Upload pipeline_t2v_base_pixel.py
Browse files- pipeline_t2v_base_pixel.py +835 -0
pipeline_t2v_base_pixel.py
ADDED
|
@@ -0,0 +1,835 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2023 Show Labs, Alibaba DAMO-VILAB, and The HuggingFace Team. All rights reserved.
|
| 2 |
+
# Copyright 2023 The ModelScope Team.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
import html
|
| 17 |
+
import inspect
|
| 18 |
+
import re
|
| 19 |
+
import urllib.parse as ul
|
| 20 |
+
from dataclasses import dataclass
|
| 21 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
| 22 |
+
|
| 23 |
+
import numpy as np
|
| 24 |
+
import torch
|
| 25 |
+
import torch.utils.checkpoint
|
| 26 |
+
from transformers import CLIPImageProcessor, T5EncoderModel, T5Tokenizer
|
| 27 |
+
|
| 28 |
+
from diffusers import UNet3DConditionModel
|
| 29 |
+
from diffusers.loaders import LoraLoaderMixin
|
| 30 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
| 31 |
+
from diffusers.schedulers import DDPMScheduler
|
| 32 |
+
from diffusers.utils import (
|
| 33 |
+
BACKENDS_MAPPING,
|
| 34 |
+
BaseOutput,
|
| 35 |
+
is_accelerate_available,
|
| 36 |
+
is_accelerate_version,
|
| 37 |
+
is_bs4_available,
|
| 38 |
+
is_ftfy_available,
|
| 39 |
+
logging,
|
| 40 |
+
)
|
| 41 |
+
from diffusers.utils.torch_utils import randn_tensor
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 45 |
+
|
| 46 |
+
if is_bs4_available():
|
| 47 |
+
from bs4 import BeautifulSoup
|
| 48 |
+
|
| 49 |
+
if is_ftfy_available():
|
| 50 |
+
import ftfy
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
@dataclass
|
| 54 |
+
class TextToVideoPipelineOutput(BaseOutput):
|
| 55 |
+
"""
|
| 56 |
+
Output class for text to video pipelines.
|
| 57 |
+
|
| 58 |
+
Args:
|
| 59 |
+
frames (`List[np.ndarray]` or `torch.FloatTensor`)
|
| 60 |
+
List of denoised frames (essentially images) as NumPy arrays of shape `(height, width, num_channels)` or as
|
| 61 |
+
a `torch` tensor. NumPy array present the denoised images of the diffusion pipeline. The length of the list
|
| 62 |
+
denotes the video length i.e., the number of frames.
|
| 63 |
+
"""
|
| 64 |
+
|
| 65 |
+
frames: Union[List[np.ndarray], torch.FloatTensor]
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def tensor2vid(video: torch.Tensor, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) -> List[np.ndarray]:
|
| 69 |
+
# This code is copied from https://github.com/modelscope/modelscope/blob/1509fdb973e5871f37148a4b5e5964cafd43e64d/modelscope/pipelines/multi_modal/text_to_video_synthesis_pipeline.py#L78
|
| 70 |
+
# reshape to ncfhw
|
| 71 |
+
mean = torch.tensor(mean, device=video.device).reshape(1, -1, 1, 1, 1)
|
| 72 |
+
std = torch.tensor(std, device=video.device).reshape(1, -1, 1, 1, 1)
|
| 73 |
+
# unnormalize back to [0,1]
|
| 74 |
+
video = video.mul_(std).add_(mean)
|
| 75 |
+
video.clamp_(0, 1)
|
| 76 |
+
# prepare the final outputs
|
| 77 |
+
i, c, f, h, w = video.shape
|
| 78 |
+
images = video.permute(2, 3, 0, 4, 1).reshape(
|
| 79 |
+
f, h, i * w, c
|
| 80 |
+
) # 1st (frames, h, batch_size, w, c) 2nd (frames, h, batch_size * w, c)
|
| 81 |
+
images = images.unbind(dim=0) # prepare a list of indvidual (consecutive frames)
|
| 82 |
+
images = [(image.cpu().numpy() * 255).astype("uint8") for image in images] # f h w c
|
| 83 |
+
return images
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
class TextToVideoIFPipeline(DiffusionPipeline, LoraLoaderMixin):
