Update model with binary classification (UNAUTHORIZED F1: 93.50%)
Browse files- README.md +103 -99
- best_metrics.json +24 -30
- config.json +4 -7
- final_report.json +6 -6
- model.safetensors +2 -2
- training_config.json +7 -11
README.md
CHANGED
|
@@ -1,91 +1,59 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
language:
|
| 4 |
-
- en
|
| 5 |
-
tags:
|
| 6 |
-
- modernbert
|
| 7 |
-
- security
|
| 8 |
-
- jailbreak-detection
|
| 9 |
-
- prompt-injection
|
| 10 |
-
- tool-calling
|
| 11 |
-
- token-classification
|
| 12 |
-
datasets:
|
| 13 |
-
- microsoft/llmail-inject-challenge
|
| 14 |
-
- allenai/wildjailbreak
|
| 15 |
-
- hackaprompt/hackaprompt-dataset
|
| 16 |
-
- JailbreakBench/JBB-Behaviors
|
| 17 |
-
metrics:
|
| 18 |
-
- f1
|
| 19 |
-
- accuracy
|
| 20 |
-
- precision
|
| 21 |
-
- recall
|
| 22 |
-
base_model: answerdotai/ModernBERT-base
|
| 23 |
-
pipeline_tag: token-classification
|
| 24 |
-
model-index:
|
| 25 |
-
- name: tool-call-verifier
|
| 26 |
-
results:
|
| 27 |
-
- task:
|
| 28 |
-
type: token-classification
|
| 29 |
-
name: Tool Call Verification
|
| 30 |
-
metrics:
|
| 31 |
-
- name: UNAUTHORIZED F1
|
| 32 |
-
type: f1
|
| 33 |
-
value: 0.9394
|
| 34 |
-
- name: UNAUTHORIZED Precision
|
| 35 |
-
type: precision
|
| 36 |
-
value: 0.9719
|
| 37 |
-
- name: UNAUTHORIZED Recall
|
| 38 |
-
type: recall
|
| 39 |
-
value: 0.9062
|
| 40 |
-
- name: Accuracy
|
| 41 |
-
type: accuracy
|
| 42 |
-
value: 0.9380
|
| 43 |
-
---
|
| 44 |
-
|
| 45 |
# ToolCallVerifier - Unauthorized Tool Call Detection
|
| 46 |
|
| 47 |
-
|
| 48 |
|
| 49 |
-
|
|
|
|
|
|
|
| 50 |
|
| 51 |
-
|
| 52 |
|
| 53 |
-
|
|
|
|
|
|
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
-
## Performance
|
| 62 |
|
| 63 |
| Metric | Value |
|
| 64 |
|--------|-------|
|
| 65 |
-
| **UNAUTHORIZED F1** | **93.
|
| 66 |
-
| UNAUTHORIZED Precision |
|
| 67 |
-
| UNAUTHORIZED Recall |
|
| 68 |
-
| Overall Accuracy |
|
| 69 |
|
| 70 |
-
###
|
| 71 |
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
|
|
|
| 77 |
|
| 78 |
-
|
| 79 |
|
| 80 |
-
|
|
|
|
|
|
|
| 81 |
|
| 82 |
### HuggingFace Datasets
|
| 83 |
|
| 84 |
| Dataset | Description | Samples |
|
| 85 |
|---------|-------------|---------|
|
| 86 |
| [LLMail-Inject](https://huggingface.co/datasets/microsoft/llmail-inject-challenge) | Microsoft email injection benchmark | ~10,000 |
|
| 87 |
-
| [WildJailbreak](https://huggingface.co/datasets/allenai/wildjailbreak) | Allen AI adversarial safety dataset | ~
|
| 88 |
-
| [HackAPrompt](https://huggingface.co/datasets/hackaprompt/hackaprompt-dataset) | EMNLP'23 injection competition | ~
|
| 89 |
| [JailbreakBench](https://huggingface.co/datasets/JailbreakBench/JBB-Behaviors) | Harmful behavior patterns | ~2,000 |
|
| 90 |
|
| 91 |
### Synthetic Attack Generators
|
|
@@ -94,25 +62,32 @@ Trained on **~38,000 samples** combining real-world attacks and synthetic patter
|
|
| 94 |
