|
|
#pragma once |
|
|
|
|
|
#include "common.h" |
|
|
#include "log.h" |
|
|
#include "llama.h" |
|
|
#include "arg.h" |
|
|
#include "base64.hpp" |
|
|
#include "mtmd.h" |
|
|
#include "mtmd-helper.h" |
|
|
#include "chat.h" |
|
|
|
|
|
|
|
|
#define CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 1048576 |
|
|
|
|
|
#define CPPHTTPLIB_TCP_NODELAY true |
|
|
#include <cpp-httplib/httplib.h> |
|
|
|
|
|
#define JSON_ASSERT GGML_ASSERT |
|
|
#include <nlohmann/json.hpp> |
|
|
|
|
|
#include <random> |
|
|
#include <sstream> |
|
|
#include <string> |
|
|
#include <vector> |
|
|
#include <memory> |
|
|
#include <cinttypes> |
|
|
|
|
|
#define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo" |
|
|
|
|
|
using json = nlohmann::ordered_json; |
|
|
|
|
|
#define SLT_INF(slot, fmt, ...) LOG_INF("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__) |
|
|
#define SLT_WRN(slot, fmt, ...) LOG_WRN("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__) |
|
|
#define SLT_ERR(slot, fmt, ...) LOG_ERR("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__) |
|
|
#define SLT_DBG(slot, fmt, ...) LOG_DBG("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__) |
|
|
|
|
|
#define SRV_INF(fmt, ...) LOG_INF("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__) |
|
|
#define SRV_WRN(fmt, ...) LOG_WRN("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__) |
|
|
#define SRV_ERR(fmt, ...) LOG_ERR("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__) |
|
|
#define SRV_DBG(fmt, ...) LOG_DBG("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__) |
|
|
|
|
|
#define QUE_INF(fmt, ...) LOG_INF("que %12.*s: " fmt, 12, __func__, __VA_ARGS__) |
|
|
#define QUE_WRN(fmt, ...) LOG_WRN("que %12.*s: " fmt, 12, __func__, __VA_ARGS__) |
|
|
#define QUE_ERR(fmt, ...) LOG_ERR("que %12.*s: " fmt, 12, __func__, __VA_ARGS__) |
|
|
#define QUE_DBG(fmt, ...) LOG_DBG("que %12.*s: " fmt, 12, __func__, __VA_ARGS__) |
|
|
|
|
|
using raw_buffer = std::vector<uint8_t>; |
|
|
|
|
|
template <typename T> |
|
|
static T json_value(const json & body, const std::string & key, const T & default_value) { |
|
|
|
|
|
if (body.contains(key) && !body.at(key).is_null()) { |
|
|
try { |
|
|
return body.at(key); |
|
|
} catch (NLOHMANN_JSON_NAMESPACE::detail::type_error const &) { |
|
|
LOG_WRN("Wrong type supplied for parameter '%s'. Expected '%s', using default value\n", key.c_str(), json(default_value).type_name()); |
|
|
return default_value; |
|
|
} |
|
|
} else { |
|
|
return default_value; |
|
|
} |
|
|
} |
|
|
|
|
|
const static std::string build_info("b" + std::to_string(LLAMA_BUILD_NUMBER) + "-" + LLAMA_COMMIT); |
|
|
|
|
|
|
|
|
struct server_grammar_trigger { |
|
|
common_grammar_trigger value; |
|
|
|
|
|
server_grammar_trigger() = default; |
|
|
server_grammar_trigger(const common_grammar_trigger & value) : value(value) {} |
|
|
server_grammar_trigger(const json & in) { |
|
|
value.type = (common_grammar_trigger_type) in.at("type").get<int>(); |
|
|
value.value = in.at("value").get<std::string>(); |
|
|
if (value.type == COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN) { |
|
|
value.token = (llama_token) in.at("token").get<int>(); |
|
|
} |
|
|
} |
|
|
|
|
|
json to_json() const { |
|
|
json out { |
|
|
{"type", (int) value.type}, |
|
|
{"value", value.value}, |
|
|
}; |
|
|
if (value.type == COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN) { |
|
|
out["token"] = (int) value.token; |
|
|
} |
|
|
return out; |
|
|
} |
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static bool json_is_array_of_numbers(const json & data) { |
|
|
if (data.is_array()) { |
|
|
for (const auto & e : data) { |
|
|
if (!e.is_number_integer()) { |
|
|
return false; |
|
|
} |
|
|
} |
|
|
return true; |
|
|
} |
|
|
return false; |
|
|
} |
|
|
|
|
|
|
|
|
static bool json_is_array_of_mixed_numbers_strings(const json & data) { |
|
|
bool seen_string = false; |
|
|
bool seen_number = false; |
|
|
if (data.is_array()) { |
|
|
for (const auto & e : data) { |
|
|
seen_string |= e.is_string(); |
|
|