|
| 87 |
+
tokenizer: T5Tokenizer
|
| 88 |
+
text_encoder: T5EncoderModel
|
| 89 |
+
|
| 90 |
+
unet: UNet3DConditionModel
|
| 91 |
+
scheduler: DDPMScheduler
|
| 92 |
+
|
| 93 |
+
feature_extractor: Optional[CLIPImageProcessor]
|
| 94 |
+
# safety_checker: Optional[IFSafetyChecker]
|
| 95 |
+
|
| 96 |
+
# watermarker: Optional[IFWatermarker]
|
| 97 |
+
|
| 98 |
+
bad_punct_regex = re.compile(
|
| 99 |
+
r"[" + "#®•©™&@·º½¾¿¡§~" + "\)" + "\(" + "\]" + "\[" + "\}" + "\{" + "\|" + "\\" + "\/" + "\*" + r"]{1,}"
|
| 100 |
+
) # noqa
|
| 101 |
+
|
| 102 |
+
_optional_components = [
|
| 103 |
+
"tokenizer",
|
| 104 |
+
"text_encoder",
|
| 105 |
+
"safety_checker",
|
| 106 |
+
"feature_extractor",
|
| 107 |
+
"watermarker",
|
| 108 |
+
]
|
| 109 |
+
|
| 110 |
+
def __init__(
|
| 111 |
+
self,
|
| 112 |
+
tokenizer: T5Tokenizer,
|
| 113 |
+
text_encoder: T5EncoderModel,
|
| 114 |
+
unet: UNet3DConditionModel,
|
| 115 |
+
scheduler: DDPMScheduler,
|
| 116 |
+
feature_extractor: Optional[CLIPImageProcessor],
|
| 117 |
+
):
|
| 118 |
+
super().__init__()
|
| 119 |
+
|
| 120 |
+
self.register_modules(
|
| 121 |
+
tokenizer=tokenizer,
|
| 122 |
+
text_encoder=text_encoder,
|
| 123 |
+
unet=unet,
|
| 124 |
+
scheduler=scheduler,
|
| 125 |
+
feature_extractor=feature_extractor,
|
| 126 |
+
)
|
| 127 |
+
self.safety_checker = None
|
| 128 |
+
|
| 129 |
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
| 130 |
+
r"""
|
| 131 |
+
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, the pipeline's
|
| 132 |
+
models have their state dicts saved to CPU and then are moved to a `torch.device('meta') and loaded to GPU only
|
| 133 |
+
when their specific submodule has its `forward` method called.
|
| 134 |
+
"""
|
| 135 |
+
if is_accelerate_available():
|
| 136 |
+
from accelerate import cpu_offload
|
| 137 |
+
else:
|
| 138 |
+
raise ImportError("Please install accelerate via `pip install accelerate`")
|
| 139 |
+
|
| 140 |
+
device = torch.device(f"cuda:{gpu_id}")
|
| 141 |
+
|
| 142 |
+
models = [
|
| 143 |
+
self.text_encoder,
|
| 144 |
+
self.unet,
|
| 145 |
+
]
|
| 146 |
+
for cpu_offloaded_model in models:
|
| 147 |
+
if cpu_offloaded_model is not None:
|
| 148 |
+
cpu_offload(cpu_offloaded_model, device)
|
| 149 |
+
|
| 150 |
+
if self.safety_checker is not None:
|
| 151 |
+
cpu_offload(self.safety_checker, execution_device=device, offload_buffers=True)
|
| 152 |
+
|
| 153 |
+
def enable_model_cpu_offload(self, gpu_id=0):
|
| 154 |
+
r"""
|
| 155 |
+
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
|
| 156 |
+
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
|
| 157 |
+
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
|
| 158 |
+
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
|
| 159 |
+
"""
|
| 160 |
+
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
|
| 161 |
+
from accelerate import cpu_offload_with_hook
|
| 162 |
+
else:
|
| 163 |
+
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
|
| 164 |
+
|
| 165 |
+
device = torch.device(f"cuda:{gpu_id}")
|
| 166 |
+
|
| 167 |
+
self.unet.train()
|
| 168 |
+
|
| 169 |
+
if self.device.type != "cpu":
|
| 170 |
+
self.to("cpu", silence_dtype_warnings=True)
|
| 171 |
+
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
|
| 172 |
+
|
| 173 |
+
hook = None
|
| 174 |
+
|
| 175 |
+
if self.text_encoder is not None:
|
| 176 |
+
_, hook = cpu_offload_with_hook(self.text_encoder, device, prev_module_hook=hook)