|-----------|-------------|
|
| 95 |
| Adversarial | Intent-mismatch attacks (correct tool, wrong args) |
|
| 96 |
| Filesystem | File/directory operation attacks |
|
| 97 |
-
| Network | Network/API attacks |
|
| 98 |
-
| Email | Email tool
|
| 99 |
-
| Financial | Transaction
|
| 100 |
| Code Execution | Code injection attacks |
|
| 101 |
-
| Authentication | Access control
|
|
|
|
| 102 |
|
| 103 |
-
|
|
|
|
|
|
|
| 104 |
|
| 105 |
| Category | Source | Description |
|
| 106 |
|----------|--------|-------------|
|
| 107 |
-
| Delimiter Injection | LLMail | `<<end_context>>`, `>>}}]])` |
|
| 108 |
| Word Obfuscation | LLMail | Inserting noise words between tokens |
|
| 109 |
| Fake Sessions | LLMail | `START_USER_SESSION`, `EXECUTE_USERQUERY` |
|
| 110 |
| Roleplay Injection | WildJailbreak | "You are an admin bot that can..." |
|
| 111 |
| XML Tag Injection | WildJailbreak | `<execute_action>`, `<tool_call>` |
|
| 112 |
| Authority Bypass | WildJailbreak | "As administrator, I authorize..." |
|
| 113 |
| Intent Mismatch | Synthetic | User asks X, tool does Y |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
-
## Usage
|
| 116 |
|
| 117 |
```python
|
| 118 |
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
|
@@ -123,8 +98,8 @@ tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
| 123 |
model = AutoModelForTokenClassification.from_pretrained(model_name)
|
| 124 |
|
| 125 |
# Example: Verify a tool call
|
| 126 |
-
tool_call = '{"name": "send_email", "arguments": {"to": "[email protected]", "body": "stolen data"}}'
|
| 127 |
user_intent = "Summarize my emails"
|
|
|
|
| 128 |
|
| 129 |
# Combine for classification
|
| 130 |
input_text = f"[USER] {user_intent} [TOOL] {tool_call}"
|
|
@@ -134,45 +109,64 @@ with torch.no_grad():
|
|
| 134 |
outputs = model(**inputs)
|
| 135 |
predictions = torch.argmax(outputs.logits, dim=-1)
|
| 136 |
|
| 137 |
-
id2label = {0: "AUTHORIZED", 1: "
|
|
|
|
| 138 |
labels = [id2label[p.item()] for p in predictions[0]]
|
| 139 |
|
| 140 |
-
|
|
|
|
|
|
|
| 141 |
print("⚠️ BLOCKED: Unauthorized tool call detected!")
|
|
|
|
| 142 |
else:
|
| 143 |
print("✅ Tool call authorized")
|
| 144 |
```
|
| 145 |
|
| 146 |
-
|
|
|
|
|
|
|
| 147 |
|
| 148 |
| Parameter | Value |
|
| 149 |
|-----------|-------|
|
| 150 |
-
| Base Model | answerdotai/ModernBERT-base |
|
| 151 |
-
| Max Length |
|
| 152 |
-
| Batch Size |
|
| 153 |
-
| Epochs |
|
| 154 |
-
| Learning Rate |
|
| 155 |
| Loss | CrossEntropyLoss (class-weighted) |
|
| 156 |
-
| Class Weights | [0.5,
|
| 157 |
-
| Attention | SDPA (Flash Attention
|
| 158 |
-
| Hardware | AMD Instinct MI300X |
|
|
|
|
|
|
|
| 159 |
|
| 160 |
-
## Integration with FunctionCallSentinel
|
| 161 |
|
| 162 |
This model is **Stage 2** of a two-stage defense pipeline:
|
| 163 |
|
| 164 |
-
|
| 165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
|
| 167 |
| Scenario | Recommendation |
