末尾語) """ s = normalize(item_name) m = re.search(r"\[([^\[\]]+)\]\s*$", s) if m: return m.group(1).strip() tokens = re.split(r"\s+", s) return tokens[-1] if tokens else s def extract_category(item_name: str) -> str: """ 項目名の「最後の '_' 以降」をカテゴリ名として返す。 例: '除害RO_A処理水_導電率' → '導電率' / '..._圧力' → '圧力' '_' が無い場合は「処理水…」の後ろや末尾語を推定。 """ s = normalize(item_name) if "_" in s: return s.split("_")[-1].strip() m = re.search(r"処理水[_\s]*(.+)$", s) if m: return m.group(1).strip() toks = re.split(r"\s+", s) return toks[-1] if toks else s # ====================================== # しきい値ハンドリング # ====================================== def try_read_thresholds_excel(file) -> Optional[pd.DataFrame]: """ しきい値Excel(任意)を読み込み。 想定カラム: ColumnID, ItemName, ProcessNo_ProcessName, LL, L, H, HH, Important(任意) """ if file is None: return None df = pd.read_excel(file) df.columns = [normalize(c) for c in df.columns] needed = {"ColumnID", "ItemName", "ProcessNo_ProcessName"} if not needed.issubset(set(df.columns)): rename_map = {} for k in list(df.columns): nk = normalize(str(k)) if nk.lower() in ["columnid", "colid", "id"]: rename_map[k] = "ColumnID" elif nk.lower() in ["itemname", "item", "name"]: rename_map[k] = "ItemName" elif nk.lower() in ["processno_processname", "process", "processname"]: rename_map[k] = "ProcessNo_ProcessName" if rename_map: df = df.rename(columns=rename_map) for c in ["LL", "L", "H", "HH"]: if c in df.columns: df[c] = pd.to_numeric(df[c], errors="coerce") if "Important" in df.columns: df["Important"] = ( df["Important"].astype(str).str.upper().map({"TRUE": True, "FALSE": False}) ) return df def build_threshold_lookup(thr_df: Optional[pd.DataFrame]) -> Dict[Tuple[str, str, str], Tuple[float, float, float, float]]: """ キー: (ColumnID, ItemName, ProcessNo_ProcessName) → (LL, L, H, HH) """ lookup = {} if thr_df is None or thr_df.empty: return lookup for _, r in thr_df.iterrows(): colid = normalize(str(r.get("ColumnID", ""))) item = normalize(str(r.get("ItemName", ""))) proc = normalize(str(r.get("ProcessNo_ProcessName", ""))) LL = r.get("LL", np.nan) L = r.get("L", np.nan) H = r.get("H", np.nan) HH = r.get("HH", np.nan) lookup[(colid, item, proc)] = (LL, L, H, HH) return lookup def auto_threshold(series: pd.Series) -> Tuple[float, float, float, float]: """ 自動しきい値: mean ± std(LL/L/H/HH を mean±2sd / ±1sd とする) """ s = series.dropna() if len(s) < 5: return (np.nan, np.nan, np.nan, np.nan) m = float(s.mean()) sd = float(s.std(ddof=1)) if len(s) >= 2 else 0.0 return (m - 2*sd, m - sd, m + sd, m + 2*sd) def judge_status(value, LL, L, H, HH) -> str: if pd.notna(LL) and value <= LL: return "LL" if pd.notna(L) and value <= L: return "L" if pd.notna(HH) and value >= HH: return "HH" if pd.notna(H) and value >= H: return "H" return "OK" # カラー設定 STATUS_COLOR = { "LL": "#2b6cb0", "L": "#63b3ed", "OK": "#a0aec0", "H": "#f6ad55", "HH": "#e53e3e", } LINE_COLOR = "#4a5568" # ====================================== # 汎用:グループキーに応じて図を作る(サブプロット) # group_by: "all" / "category" / "item" # ====================================== def _group_key_func(group_by: str) -> Callable[[dict], str]: if group_by == "item": return lambda rr: normalize(rr["item"]) if group_by == "category": return lambda rr: extract_category(rr["item"]) # "all" return lambda rr: "ALL" def make_grouped_figure( df: pd.DataFrame, process_map: Dict[str, List[dict]], process_name: str, selected_items: List[str], thr_df: Optional[pd.DataFrame], thr_mode: str, date_min: Optional[str], date_max: Optional[str], group_by: str, # "all" / "category" / "item" _force_groups: Optional[List[str]] = None, # ページ分割用 ) -> Optional[go.Figure]: if df is None or not process_name: return None recs = process_map.get(process_name, []) if not recs: return None selected = set([normalize(x) for x in (selected_items or [])]) recs = [r for r in recs if normalize(r["item"]) in selected] if not recs: return None dfw = df.copy() if date_min: dfw = dfw[dfw["timestamp"] >= pd.to_datetime(date_min)] if date_max: dfw = dfw[dfw["timestamp"] <= pd.to_datetime(date_max)] if dfw.empty: return None thr_lookup = build_threshold_lookup(thr_df) if thr_mode == "excel" else {} keyfunc = _group_key_func(group_by) # グループ化(カテゴリ / 項目 / 一括ALL) groups: Dict[str, List[dict]] = {} for r in recs: groups.setdefault(keyfunc(r), []).append(r) group_names = list(groups.keys()) if _force_groups is None else _force_groups if not group_names: return None rows = len(group_names) if rows <= 1: vspace = 0.03 else: max_vs = (1.0 / (rows - 1)) - 1e-4 vspace = max(0.0, min(0.03, max_vs)) # サブタイトル if group_by == "all": subtitles = [f"{process_name} | すべての項目"] # 1行 elif group_by == "category": subtitles = [f"{process_name} | 分類: {g}" for g in group_names] else: # item subtitles = [f"{process_name} | 項目: {g}" for g in group_names] fig = make_subplots( rows=rows, cols=1, shared_xaxes=True, vertical_spacing=vspace, subplot_titles=subtitles ) # 各グループを1行にまとめて複数系列として描画 row_idx = 1 for gname in group_names: cols = groups.get(gname, []) for r in cols: col = r["col_tuple"] col_str = r["col_str"] if col in dfw.columns: series = dfw[col] elif col_str in dfw.columns: series = dfw[col_str] else: continue x = dfw["timestamp"] y = pd.to_numeric(series, errors="coerce") if thr_mode == "excel": key = (normalize(r["id"]), normalize(r["item"]), normalize(r["process"])) LL, L, H, HH = thr_lookup.get(key, (np.nan, np.nan, np.nan, np.nan)) if all(pd.isna(v) for v in [LL, L, H, HH]): LL, L, H, HH = auto_threshold(y) else: LL, L, H, HH = auto_threshold(y) # ライン fig.add_trace( go.Scatter( x=x, y=y, mode="lines", name=f"{r['item']} ({r['id']})", line=dict(color=LINE_COLOR, width=1.5), hovertemplate="%{x}
%{y}"+f"{r['item']} ({r['id']})"+"" ), row=row_idx, col=1 ) # マーカー(色分け) colors = [] for v in y: if pd.isna(v): colors.append("rgba(0,0,0,0)") else: st = judge_status(v, LL, L, H, HH) colors.append(STATUS_COLOR.get(st, STATUS_COLOR["OK"])) fig.add_trace( go.Scatter( x=x, y=y, mode="markers", name=f"{r['item']} markers", marker=dict(size=6, color=colors), showlegend=False, hovertemplate="%{x}
%{y}" ), row=row_idx, col=1 ) # しきい値ガイドはグループ行に対して一律ではなく、系列ごとに別値になるので省略 row_idx += 1 fig.update_layout( title=( f"{process_name} | " + ("一括表示" if group_by == "all" else "分類別表示(カテゴリ)" if group_by == "category" else "個別表示(項目)") ), xaxis_title="timestamp", showlegend=True, margin=dict(l=10, r=10, t=40, b=10), hovermode="x unified", height=max(420, 260 * rows), ) return fig # ページ分割(group_byごと) def make_grouped_figure_paged( df: pd.DataFrame, process_map: Dict[str, List[dict]], process_name: str, selected_items: List[str], thr_df: Optional[pd.DataFrame], thr_mode: str, date_min: Optional[str], date_max: Optional[str], page: int, per_page: int, group_by: str, # "category" or "item" ) -> Tuple[Optional[go.Figure], int, List[str]]: recs = process_map.get(process_name, []) if not recs: return None, 0, [] selected = set([normalize(x) for x in (selected_items or [])]) recs = [r for r in recs if normalize(r["item"]) in selected] if not recs: return None, 0, [] keyfunc = _group_key_func(group_by) groups: Dict[str, List[dict]] = {} for r in recs: groups.setdefault(keyfunc(r), []).append(r) all_names = list(groups.keys()) total_pages = max(1, int(np.ceil(len(all_names) / max(1, per_page)))) page = int(max(1, min(page, total_pages))) start = (page - 1) * per_page end = start + per_page names_slice = all_names[start:end] fig = make_grouped_figure( df, process_map, process_name, selected_items, thr_df, thr_mode, date_min, date_max, group_by=group_by, _force_groups=names_slice ) return fig, total_pages, all_names # ====================================== # グローバル状態(UI間共有) # ====================================== G_DF: Optional[pd.DataFrame] = None G_PROCESS_MAP = {} G_PROCESSES = [] G_THRESHOLDS_DF: Optional[pd.DataFrame] = None # ====================================== # コールバック # ====================================== def initialize_default_csv(): """ 起動時にデフォルトCSVが存在すれば読み込む。 """ global G_DF, G_PROCESS_MAP, G_PROCESSES if os.path.exists(DEFAULT_CSV_PATH): try: df = try_read_csv_3header(DEFAULT_CSV_PATH) G_DF = df G_PROCESS_MAP, G_PROCESSES = build_index_maps(df) return ( f"✅ 既定CSVを読み込みました: {DEFAULT_CSV_PATH}", gr.update(choices=G_PROCESSES, value=(G_PROCESSES[0] if G_PROCESSES else None)), G_PROCESSES ) except Exception as e: return f"⚠ 既定CSV読み込み失敗: {e}", gr.update(), [] return "ℹ CSVをアップロードしてください。", gr.update(), [] def on_csv_upload(file): """ CSVアップロード → パース → プロセス候補更新 """ global G_DF, G_PROCESS_MAP, G_PROCESSES if file is None: return "⚠ ファイルが選択されていません。", gr.update(choices=[]), [] try: df = try_read_csv_3header(file.name if hasattr(file, "name") else file) G_DF = df G_PROCESS_MAP, G_PROCESSES = build_index_maps(df) return ( f"✅ CSV読み込み: {df.shape[0]}行 × {df.shape[1]}列", gr.update(choices=G_PROCESSES, value=(G_PROCESSES[0] if G_PROCESSES else None)), G_PROCESSES ) except Exception as e: return f"❌ 読み込みエラー: {e}", gr.update(choices=[]), [] def on_thr_upload(file): """ しきい値Excelアップロード → メモリ更新 """ global G_THRESHOLDS_DF if file is None: G_THRESHOLDS_DF = None return "ℹ しきい値ファイルなし(自動しきい値が使われます)" try: thr = try_read_thresholds_excel(file.name if hasattr(file, "name") else file) G_THRESHOLDS_DF = thr return f"✅ しきい値を読み込みました({thr.shape[0]}件)" except Exception as e: G_THRESHOLDS_DF = None return f"❌ しきい値読み込みエラー: {e}" def update_items(process_name: str): """ プロセス選択に応じて、項目(2行目)候補を返す。 """ if not process_name or process_name not in G_PROCESS_MAP: return gr.update(choices=[], value=[]) items = sorted(list({rec["item"] for rec in G_PROCESS_MAP[process_name]}), key=lambda x: normalize(x)) # デフォルトは全選択 return gr.update(choices=items, value=items) def render_any(process_name: str, items: List[str], display_mode: str, thr_mode_label: str, date_min, date_max, page: int, per_page: int): """ 表示モードに応じて Plot を返す。 - 一括表示: 全選択項目を1枚の行(ALL)にまとめる - 分類別表示: 末尾カテゴリごとにサブプロット。多い場合はページ分割 - 個別表示: 項目ごとにサブプロット。多い場合はページ分割 """ if G_DF is None: return "⚠ データ未読み込み", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) if not process_name: return "⚠ プロセスを選択してください", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) if not items: return "⚠ 項目を選択してください", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) mode = "excel" if str(thr_mode_label).startswith("excel") else "auto" # 一括表示 if str(display_mode).startswith("一括"): fig = make_grouped_figure( G_DF, G_PROCESS_MAP, process_name, items, G_THRESHOLDS_DF, mode, date_min, date_max, group_by="all" ) if fig is None: return "⚠ 図を生成できませんでした(データ無し or 条件不一致)", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) return "✅ 一括表示を描画しました", gr.update(value=fig, visible=True), gr.update(visible=False), gr.update(visible=False) # 分類別表示(カテゴリ) if str(display_mode).startswith("分類"): fig, total_pages, all_names = make_grouped_figure_paged( G_DF, G_PROCESS_MAP, process_name, items, G_THRESHOLDS_DF, mode, date_min, date_max, page=int(page), per_page=int(per_page), group_by="category" ) if