|
| 177 |
+
|
| 178 |
+
# Accelerate will move the next model to the device _before_ calling the offload hook of the
|
| 179 |
+
# previous model. This will cause both models to be present on the device at the same time.
|
| 180 |
+
# IF uses T5 for its text encoder which is really large. We can manually call the offload
|
| 181 |
+
# hook for the text encoder to ensure it's moved to the cpu before the unet is moved to
|
| 182 |
+
# the GPU.
|
| 183 |
+
self.text_encoder_offload_hook = hook
|
| 184 |
+
|
| 185 |
+
_, hook = cpu_offload_with_hook(self.unet, device, prev_module_hook=hook)
|
| 186 |
+
|
| 187 |
+
# if the safety checker isn't called, `unet_offload_hook` will have to be called to manually offload the unet
|
| 188 |
+
self.unet_offload_hook = hook
|
| 189 |
+
|
| 190 |
+
if self.safety_checker is not None:
|
| 191 |
+
_, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook)
|
| 192 |
+
|
| 193 |
+
# We'll offload the last model manually.
|
| 194 |
+
self.final_offload_hook = hook
|
| 195 |
+
|
| 196 |
+
def remove_all_hooks(self):
|
| 197 |
+
if is_accelerate_available():
|
| 198 |
+
from accelerate.hooks import remove_hook_from_module
|
| 199 |
+
else:
|
| 200 |
+
raise ImportError("Please install accelerate via `pip install accelerate`")
|
| 201 |
+
|
| 202 |
+
for model in [self.text_encoder, self.unet, self.safety_checker]:
|
| 203 |
+
if model is not None:
|
| 204 |
+
remove_hook_from_module(model, recurse=True)
|
| 205 |
+
|
| 206 |
+
self.unet_offload_hook = None
|
| 207 |
+
self.text_encoder_offload_hook = None
|
| 208 |
+
self.final_offload_hook = None
|
| 209 |
+
|
| 210 |
+
@property
|
| 211 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
|
| 212 |
+
def _execution_device(self):
|
| 213 |
+
r"""
|
| 214 |
+
Returns the device on which the pipeline's models will be executed. After calling
|
| 215 |
+
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
|
| 216 |
+
hooks.
|
| 217 |
+
"""
|
| 218 |
+
if not hasattr(self.unet, "_hf_hook"):
|
| 219 |
+
return self.device
|
| 220 |
+
for module in self.unet.modules():
|
| 221 |
+
if (
|
| 222 |
+
hasattr(module, "_hf_hook")
|
| 223 |
+
and hasattr(module._hf_hook, "execution_device")
|
| 224 |
+
and module._hf_hook.execution_device is not None
|
| 225 |
+
):
|
| 226 |
+
return torch.device(module._hf_hook.execution_device)
|
| 227 |
+
return self.device
|
| 228 |
+
|
| 229 |
+
@torch.no_grad()
|
| 230 |
+
def encode_prompt(
|
| 231 |
+
self,
|
| 232 |
+
prompt,
|
| 233 |
+
do_classifier_free_guidance=True,
|
| 234 |
+
num_images_per_prompt=1,
|
| 235 |
+
device=None,
|
| 236 |
+
negative_prompt=None,
|
| 237 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 238 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 239 |
+
clean_caption: bool = False,
|
| 240 |
+
):
|
| 241 |
+
r"""
|
| 242 |
+
Encodes the prompt into text encoder hidden states.
|
| 243 |
+
|
| 244 |
+
Args:
|
| 245 |
+
prompt (`str` or `List[str]`, *optional*):
|
| 246 |
+
prompt to be encoded
|
| 247 |
+
device: (`torch.device`, *optional*):
|
| 248 |
+
torch device to place the resulting embeddings on
|
| 249 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
| 250 |
+
number of images that should be generated per prompt
|
| 251 |
+
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
|
| 252 |
+
whether to use classifier free guidance or not
|
| 253 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
| 254 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
| 255 |
+
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
|
| 256 |
+
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
|
| 257 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 258 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 259 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
| 260 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 261 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 262 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
| 263 |
+
argument.
|
| 264 |
+
"""
|
| 265 |
+
if prompt is not None and negative_prompt is not None:
|
| 266 |
+
if type(prompt) is not type(negative_prompt):
|
| 267 |
+
raise TypeError(
|
| 268 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
| 269 |
+
f" {type(prompt)}."