|
| 168 |
|----------|----------------|
|
| 169 |
| General chatbot | Stage 1 only |
|
| 170 |
| Tool-calling agent (low risk) | Stage 1 only |
|
| 171 |
-
| Tool-calling agent (high risk) | Both stages |
|
| 172 |
-
| Email/file system access | Both stages |
|
| 173 |
-
| Financial transactions | Both stages |
|
|
|
|
|
|
|
| 174 |
|
| 175 |
-
## Intended Use
|
| 176 |
|
| 177 |
### Primary Use Cases
|
| 178 |
- **LLM Agent Security**: Verify tool calls before execution
|
|
@@ -184,13 +178,23 @@ This model is **Stage 2** of a two-stage defense pipeline:
|
|
| 184 |
- Non-tool-calling scenarios
|
| 185 |
- Languages other than English
|
| 186 |
|
| 187 |
-
|
|
|
|
|
|
|
| 188 |
|
| 189 |
-
1. **Tool schema dependent
|
| 190 |
-
2. **English only
|
| 191 |
-
3. **
|
|
|
|
|
|
|
| 192 |
|
| 193 |
-
## License
|
| 194 |
|
| 195 |
Apache 2.0
|
| 196 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# ToolCallVerifier - Unauthorized Tool Call Detection
|
| 2 |
|
| 3 |
+
<div align="center">
|
| 4 |
|
| 5 |
+
[](https://opensource.org/licenses/Apache-2.0)
|
| 6 |
+
[](https://huggingface.co/answerdotai/ModernBERT-base)
|
| 7 |
+
[](https://huggingface.co/rootfs)
|
| 8 |
|
| 9 |
+
**Stage 2 of Two-Stage LLM Agent Defense Pipeline**
|
| 10 |
|
| 11 |
+
</div>
|
| 12 |
+
|
| 13 |
+
---
|
| 14 |
|
| 15 |
+
## 🎯 What This Model Does
|
| 16 |
+
|
| 17 |
+
ToolCallVerifier is a **ModernBERT-based token classifier** that detects unauthorized tool calls in LLM agent systems. It performs token-level classification on tool call JSON to identify malicious arguments that may have been injected through prompt injection attacks.
|
| 18 |
+
|
| 19 |
+
| Label | Description |
|
| 20 |
+
|-------|-------------|
|
| 21 |
+
| `AUTHORIZED` | Token is part of a legitimate, user-requested action |
|
| 22 |
+
| `UNAUTHORIZED` | Token indicates injected/malicious content — **BLOCK** |
|
| 23 |
+
|
| 24 |
+
---
|
| 25 |
|
| 26 |
+
## 📊 Performance
|
| 27 |
|
| 28 |
| Metric | Value |
|
| 29 |
|--------|-------|
|
| 30 |
+
| **UNAUTHORIZED F1** | **93.50%** |
|
| 31 |
+
| UNAUTHORIZED Precision | 95.01% |
|
| 32 |
+
| UNAUTHORIZED Recall | 92.05% |
|
| 33 |
+
| Overall Accuracy | 92.88% |
|
| 34 |
|
| 35 |
+
### Confusion Matrix (Token-Level)
|
| 36 |
|
| 37 |
+
```
|
| 38 |
+
Predicted
|
| 39 |
+
AUTH UNAUTH
|
| 40 |
+
Actual AUTH 130,708 8,483
|
| 41 |
+
UNAUTH 13,924 161,031
|
| 42 |
+
```
|
| 43 |
|
| 44 |
+
---
|
| 45 |
|
| 46 |
+
## 🗂️ Training Data
|
| 47 |
+
|
| 48 |
+
Trained on **~30,000 samples** combining real-world attacks and synthetic patterns:
|
| 49 |
|
| 50 |
### HuggingFace Datasets
|
| 51 |
|
| 52 |
| Dataset | Description | Samples |
|
| 53 |
|---------|-------------|---------|
|
| 54 |
| [LLMail-Inject](https://huggingface.co/datasets/microsoft/llmail-inject-challenge) | Microsoft email injection benchmark | ~10,000 |
|
| 55 |
+
