Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,169 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ๐ MiniCoderX: A Lightweight Transformer for Code Generation
|
| 2 |
+
|
| 3 |
+
**MiniCoderX** is a structure-aware, transformer-based small language model (SLM) for code generation. It blends modern architectural techniques with efficient deployment using tools like **LangChain** and **Ollama**, making it ideal for rapid local experimentation.
|
| 4 |
+
|
| 5 |
+
---
|
| 6 |
+
|
| 7 |
+
## โจ Features
|
| 8 |
+
|
| 9 |
+
- ๐ง Transformer-based encoder-decoder (TinyCodeT5 / DistilGPT2)
|
| 10 |
+
- ๐ฒ AST/CFG-aware encoding for code structure understanding
|
| 11 |
+
- ๐พ Syntax-constrained decoding using grammar rules and trees
|
| 12 |
+
- ๐ Multi-task heads: generation, summarization, translation, bug fixing
|
| 13 |
+
- โ๏ธ LangChain + Ollama integration for fast local deployment
|
| 14 |
+
- ๐งช Evaluated on HumanEval, CodeXGLUE, MBPP
|
| 15 |
+
|
| 16 |
+
---
|
| 17 |
+
|
| 18 |
+
## ๐๏ธ Model Architecture
|
| 19 |
+
|
| 20 |
+
| Component | Description |
|
| 21 |
+
|----------------|-----------------------------------------------------------|
|
| 22 |
+
| Base | Tiny encoder-decoder (MiniLM, DistilGPT2, TinyCodeT5) |
|
| 23 |
+
| Structure-aware | AST and Control Flow Graph embeddings + positional masks |
|
| 24 |
+
| Heads | Multi-task heads for flexible downstream use |
|
| 25 |
+
| Decoder | Syntax-aware beam search (grammar constraints) |
|
| 26 |
+
| Tokenizer | BPE or SentencePiece trained on code + comments |
|
| 27 |
+
|
| 28 |
+
---
|
| 29 |
+
|
| 30 |
+
## ๐ง Architectural Additions (SOTA Techniques)
|
| 31 |
+
|
| 32 |
+
### ๐ฒ AST/CFG Embeddings
|
| 33 |
+
Enhances understanding of code structure by:
|
| 34 |
+
- Adding AST node/edge embeddings to token inputs
|
| 35 |
+
- Including path embeddings between syntactic elements
|
| 36 |
+
- Graph-aware position encoding
|
| 37 |
+
|
| 38 |
+
Inspired by: **StructCoder**, **AST-T5**, **Code4Struct**
|
| 39 |
+
|
| 40 |
+
### ๐พ Syntax-Constrained Decoding
|
| 41 |
+
Improves generation accuracy and reduces invalid code by:
|
| 42 |
+
- Restricting token outputs using grammar constraints (BNF/PEG)
|
| 43 |
+
- Custom decoding logic (e.g., Tree traversal)
|
| 44 |
+
- Dynamic decoding masks based on token state
|
| 45 |
+
|
| 46 |
+
Inspired by: **TreeGen**, **Code4Struct**
|
| 47 |
+
|
| 48 |
+
### ๐ Multi-Task Learning Heads
|
| 49 |
+
Supports multiple tasks:
|
| 50 |
+
- Code generation (NL โ Code)
|
| 51 |
+
- Summarization (Code โ NL)
|
| 52 |
+
- Translation (Java โ Python)