|
| 270 |
+
)
|
| 271 |
+
|
| 272 |
+
if device is None:
|
| 273 |
+
device = self._execution_device
|
| 274 |
+
|
| 275 |
+
if prompt is not None and isinstance(prompt, str):
|
| 276 |
+
batch_size = 1
|
| 277 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 278 |
+
batch_size = len(prompt)
|
| 279 |
+
else:
|
| 280 |
+
batch_size = prompt_embeds.shape[0]
|
| 281 |
+
|
| 282 |
+
# while T5 can handle much longer input sequences than 77, the text encoder was trained with a max length of 77 for IF
|
| 283 |
+
max_length = 77
|
| 284 |
+
|
| 285 |
+
if prompt_embeds is None:
|
| 286 |
+
prompt = self._text_preprocessing(prompt, clean_caption=clean_caption)
|
| 287 |
+
text_inputs = self.tokenizer(
|
| 288 |
+
prompt,
|
| 289 |
+
padding="max_length",
|
| 290 |
+
max_length=max_length,
|
| 291 |
+
truncation=True,
|
| 292 |
+
add_special_tokens=True,
|
| 293 |
+
return_tensors="pt",
|
| 294 |
+
)
|
| 295 |
+
text_input_ids = text_inputs.input_ids
|
| 296 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
| 297 |
+
|
| 298 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
| 299 |
+
text_input_ids, untruncated_ids
|
| 300 |
+
):
|
| 301 |
+
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1 : -1])
|
| 302 |
+
logger.warning(
|
| 303 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
| 304 |
+
f" {max_length} tokens: {removed_text}"
|
| 305 |
+
)
|
| 306 |
+
|
| 307 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
| 308 |
+
|
| 309 |
+
prompt_embeds = self.text_encoder(
|
| 310 |
+
text_input_ids.to(device),
|
| 311 |
+
attention_mask=attention_mask,
|
| 312 |
+
)
|
| 313 |
+
prompt_embeds = prompt_embeds[0]
|
| 314 |
+
|
| 315 |
+
if self.text_encoder is not None:
|
| 316 |
+
dtype = self.text_encoder.dtype
|
| 317 |
+
elif self.unet is not None:
|
| 318 |
+
dtype = self.unet.dtype
|
| 319 |
+
else:
|
| 320 |
+
dtype = None
|
| 321 |
+
|
| 322 |
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
| 323 |
+
|
| 324 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
| 325 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
| 326 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 327 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
| 328 |
+
|
| 329 |
+
# get unconditional embeddings for classifier free guidance
|
| 330 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
| 331 |
+
uncond_tokens: List[str]
|
| 332 |
+
if negative_prompt is None:
|
| 333 |
+
uncond_tokens = [""] * batch_size
|
| 334 |
+
elif isinstance(negative_prompt, str):
|
| 335 |
+
uncond_tokens = [negative_prompt]
|
| 336 |
+
elif batch_size != len(negative_prompt):
|
| 337 |
+
raise ValueError(
|
| 338 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
| 339 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
| 340 |
+
" the batch size of `prompt`."
|
| 341 |
+
)
|
| 342 |
+
else:
|
| 343 |
+
uncond_tokens = negative_prompt
|
| 344 |
+
|
| 345 |
+
uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption)
|
| 346 |
+
max_length = prompt_embeds.shape[1]
|
| 347 |
+
uncond_input = self.tokenizer(
|
| 348 |
+
uncond_tokens,
|
| 349 |
+
padding="max_length",
|
| 350 |
+
max_length=max_length,
|
| 351 |
+
truncation=True,
|
| 352 |
+
return_attention_mask=True,
|
| 353 |
+
add_special_tokens=True,
|
| 354 |
+
return_tensors="pt",
|
| 355 |
+
)
|
| 356 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
| 357 |
+
|
| 358 |
+
negative_prompt_embeds = self.text_encoder(
|
| 359 |
+
uncond_input.input_ids.to(device),
|
| 360 |
+
attention_mask=attention_mask,
|
| 361 |
+
)
|
| 362 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
| 363 |
+
|
| 364 |
+
if do_classifier_free_guidance:
|
| 365 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
| 366 |
+
seq_len = negative_prompt_embeds.shape[1]
|
| 367 |
+
|
| 368 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
|
| 369 |
+
|
| 370 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 371 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
| 372 |
+
|
| 373 |
+
# For classifier free guidance, we need to do two forward passes.
|
| 374 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
| 375 |
+
# to avoid doing two forward passes
|
| 376 |
+
else:
|
| 377 |
+
negative_prompt_embeds = None
|
| 378 |
+
|
| 379 |
+
return prompt_embeds, negative_prompt_embeds
|
| 380 |
+
|
| 381 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
| 382 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
| 383 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
| 384 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
| 385 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
| 386 |
+
# and should be between [0, 1]
|
| 387 |
+
|
| 388 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
| 389 |
+
extra_step_kwargs = {}
|
| 390 |
+
if accepts_eta:
|
| 391 |
+
extra_step_kwargs["eta"] = eta
|
| 392 |
+
|
| 393 |
+
# check if the scheduler accepts generator
|
| 394 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
| 395 |
+
if accepts_generator:
|
| 396 |
+
extra_step_kwargs["generator"] = generator
|
| 397 |
+
return extra_step_kwargs
|
| 398 |
+
|
| 399 |
+
def check_inputs(
|
| 400 |
+
self,
|
| 401 |
+
prompt,
|
| 402 |
+
callback_steps,
|
| 403 |
+
negative_prompt=None,
|
| 404 |
+
prompt_embeds=None,
|
| 405 |
+
negative_prompt_embeds=None,
|
| 406 |
+
):
|
| 407 |
+
if (callback_steps is None) or (
|
| 408 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
| 409 |
+
):
|
| 410 |
+
raise ValueError(
|
| 411 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
| 412 |
+
f" {type(callback_steps)}."