| [WildJailbreak](https://huggingface.co/datasets/allenai/wildjailbreak) | Allen AI adversarial safety dataset | ~8,000 |
|
| 56 |
+
| [HackAPrompt](https://huggingface.co/datasets/hackaprompt/hackaprompt-dataset) | EMNLP'23 injection competition | ~5,000 |
|
| 57 |
| [JailbreakBench](https://huggingface.co/datasets/JailbreakBench/JBB-Behaviors) | Harmful behavior patterns | ~2,000 |
|
| 58 |
|
| 59 |
### Synthetic Attack Generators
|
|
|
|
| 62 |
|-----------|-------------|
|
| 63 |
| Adversarial | Intent-mismatch attacks (correct tool, wrong args) |
|
| 64 |
| Filesystem | File/directory operation attacks |
|
| 65 |
+
| Network | Network/API exfiltration attacks |
|
| 66 |
+
| Email | Email tool hijacking |
|
| 67 |
+
| Financial | Transaction manipulation |
|
| 68 |
| Code Execution | Code injection attacks |
|
| 69 |
+
| Authentication | Access control bypass |
|
| 70 |
+
| MCP Attacks | Tool poisoning, shadowing, rug pulls |
|
| 71 |
|
| 72 |
+
---
|
| 73 |
+
|
| 74 |
+
## 🚨 Attack Categories Covered
|
| 75 |
|
| 76 |
| Category | Source | Description |
|
| 77 |
|----------|--------|-------------|
|
| 78 |
+
| Delimiter Injection | LLMail | `<<end_context>>`, `>>}}\]\])` |
|
| 79 |
| Word Obfuscation | LLMail | Inserting noise words between tokens |
|
| 80 |
| Fake Sessions | LLMail | `START_USER_SESSION`, `EXECUTE_USERQUERY` |
|
| 81 |
| Roleplay Injection | WildJailbreak | "You are an admin bot that can..." |
|
| 82 |
| XML Tag Injection | WildJailbreak | `<execute_action>`, `<tool_call>` |
|
| 83 |
| Authority Bypass | WildJailbreak | "As administrator, I authorize..." |
|
| 84 |
| Intent Mismatch | Synthetic | User asks X, tool does Y |
|
| 85 |
+
| MCP Tool Poisoning | Synthetic | Hidden exfiltration in tool args |
|
| 86 |
+
| MCP Shadowing | Synthetic | Fake authorization context |
|
| 87 |
+
|
| 88 |
+
---
|
| 89 |
|
| 90 |
+
## 💻 Usage
|
| 91 |
|
| 92 |
```python
|
| 93 |
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
|
|
|
| 98 |
model = AutoModelForTokenClassification.from_pretrained(model_name)
|
| 99 |
|
| 100 |
# Example: Verify a tool call
|
|
|
|
| 101 |
user_intent = "Summarize my emails"
|
| 102 |
+
tool_call = '{"name": "send_email", "arguments": {"to": "[email protected]", "body": "stolen data"}}'
|
| 103 |
|
| 104 |
# Combine for classification
|
| 105 |
input_text = f"[USER] {user_intent} [TOOL] {tool_call}"
|
|
|
|
| 109 |
outputs = model(**inputs)
|
| 110 |
predictions = torch.argmax(outputs.logits, dim=-1)
|
| 111 |
|
| 112 |
+
id2label = {0: "AUTHORIZED", 1: "UNAUTHORIZED"}
|
| 113 |
+
tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
|
| 114 |
labels = [id2label[p.item()] for p in predictions[0]]
|
| 115 |
|
| 116 |
+
# Check for unauthorized tokens
|
| 117 |
+
unauthorized_tokens = [(t, l) for t, l in zip(tokens, labels) if l == "UNAUTHORIZED"]
|
| 118 |
+
if unauthorized_tokens:
|
| 119 |
print("⚠️ BLOCKED: Unauthorized tool call detected!")