fig is None: return "⚠ 図を生成できませんでした(データ無し or 条件不一致)", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) info = f"分類(カテゴリ)数: {len(all_names)} | ページ {int(max(1,min(page, total_pages)))} / {total_pages} | 件/ページ={int(per_page)}" return "✅ 分類別表示(末尾語カテゴリ)を描画しました", gr.update(value=fig, visible=True), gr.update(value=info, visible=True), gr.update(visible=True) # 個別表示(項目) fig, total_pages, all_names = make_grouped_figure_paged( G_DF, G_PROCESS_MAP, process_name, items, G_THRESHOLDS_DF, mode, date_min, date_max, page=int(page), per_page=int(per_page), group_by="item" ) if fig is None: return "⚠ 図を生成できませんでした(データ無し or 条件不一致)", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) info = f"項目数: {len(all_names)} | ページ {int(max(1,min(page, total_pages)))} / {total_pages} | 件/ページ={int(per_page)}" return "✅ 個別表示(項目)を描画しました", gr.update(value=fig, visible=True), gr.update(value=info, visible=True), gr.update(visible=True) # ====================================== # UI # ====================================== init_msg, init_proc_update, _ = initialize_default_csv() init_value = init_proc_update.get("value") if isinstance(init_proc_update, dict) else None init_choices = init_proc_update.get("choices") if isinstance(init_proc_update, dict) else [] with gr.Blocks(css=""" .gradio-container {overflow: auto !important;} """) as demo: gr.Markdown("## トレンドグラフ専用アプリ(3行ヘッダー対応・プロセス別・分類/個別・閾値色分け)") with gr.Row(): csv_uploader = gr.File(label="① 時系列CSV(3行ヘッダー)", file_count="single", file_types=[".csv"]) thr_uploader = gr.File(label="② 閾値Excel(任意: LL/L/H/HH)", file_count="single", file_types=[".xlsx", ".xls"]) with gr.Row(): thr_mode = gr.Radio( ["excel(アップロード優先・無ければ自動)", "自動(平均±標準偏差)"], value="excel(アップロード優先・無ければ自動)", label="しきい値モード" ) date_min = gr.Textbox(label="抽出開始日時(任意)例: 2024-07-01 00:00") date_max = gr.Textbox(label="抽出終了日時(任意)例: 2024-07-31 23:59") # 表示形式の切り替え display_mode = gr.Radio( ["一括表示", "分類別表示(カテゴリ)", "個別表示(項目)"], value="一括表示", label="表示形式" ) status_csv = gr.Markdown(init_msg) status_thr = gr.Markdown() process_dd = gr.Dropdown(label="対象プロセス(3行ヘッダーの3行目)", choices=init_choices, value=init_value) items_cb = gr.CheckboxGroup(label="表示する項目(3行ヘッダーの2行目)", choices=[], value=[]) with gr.Row(): btn_render = gr.Button("トレンド図を生成", variant="primary") msg = gr.Markdown() plot = gr.Plot(label="トレンド図", visible=True) # ページ分割コントロール(分類別/個別のみ表示) with gr.Row(): per_page = gr.Slider(1, 12, value=8, step=1, label="件/ページ(分類別・個別)", visible=False) page_no = gr.Number(value=1, label="ページ(1〜)", precision=0, visible=False) page_info = gr.Markdown(visible=False) # 2) CSVアップロードで更新 csv_uploader.change( on_csv_upload, inputs=[csv_uploader], outputs=[status_csv, process_dd, gr.State()], ) # 3) 閾値アップロードで更新 thr_uploader.change( on_thr_upload, inputs=[thr_uploader], outputs=[status_thr], ) # 4) プロセス選択で項目候補更新 process_dd.change( update_items, inputs=[process_dd], outputs=[items_cb], ) # 5) 図生成 btn_render.click( fn=lambda proc, items, disp_mode, mode, dmin, dmax, p, pp: render_any(proc, items, disp_mode, mode, dmin, dmax, p, pp), inputs=[process_dd, items_cb, display_mode, thr_mode, date_min, date_max, page_no, per_page], outputs=[msg, plot, page_info, page_no], ) # 6) 表示形式に応じたコントロール表示切替 def _toggle_page_controls(mode): show = not str(mode).startswith("一括") return gr.update(visible=show), gr.update(visible=show), gr.update(visible=show) display_mode.change( _toggle_page_controls, inputs=[display_mode], outputs=[per_page, page_no, page_info], ) if __name__ == "__main__": # SSRオフ(Plotly埋め込みや再描画の安定化のため) demo.launch(ssr_mode=False)