|
| 413 |
+
)
|
| 414 |
+
|
| 415 |
+
if prompt is not None and prompt_embeds is not None:
|
| 416 |
+
raise ValueError(
|
| 417 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
| 418 |
+
" only forward one of the two."
|
| 419 |
+
)
|
| 420 |
+
elif prompt is None and prompt_embeds is None:
|
| 421 |
+
raise ValueError(
|
| 422 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
| 423 |
+
)
|
| 424 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
| 425 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
| 426 |
+
|
| 427 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
| 428 |
+
raise ValueError(
|
| 429 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
| 430 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
| 431 |
+
)
|
| 432 |
+
|
| 433 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
| 434 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
| 435 |
+
raise ValueError(
|
| 436 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
| 437 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
| 438 |
+
f" {negative_prompt_embeds.shape}."
|
| 439 |
+
)
|
| 440 |
+
|
| 441 |
+
def prepare_intermediate_images(
|
| 442 |
+
self,
|
| 443 |
+
batch_size,
|
| 444 |
+
num_channels,
|
| 445 |
+
num_frames,
|
| 446 |
+
height,
|
| 447 |
+
width,
|
| 448 |
+
dtype,
|
| 449 |
+
device,
|
| 450 |
+
generator,
|
| 451 |
+
):
|
| 452 |
+
shape = (batch_size, num_channels, num_frames, height, width)
|
| 453 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
| 454 |
+
raise ValueError(
|
| 455 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
| 456 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
| 457 |
+
)
|
| 458 |
+
|
| 459 |
+
intermediate_images = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
| 460 |
+
|
| 461 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
| 462 |
+
intermediate_images = intermediate_images * self.scheduler.init_noise_sigma
|
| 463 |
+
return intermediate_images
|
| 464 |
+
|
| 465 |
+
def _text_preprocessing(self, text, clean_caption=False):
|
| 466 |
+
if clean_caption and not is_bs4_available():
|
| 467 |
+
logger.warn(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`"))
|
| 468 |
+
logger.warn("Setting `clean_caption` to False...")
|
| 469 |
+
clean_caption = False
|
| 470 |
+
|
| 471 |
+
if clean_caption and not is_ftfy_available():
|
| 472 |
+
logger.warn(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`"))
|
| 473 |
+
logger.warn("Setting `clean_caption` to False...")
|
| 474 |
+
clean_caption = False
|
| 475 |
+
|
| 476 |
+
if not isinstance(text, (tuple, list)):
|
| 477 |
+
text = [text]
|
| 478 |
+
|
| 479 |
+
def process(text: str):
|
| 480 |
+
if clean_caption:
|
| 481 |
+
text = self._clean_caption(text)
|
| 482 |
+
text = self._clean_caption(text)
|
| 483 |
+
else:
|
| 484 |
+
text = text.lower().strip()
|
| 485 |
+
return text
|
| 486 |
+
|
| 487 |
+
return [process(t) for t in text]
|
| 488 |
+
|
| 489 |
+
def _clean_caption(self, caption):
|
| 490 |
+
caption = str(caption)
|
| 491 |
+
caption = ul.unquote_plus(caption)
|
| 492 |
+
caption = caption.strip().lower()
|
| 493 |
+
caption = re.sub("<person>", "person", caption)
|
| 494 |
+
# urls:
|
| 495 |
+
caption = re.sub(
|
| 496 |
+
r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
|
| 497 |
+
"",
|
| 498 |
+
caption,
|
| 499 |
+
) # regex for urls
|
| 500 |
+
caption = re.sub(
|
| 501 |
+
r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
|
| 502 |
+
"",
|
| 503 |
+
caption,
|
| 504 |
+
) # regex for urls
|
| 505 |
+
# html:
|
| 506 |
+
caption = BeautifulSoup(caption, features="html.parser").text
|
| 507 |
+
|
| 508 |
+
# @<nickname>
|
| 509 |
+
caption = re.sub(r"@[\w\d]+\b", "", caption)
|
| 510 |
+
|
| 511 |
+
# 31C0—31EF CJK Strokes
|
| 512 |
+
# 31F0—31FF Katakana Phonetic Extensions
|
| 513 |
+
# 3200—32FF Enclosed CJK Letters and Months
|
| 514 |
+
# 3300—33FF CJK Compatibility
|
| 515 |
+
# 3400—4DBF CJK Unified Ideographs Extension A
|
| 516 |
+
# 4DC0—4DFF Yijing Hexagram Symbols
|
| 517 |
+
# 4E00—9FFF CJK Unified Ideographs
|
| 518 |
+
caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
|
| 519 |
+
caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
|
| 520 |
+
caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
|
| 521 |
+
caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
|
| 522 |
+
caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
|