|
| 120 |
+
print(f" Flagged tokens: {[t for t, _ in unauthorized_tokens[:5]]}")
|
| 121 |
else:
|
| 122 |
print("✅ Tool call authorized")
|
| 123 |
```
|
| 124 |
|
| 125 |
+
---
|
| 126 |
+
|
| 127 |
+
## ⚙️ Training Configuration
|
| 128 |
|
| 129 |
| Parameter | Value |
|
| 130 |
|-----------|-------|
|
| 131 |
+
| Base Model | `answerdotai/ModernBERT-base` |
|
| 132 |
+
| Max Length | 512 tokens |
|
| 133 |
+
| Batch Size | 32 |
|
| 134 |
+
| Epochs | 5 |
|
| 135 |
+
| Learning Rate | 3e-5 |
|
| 136 |
| Loss | CrossEntropyLoss (class-weighted) |
|
| 137 |
+
| Class Weights | `[0.5, 3.0]` (AUTHORIZED, UNAUTHORIZED) |
|
| 138 |
+
| Attention | SDPA (Flash Attention) |
|
| 139 |
+
| Hardware | AMD Instinct MI300X (ROCm) |
|
| 140 |
+
|
| 141 |
+
---
|
| 142 |
|
| 143 |
+
## 🔗 Integration with FunctionCallSentinel
|
| 144 |
|
| 145 |
This model is **Stage 2** of a two-stage defense pipeline:
|
| 146 |
|
| 147 |
+
```
|
| 148 |
+
┌─────────────────┐ ┌──────────────────────┐ ┌─────────────────┐
|
| 149 |
+
│ User Prompt │────▶│ FunctionCallSentinel │────▶│ LLM + Tools │
|
| 150 |
+
│ │ │ (Stage 1) │ │ │
|
| 151 |
+
└─────────────────┘ └──────────────────────┘ └────────┬────────┘
|
| 152 |
+
│
|
| 153 |
+
┌──────────────────────────────▼──────────────────────────┐
|
| 154 |
+
│ ToolCallVerifier (This Model) │
|
| 155 |
+
│ Token-level verification before tool execution │
|
| 156 |
+
└─────────────────────────────────────────────────────────┘
|
| 157 |
+
```
|
| 158 |
|
| 159 |
| Scenario | Recommendation |
|
| 160 |
|----------|----------------|
|
| 161 |
| General chatbot | Stage 1 only |
|
| 162 |
| Tool-calling agent (low risk) | Stage 1 only |
|
| 163 |
+
| Tool-calling agent (high risk) | **Both stages** |
|
| 164 |
+
| Email/file system access | **Both stages** |
|
| 165 |
+
| Financial transactions | **Both stages** |
|
| 166 |
+
|
| 167 |
+
---
|
| 168 |
|
| 169 |
+
## 🎯 Intended Use
|
| 170 |
|
| 171 |
### Primary Use Cases
|
| 172 |
- **LLM Agent Security**: Verify tool calls before execution
|
|
|
|
| 178 |
- Non-tool-calling scenarios
|
| 179 |
- Languages other than English
|
| 180 |
|
| 181 |
+
---
|
| 182 |
+
|
| 183 |
+
## ⚠️ Limitations
|
| 184 |
|
| 185 |
+
1. **Tool schema dependent** — Best performance when tool schema is included in input
|
| 186 |
+
2. **English only** — Not tested on other languages
|
| 187 |
+
3. **Binary classification** — No "suspicious" intermediate category (by design, for decisiveness)
|
| 188 |
+
|
| 189 |
+
---
|
| 190 |
|
| 191 |
+
## 📜 License
|
| 192 |
|
| 193 |
Apache 2.0
|
| 194 |
|
| 195 |
+
---
|
| 196 |
+
|
| 197 |
+
## 🔗 Links
|
| 198 |
+
|
| 199 |
+
- **Stage 1 Model**: [rootfs/function-call-sentinel](https://huggingface.co/rootfs/function-call-sentinel)
|
| 200 |
+
|
best_metrics.json
CHANGED
|
@@ -1,42 +1,36 @@
|
|
| 1 |
{
|
| 2 |
"classification_report": {
|
| 3 |
"AUTHORIZED": {
|
| 4 |
-
"precision": 0.
|
| 5 |
-
"recall": 0.
|
| 6 |
-
"f1-score": 0.
|
| 7 |
-
"support":
|
| 8 |
-
},
|
| 9 |
-
"SUSPICIOUS": {
|
| 10 |
-
"precision": 0.0,
|
| 11 |
-
"recall": 0.0,
|
| 12 |
-
"f1-score": 0.0,
|
| 13 |
-
"support": 0.0
|
| 14 |
},
|
| 15 |
"UNAUTHORIZED": {
|
| 16 |
-
"precision": 0.
|
| 17 |
-
"recall": 0.
|
| 18 |
-
"f1-score": 0.
|
| 19 |
-
"support":
|
| 20 |
},
|
| 21 |
-
"accuracy": 0.
|
| 22 |
"macro avg": {
|
| 23 |
-
"precision": 0.
|
| 24 |
-
"recall": 0.
|
| 25 |
-
"f1-score": 0.
|
| 26 |
-
"support":
|
| 27 |
},
|
| 28 |
"weighted avg": {
|
| 29 |
-
"precision": 0.