|
| 53 |
+
- Code repair and completion
|
| 54 |
+
|
| 55 |
+
Inspired by: **CodeT5+**, **CoTexT**
|
| 56 |
+
|
| 57 |
+
---
|
| 58 |
+
|
| 59 |
+
## โก LangChain + Ollama Integration
|
| 60 |
+
|
| 61 |
+
### ๐ก Why?
|
| 62 |
+
To enable:
|
| 63 |
+
- ๐งช Local testing and chaining of models via **LangChain**
|
| 64 |
+
- ๐ฆฎ Fast prototyping with **Ollama** for custom transformer backends
|
| 65 |
+
- ๐ Easy switch between small local models and larger remote APIs
|
| 66 |
+
|
| 67 |
+
### ๐ Integration Plan
|
| 68 |
+
```python
|
| 69 |
+
from langchain.llms import Ollama
|
| 70 |
+
from langchain.chains import LLMChain
|
| 71 |
+
from langchain.prompts import PromptTemplate
|
| 72 |
+
|
| 73 |
+
# Load MiniCoderX with Ollama
|
| 74 |
+
llm = Ollama(model="minicoderx") # Local model via Ollama
|
| 75 |
+
|
| 76 |
+
# Define code generation prompt
|
| 77 |
+
prompt = PromptTemplate(
|
| 78 |
+
input_variables=["instruction"],
|
| 79 |
+
template="Generate Python code for the task: {instruction}",
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
chain = LLMChain(llm=llm, prompt=prompt)
|
| 83 |
+
result = chain.run("Sort a list of integers using quicksort")
|
| 84 |
+
|
| 85 |
+
print(result)
|
| 86 |
+
```
|
| 87 |
+
|
| 88 |
+
> โ
Ollama will be used to serve your fine-tuned SLM locally
|
| 89 |
+
> โ
LangChain will wrap it with prompts, chains, and memory features for interactivity
|
| 90 |
+
|
| 91 |
+
---
|
| 92 |
+
|
| 93 |
+
## ๐ฆ Datasets
|
| 94 |
+
|
| 95 |
+
| Dataset | Use |
|
| 96 |
+
|----------------|----------------------------|
|
| 97 |
+
| The Stack (subset) | Pretraining corpus |
|
| 98 |
+
| CodeSearchNet | Summarization, Search |
|
| 99 |
+
| HumanEval | Code generation benchmark |
|
| 100 |
+
| MBPP | Python programming prompts |
|
| 101 |
+
| Bugs2Fix | Code repair |
|
| 102 |
+
| Java-Python | Cross-language translation |
|
| 103 |
+
|
| 104 |
+
---
|
| 105 |
+
|
| 106 |
+
## ๐ฌ Training Objectives
|
| 107 |
+
|
| 108 |
+
- โ
Span Masking (CodeT5-style)
|
| 109 |
+
- โ
Contrastive pretraining
|
| 110 |
+
- โ
Instruction tuning (natural prompt formatting)
|
| 111 |
+
- โ
Auto-regressive generation
|
| 112 |
+
|
| 113 |
+
---
|
| 114 |
+
|
| 115 |
+
## ๐ Evaluation Benchmarks
|
| 116 |
+
|
| 117 |
+
| Benchmark | Metric |
|
| 118 |
+
|------------|-------------------|
|
| 119 |
+
| HumanEval | Pass@1, BLEU |
|
| 120 |
+
| MBPP | Accuracy |
|
| 121 |
+
| CodeXGLUE | CodeBLEU, EM |
|
| 122 |
+
| Unit Tests | Pass Rate |
|
| 123 |
+
|
| 124 |
+
---
|
| 125 |
+
|
| 126 |
+
## ๐งช Project Roadmap
|
| 127 |
+
|
| 128 |
+
### โ
Phase 1: MVP Model
|
| 129 |
+
- Train TinyCodeT5 model with span masking
|
| 130 |
+
- Evaluate on MBPP and HumanEval-lite
|
| 131 |
+
- Serve via Ollama + LangChain prompt chain
|
| 132 |
+
|
| 133 |
+
### ๐ Phase 2: Structural Learning
|
| 134 |
+
- Add AST/CFG encodings
|
| 135 |
+
- Introduce grammar-constrained decoding
|
| 136 |
+
- Multi-task training (gen, sum, repair)
|
| 137 |
+
|
| 138 |
+
### ๐ฆ Phase 3: Optimization & Packaging
|
| 139 |
+
- Distill from larger model (e.g., StarCoder)
|
| 140 |
+
- Add reinforcement fine-tuning via test cases
|
| 141 |
+
- Export to Hugging Face + Ollama integration
|
| 142 |
+
|
| 143 |
+
---
|
| 144 |
+
|
| 145 |
+
## ๐ ๏ธ Tools & Frameworks
|
| 146 |
+
|
| 147 |
+
- [Hugging Face Transformers](https://github.com/huggingface/transformers)
|
| 148 |
+
- [LangChain](https://github.com/langchain-ai/langchain)
|
| 149 |
+
- [Ollama](https://ollama.com/)
|
| 150 |
+
- SentencePiece / BPE
|
| 151 |
+
- NetworkX for AST/CFG parsing
|
| 152 |
+
|
| 153 |
+
---
|
| 154 |
+
|
| 155 |
+
## ๐ค Contributing
|
| 156 |
+
|
| 157 |
+
Want to help with grammar decoders, AST integration, or evaluation? PRs welcome!
|
| 158 |
+
|
| 159 |
+
---
|
| 160 |
+
|
| 161 |
+
## ๐ License
|
| 162 |
+
|
| 163 |
+
MIT License. Built for research and open experimentation.
|
| 164 |
+
|
| 165 |
+
---
|
| 166 |
+
|
| 167 |
+
## ๐ง Contact
|
| 168 |
+
|
| 169 |
+
Drop an issue or discussion on GitHub!
|