| 523 |
+
caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
|
| 524 |
+
caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
|
| 525 |
+
#######################################################
|
| 526 |
+
|
| 527 |
+
# все виды тире / all types of dash --> "-"
|
| 528 |
+
caption = re.sub(
|
| 529 |
+
r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa
|
| 530 |
+
"-",
|
| 531 |
+
caption,
|
| 532 |
+
)
|
| 533 |
+
|
| 534 |
+
# кавычки к одному стандарту
|
| 535 |
+
caption = re.sub(r"[`´«»“”¨]", '"', caption)
|
| 536 |
+
caption = re.sub(r"[‘’]", "'", caption)
|
| 537 |
+
|
| 538 |
+
# "
|
| 539 |
+
caption = re.sub(r""?", "", caption)
|
| 540 |
+
# &
|
| 541 |
+
caption = re.sub(r"&", "", caption)
|
| 542 |
+
|
| 543 |
+
# ip adresses:
|
| 544 |
+
caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)
|
| 545 |
+
|
| 546 |
+
# article ids:
|
| 547 |
+
caption = re.sub(r"\d:\d\d\s+$", "", caption)
|
| 548 |
+
|
| 549 |
+
# \n
|
| 550 |
+
caption = re.sub(r"\\n", " ", caption)
|
| 551 |
+
|
| 552 |
+
# "#123"
|
| 553 |
+
caption = re.sub(r"#\d{1,3}\b", "", caption)
|
| 554 |
+
# "#12345.."
|
| 555 |
+
caption = re.sub(r"#\d{5,}\b", "", caption)
|
| 556 |
+
# "123456.."
|
| 557 |
+
caption = re.sub(r"\b\d{6,}\b", "", caption)
|
| 558 |
+
# filenames:
|
| 559 |
+
caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption)
|
| 560 |
+
|
| 561 |
+
#
|
| 562 |
+
caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT"""
|
| 563 |
+
caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT"""
|
| 564 |
+
|
| 565 |
+
caption = re.sub(self.bad_punct_regex, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT
|
| 566 |
+
caption = re.sub(r"\s+\.\s+", r" ", caption) # " . "
|
| 567 |
+
|
| 568 |
+
# this-is-my-cute-cat / this_is_my_cute_cat
|
| 569 |
+
regex2 = re.compile(r"(?:\-|\_)")
|
| 570 |
+
if len(re.findall(regex2, caption)) > 3:
|
| 571 |
+
caption = re.sub(regex2, " ", caption)
|
| 572 |
+
|
| 573 |
+
caption = ftfy.fix_text(caption)
|
| 574 |
+
caption = html.unescape(html.unescape(caption))
|
| 575 |
+
|
| 576 |
+
caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640
|
| 577 |
+
caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc
|
| 578 |
+
caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231
|
| 579 |
+
|
| 580 |
+
caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
|
| 581 |
+
caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
|
| 582 |
+
caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
|
| 583 |
+
caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption)
|
| 584 |
+
caption = re.sub(r"\bpage\s+\d+\b", "", caption)
|
| 585 |
+
|
| 586 |
+
caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a...
|
| 587 |
+
|
| 588 |
+
caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)
|
| 589 |
+
|
| 590 |
+
caption = re.sub(r"\b\s+\:\s+", r": ", caption)
|
| 591 |
+
caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
|
| 592 |
+
caption = re.sub(r"\s+", " ", caption)
|
| 593 |
+
|
| 594 |
+
caption.strip()
|
| 595 |
+
|
| 596 |
+
caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
|
| 597 |
+
caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
|
| 598 |
+
caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
|
| 599 |
+
caption = re.sub(r"^\.\S+$", "", caption)
|
| 600 |
+
|
| 601 |
+
return caption.strip()
|
| 602 |
+
|
| 603 |
+
@torch.no_grad()
|
| 604 |
+
def __call__(
|
| 605 |
+
self,
|
| 606 |
+
prompt: Union[str, List[str]] = None,
|
| 607 |
+
num_inference_steps: int = 100,
|
| 608 |
+
timesteps: List[int] = None,
|
| 609 |
+
guidance_scale: float = 7.0,
|
| 610 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 611 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 612 |
+
height: Optional[int] = None,
|
| 613 |
+
width: Optional[int] = None,
|
| 614 |
+
num_frames: int = 16,
|
| 615 |
+
eta: float = 0.0,
|
| 616 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 617 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 618 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 619 |
+
output_type: Optional[str] = "np",
|
| 620 |
+
return_dict: bool = True,
|
| 621 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
| 622 |
+
callback_steps: int = 1,
|
| 623 |
+
clean_caption: bool = True,
|
| 624 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 625 |
+
):
|
| 626 |
+
"""
|
| 627 |
+
Function invoked when calling the pipeline for generation.