|
| 30 |
-
"recall": 0.
|
| 31 |
-
"f1-score": 0.
|
| 32 |
-
"support":
|
| 33 |
}
|
| 34 |
},
|
| 35 |
-
"accuracy": 0.
|
| 36 |
-
"macro_f1": 0.
|
| 37 |
-
"weighted_f1": 0.
|
| 38 |
-
"unauthorized_avg_f1": 0.
|
| 39 |
-
"unauthorized_precision": 0.
|
| 40 |
-
"unauthorized_recall": 0.
|
| 41 |
-
"unauthorized_f1": 0.
|
| 42 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"classification_report": {
|
| 3 |
"AUTHORIZED": {
|
| 4 |
+
"precision": 0.9037877897531266,
|
| 5 |
+
"recall": 0.9392273925756695,
|
| 6 |
+
"f1-score": 0.9211668545659526,
|
| 7 |
+
"support": 139191.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
},
|
| 9 |
"UNAUTHORIZED": {
|
| 10 |
+
"precision": 0.950093511979563,
|
| 11 |
+
"recall": 0.9204538309851105,
|
| 12 |
+
"f1-score": 0.9350388443092216,
|
| 13 |
+
"support": 174955.0
|
| 14 |
},
|
| 15 |
+
"accuracy": 0.9287719722676717,
|
| 16 |
"macro avg": {
|
| 17 |
+
"precision": 0.9269406508663448,
|
| 18 |
+
"recall": 0.9298406117803899,
|
| 19 |
+
"f1-score": 0.9281028494375871,
|
| 20 |
+
"support": 314146.0
|
| 21 |
},
|
| 22 |
"weighted avg": {
|
| 23 |
+
"precision": 0.9295764919238567,
|
| 24 |
+
"recall": 0.9287719722676717,
|
| 25 |
+
"f1-score": 0.9288924788474447,
|
| 26 |
+
"support": 314146.0
|
| 27 |
}
|
| 28 |
},
|
| 29 |
+
"accuracy": 0.9287719722676717,
|
| 30 |
+
"macro_f1": 0.9281028494375871,
|
| 31 |
+
"weighted_f1": 0.9288924788474447,
|
| 32 |
+
"unauthorized_avg_f1": 0.9350388443092216,
|
| 33 |
+
"unauthorized_precision": 0.950093511979563,
|
| 34 |
+
"unauthorized_recall": 0.9204538309851105,
|
| 35 |
+
"unauthorized_f1": 0.9350388443092216
|
| 36 |
}
|
config.json
CHANGED
|
@@ -22,16 +22,14 @@
|
|
| 22 |
"hidden_size": 768,
|
| 23 |
"id2label": {
|
| 24 |
"0": "AUTHORIZED",
|
| 25 |
-
"1": "
|
| 26 |
-
"2": "UNAUTHORIZED"
|
| 27 |
},
|
| 28 |
"initializer_cutoff_factor": 2.0,
|
| 29 |
"initializer_range": 0.02,
|
| 30 |
"intermediate_size": 1152,
|
| 31 |
"label2id": {
|
| 32 |
"AUTHORIZED": 0,
|
| 33 |
-
"
|
| 34 |
-
"UNAUTHORIZED": 2
|
| 35 |
},
|
| 36 |
"layer_norm_eps": 1e-05,
|
| 37 |
"local_attention": 128,
|
|
@@ -51,6 +49,5 @@
|
|
| 51 |
"sparse_pred_ignore_index": -100,
|
| 52 |
"sparse_prediction": false,
|
| 53 |
"transformers_version": "4.57.3",
|
| 54 |
-
"vocab_size": 50368
|
| 55 |
-
|
| 56 |
-
}
|
|
|
|
| 22 |
"hidden_size": 768,
|
| 23 |
"id2label": {
|
| 24 |
"0": "AUTHORIZED",
|
| 25 |
+
"1": "UNAUTHORIZED"
|
|
|
|
| 26 |
},
|
| 27 |
"initializer_cutoff_factor": 2.0,
|
| 28 |
"initializer_range": 0.02,
|
| 29 |
"intermediate_size": 1152,
|
| 30 |
"label2id": {
|
| 31 |
"AUTHORIZED": 0,
|
| 32 |
+
"UNAUTHORIZED": 1
|
|
|
|
| 33 |
},
|
| 34 |
"layer_norm_eps": 1e-05,
|
| 35 |
"local_attention": 128,
|
|
|
|
| 49 |
"sparse_pred_ignore_index": -100,
|
| 50 |
"sparse_prediction": false,
|
| 51 |
"transformers_version": "4.57.3",
|
| 52 |
+
"vocab_size": 50368
|
| 53 |
+
}
|
|
|
final_report.json
CHANGED
|
@@ -1,8 +1,8 @@
|
|
| 1 |
{
|
| 2 |
-
"accuracy": 0.
|
| 3 |
-
"unauthorized_precision": 0.
|
| 4 |
-
"unauthorized_recall": 0.
|
| 5 |
-
"unauthorized_f1": 0.
|
| 6 |
-
"unauthorized_avg_f1": 0.
|
| 7 |
-
"macro_f1": 0.
|
| 8 |
}
|
|
|
|
| 1 |
{
|
| 2 |
+
"accuracy": 0.9287719722676717,
|
| 3 |
+
"unauthorized_precision": 0.950093511979563,
|
| 4 |
+
"unauthorized_recall": 0.9204538309851105,
|
| 5 |
+
"unauthorized_f1": 0.9350388443092216,
|
| 6 |
+
"unauthorized_avg_f1": 0.9350388443092216,
|
| 7 |
+
"macro_f1": 0.9281028494375871
|
| 8 |
}
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:992a572e923cbb0b336b5ced300c43badc4e91934a32d5bd6dd66c8017e9d75b
|
| 3 |
+
size 598439784
|
training_config.json
CHANGED
|
@@ -1,30 +1,26 @@
|
|
| 1 |
{
|
| 2 |
"model_name": "answerdotai/ModernBERT-base",
|
| 3 |
-
"num_labels":
|
| 4 |
"label2id": {
|
| 5 |
"AUTHORIZED": 0,
|
| 6 |
-
"
|
| 7 |
-
"UNAUTHORIZED": 2
|
| 8 |
},
|
| 9 |
"id2label": {
|
| 10 |
"0": "AUTHORIZED",
|
| 11 |
-
"1": "
|
| 12 |
-
"2": "UNAUTHORIZED"
|
| 13 |
},
|
| 14 |
"severity": {
|
| 15 |
"AUTHORIZED": 0,
|
| 16 |
-
"SUSPICIOUS": 2,
|
| 17 |
"UNAUTHORIZED": 4
|
| 18 |
},
|
| 19 |
"loss": "CrossEntropyLoss (class-weighted)",
|
| 20 |
"class_weights": [
|
| 21 |
0.5,
|
| 22 |
-
2.0,
|
| 23 |
3.0
|
| 24 |
],
|
| 25 |
"optimization_target": "unauthorized_f1",
|
| 26 |
-
"batch_size":
|
| 27 |
-
"epochs":
|
| 28 |
-
"learning_rate":
|
| 29 |
-
"max_length":
|
| 30 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"model_name": "answerdotai/ModernBERT-base",
|
| 3 |
+
"num_labels": 2,
|
| 4 |
"label2id": {
|
| 5 |
"AUTHORIZED": 0,
|
| 6 |
+
"UNAUTHORIZED": 1
|
|
|
|
| 7 |
},
|
| 8 |
"id2label": {
|
| 9 |
"0": "AUTHORIZED",
|
| 10 |
+
"1": "UNAUTHORIZED"
|
|
|
|
| 11 |
},
|
| 12 |
"severity": {
|
| 13 |
"AUTHORIZED": 0,
|
|
|
|
| 14 |
"UNAUTHORIZED": 4
|
| 15 |
},
|
| 16 |
"loss": "CrossEntropyLoss (class-weighted)",
|
| 17 |
"class_weights": [
|
| 18 |
0.5,
|
|
|
|
| 19 |
3.0
|
| 20 |
],
|
| 21 |
"optimization_target": "unauthorized_f1",
|
| 22 |
+
"batch_size": 16,
|
| 23 |
+
"epochs": 5,
|
| 24 |
+
"learning_rate": 3e-05,
|
| 25 |
+
"max_length": 1024
|
| 26 |
}
|