|
| 628 |
+
|
| 629 |
+
Args:
|
| 630 |
+
prompt (`str` or `List[str]`, *optional*):
|
| 631 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
| 632 |
+
instead.
|
| 633 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
| 634 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
| 635 |
+
expense of slower inference.
|
| 636 |
+
timesteps (`List[int]`, *optional*):
|
| 637 |
+
Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`
|
| 638 |
+
timesteps are used. Must be in descending order.
|
| 639 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
| 640 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
| 641 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
| 642 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
| 643 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
| 644 |
+
usually at the expense of lower image quality.
|
| 645 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
| 646 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
| 647 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
| 648 |
+
less than `1`).
|
| 649 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
| 650 |
+
The number of images to generate per prompt.
|
| 651 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size):
|
| 652 |
+
The height in pixels of the generated image.
|
| 653 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size):
|
| 654 |
+
The width in pixels of the generated image.
|
| 655 |
+
eta (`float`, *optional*, defaults to 0.0):
|
| 656 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
| 657 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
| 658 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
| 659 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
| 660 |
+
to make generation deterministic.
|
| 661 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 662 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 663 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
| 664 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 665 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 666 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
| 667 |
+
argument.
|
| 668 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
| 669 |
+
The output format of the generate image. Choose between
|
| 670 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
| 671 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 672 |
+
Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
|
| 673 |
+
callback (`Callable`, *optional*):
|
| 674 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
| 675 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
| 676 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
| 677 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
| 678 |
+
called at every step.
|
| 679 |
+
clean_caption (`bool`, *optional*, defaults to `True`):
|
| 680 |
+
Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to
|
| 681 |
+
be installed. If the dependencies are not installed, the embeddings will be created from the raw
|
| 682 |
+
prompt.
|
| 683 |
+
cross_attention_kwargs (`dict`, *optional*):
|
| 684 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 685 |
+
`self.processor` in
|
| 686 |
+
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
|
| 687 |
+
|
| 688 |
+
Examples:
|
| 689 |
+
|
| 690 |
+
Returns:
|
| 691 |
+
[`~pipelines.stable_diffusion.IFPipelineOutput`] or `tuple`:
|
| 692 |
+
[`~pipelines.stable_diffusion.IFPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When
|
| 693 |
+
returning a tuple, the first element is a list with the generated images, and the second element is a list
|
| 694 |
+
of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw)
|
| 695 |
+
or watermarked content, according to the `safety_checker`.
|
| 696 |
+
"""
|
| 697 |
+
# 1. Check inputs. Raise error if not correct
|
| 698 |
+
self.check_inputs(
|
| 699 |
+
prompt,
|
| 700 |
+
callback_steps,
|
| 701 |
+
negative_prompt,
|
| 702 |
+
prompt_embeds,
|
| 703 |
+
negative_prompt_embeds,
|
| 704 |
+
)
|
| 705 |
+
|
| 706 |
+
# 2. Define call parameters
|
| 707 |
+
height = height or self.unet.config.sample_size
|
| 708 |
+
width = width or self.unet.config.sample_size
|
| 709 |
+
|
| 710 |
+
if prompt is not None and isinstance(prompt, str):
|
| 711 |
+
batch_size = 1
|
| 712 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 713 |
+
batch_size = len(prompt)
|
| 714 |
+
else:
|
| 715 |
+
batch_size = prompt_embeds.shape[0]
|
| 716 |
+
|
| 717 |
+
device = self._execution_device
|
| 718 |
+
|
| 719 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 720 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
| 721 |
+
# corresponds to doing no classifier free guidance.
|
| 722 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
| 723 |
+
|
| 724 |
+
# 3. Encode input prompt
|
| 725 |
+
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
| 726 |
+
prompt,
|
| 727 |
+
do_classifier_free_guidance,
|
| 728 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 729 |
+
device=device,
|
| 730 |
+
negative_prompt=negative_prompt,
|
| 731 |
+
prompt_embeds=prompt_embeds,
|
| 732 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 733 |
+
clean_caption=clean_caption,
|
| 734 |
+
)
|
| 735 |
+
|
| 736 |
+
if do_classifier_free_guidance:
|
| 737 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
| 738 |
+
|
| 739 |
+
# 4. Prepare timesteps
|
| 740 |
+
if timesteps is not None:
|
| 741 |
+
self.scheduler.set_timesteps(timesteps=timesteps, device=device)
|
| 742 |
+
timesteps = self.scheduler.timesteps
|
| 743 |
+
num_inference_steps = len(timesteps)
|
| 744 |
+
else:
|
| 745 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
| 746 |
+
timesteps = self.scheduler.timesteps
|
| 747 |
+
|
| 748 |
+
# 5. Prepare intermediate images
|
| 749 |
+
intermediate_images = self.prepare_intermediate_images(
|
| 750 |
+
batch_size * num_images_per_prompt,
|
| 751 |
+
self.unet.config.in_channels,
|
| 752 |
+
num_frames,
|
| 753 |
+
height,
|
| 754 |
+
width,
|
| 755 |
+
prompt_embeds.dtype,
|
| 756 |
+
device,
|
| 757 |
+
generator,
|
| 758 |
+
)
|
| 759 |
+
|
| 760 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
| 761 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
| 762 |
+
|
| 763 |
+
# HACK: see comment in `enable_model_cpu_offload`
|
| 764 |
+
if hasattr(self, "text_encoder_offload_hook") and self.text_encoder_offload_hook is not None:
|
| 765 |
+
self.text_encoder_offload_hook.offload()
|
| 766 |
+
|
| 767 |
+
# 7. Denoising loop
|
| 768 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
| 769 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 770 |
+
for i, t in enumerate(timesteps):
|
| 771 |
+
model_input = (
|
| 772 |
+
torch.cat([intermediate_images] * 2) if do_classifier_free_guidance else intermediate_images
|
| 773 |
+
)
|
| 774 |
+
model_input = self.scheduler.scale_model_input(model_input, t)
|
| 775 |
+
|
| 776 |
+
# predict the noise residual
|
| 777 |
+
noise_pred = self.unet(
|
| 778 |
+
model_input,
|
| 779 |
+
t,
|
| 780 |
+
encoder_hidden_states=prompt_embeds,
|
| 781 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 782 |
+
).sample
|
| 783 |
+
|
| 784 |
+
# perform guidance
|
| 785 |
+
if do_classifier_free_guidance:
|
| 786 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 787 |
+
noise_pred_uncond, _ = noise_pred_uncond.split(model_input.shape[1], dim=1)
|
| 788 |
+
noise_pred_text, predicted_variance = noise_pred_text.split(model_input.shape[1], dim=1)
|
| 789 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 790 |
+
noise_pred = torch.cat([noise_pred, predicted_variance], dim=1)
|
| 791 |
+
|
| 792 |
+
if self.scheduler.config.variance_type not in [
|
| 793 |
+
"learned",
|
| 794 |
+
"learned_range",
|
| 795 |
+
]:
|
| 796 |
+
noise_pred, _ = noise_pred.split(model_input.shape[1], dim=1)
|
| 797 |
+
|
| 798 |
+
# reshape latents
|
| 799 |
+
bsz, channel, frames, height, width = intermediate_images.shape
|
| 800 |
+
intermediate_images = intermediate_images.permute(0, 2, 1, 3, 4).reshape(
|
| 801 |
+
bsz * frames, channel, height, width
|
| 802 |
+
)
|
| 803 |
+
noise_pred = noise_pred.permute(0, 2, 1, 3, 4).reshape(bsz * frames, -1, height, width)
|
| 804 |
+
|
| 805 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 806 |
+
intermediate_images = self.scheduler.step(
|
| 807 |
+
noise_pred, t, intermediate_images, **extra_step_kwargs
|
| 808 |
+
).prev_sample
|
| 809 |
+
|
| 810 |
+
# reshape latents back
|
| 811 |
+
intermediate_images = (
|
| 812 |
+
intermediate_images[None, :].reshape(bsz, frames, channel, height, width).permute(0, 2, 1, 3, 4)
|
| 813 |
+
)
|
| 814 |
+
|
| 815 |
+
# call the callback, if provided
|
| 816 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
| 817 |
+
progress_bar.update()
|
| 818 |
+
if callback is not None and i % callback_steps == 0:
|
| 819 |
+
callback(i, t, intermediate_images)
|
| 820 |
+
|
| 821 |
+
video_tensor = intermediate_images
|
| 822 |
+
|
| 823 |
+
if output_type == "pt":
|
| 824 |
+
video = video_tensor
|
| 825 |
+
else:
|
| 826 |
+
video = tensor2vid(video_tensor)
|
| 827 |
+
|
| 828 |
+
# Offload last model to CPU
|
| 829 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
| 830 |
+
self.final_offload_hook.offload()
|
| 831 |
+
|
| 832 |
+
if not return_dict:
|
| 833 |
+
return (video,)
|
| 834 |
+
|
| 835 |
+
return TextToVideoPipelineOutput(frames=video)
|