seen_number |= e.is_number_integer(); |
|
|
if (seen_number && seen_string) { |
|
|
return true; |
|
|
} |
|
|
} |
|
|
} |
|
|
return false; |
|
|
} |
|
|
|
|
|
|
|
|
static json json_get_nested_values(const std::vector<std::string> & paths, const json & js) { |
|
|
json result = json::object(); |
|
|
|
|
|
for (const std::string & path : paths) { |
|
|
json current = js; |
|
|
const auto keys = string_split<std::string>(path, '/'); |
|
|
bool valid_path = true; |
|
|
for (const std::string & k : keys) { |
|
|
if (valid_path && current.is_object() && current.contains(k)) { |
|
|
current = current[k]; |
|
|
} else { |
|
|
valid_path = false; |
|
|
} |
|
|
} |
|
|
if (valid_path) { |
|
|
result[path] = current; |
|
|
} |
|
|
} |
|
|
return result; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static llama_tokens tokenize_mixed(const llama_vocab * vocab, const json & json_prompt, bool add_special, bool parse_special) { |
|
|
|
|
|
|
|
|
llama_tokens prompt_tokens; |
|
|
|
|
|
if (json_prompt.is_array()) { |
|
|
bool first = true; |
|
|
for (const auto & p : json_prompt) { |
|
|
if (p.is_string()) { |
|
|
auto s = p.template get<std::string>(); |
|
|
|
|
|
llama_tokens p; |
|
|
if (first) { |
|
|
p = common_tokenize(vocab, s, add_special, parse_special); |
|
|
first = false; |
|
|
} else { |
|
|
p = common_tokenize(vocab, s, false, parse_special); |
|
|
} |
|
|
|
|
|
prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end()); |
|
|
} else { |
|
|
if (first) { |
|
|
first = false; |
|
|
} |
|
|
|
|
|
prompt_tokens.push_back(p.template get<llama_token>()); |
|
|
} |
|
|
} |
|
|
} else { |
|
|
auto s = json_prompt.template get<std::string>(); |
|
|
prompt_tokens = common_tokenize(vocab, s, add_special, parse_special); |
|
|
} |
|
|
|
|
|
return prompt_tokens; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static std::vector<llama_tokens> tokenize_input_prompts(const llama_vocab * vocab, const json & json_prompt, bool add_special, bool parse_special) { |
|
|
std::vector<llama_tokens> result; |
|
|
if (json_prompt.is_string() || json_is_array_of_mixed_numbers_strings(json_prompt)) { |
|
|
|
|
|
result.push_back(tokenize_mixed(vocab, json_prompt, add_special, parse_special)); |
|
|
} else if (json_is_array_of_numbers(json_prompt)) { |
|
|
|
|
|
result.push_back(json_prompt.get<llama_tokens>()); |
|
|
} else if (json_prompt.is_array()) { |
|
|
|
|
|
result.reserve(json_prompt.size()); |
|
|
for (const auto & p : json_prompt) { |
|
|
if (p.is_string() || json_is_array_of_mixed_numbers_strings(p)) { |
|
|
result.push_back(tokenize_mixed(vocab, p, add_special, parse_special)); |
|
|
} else if (json_is_array_of_numbers(p)) { |
|
|
|
|
|
result.push_back(p.get<llama_tokens>()); |
|
|
} else { |
|
|
throw std::runtime_error("element of \"prompt\" must be a string, an list of tokens, or a list of mixed strings & tokens"); |
|
|
} |
|
|
} |
|
|
} else { |
|
|
throw std::runtime_error("\"prompt\" must be a string, an list of tokens, a list of mixed strings & tokens, or a list of prompts"); |
|
|
} |
|
|
if (result.empty()) { |
|
|
throw std::runtime_error("\"prompt\" must not be empty"); |
|
|
} |
|
|
return result; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static size_t validate_utf8(const std::string& text) { |
|
|
size_t len = text.size(); |
|
|
if (len == 0) return 0; |
|
|
|
|
|
|
|
|
for (size_t i = 1; i <= 4 && i <= len; ++i) { |
|
|
unsigned char c = text[len - i]; |
|
|
|
|
|
if ((c & 0xE0) == 0xC0) { |
|
|
|
|
|
|
|
|
if (i < 2) return len - i; |
|
|
} else if ((c & 0xF0) == 0xE0) { |
|
|
|
|
|
|
|
|
if (i < 3) return len - i; |
|
|
} else if ((c & 0xF8) == 0xF0) { |
|
|
|
|
|
|
|
|
if (i < 4) return len - i; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
return len; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static llama_tokens format_rerank(const struct llama_vocab * vocab, const llama_tokens & query, const llama_tokens & doc) { |
|
|
llama_tokens result; |
|
|
|
|
|
|
|
|
llama_token eos_token = llama_vocab_eos(vocab); |
|
|
if (eos_token == LLAMA_TOKEN_NULL) { |
|
|
eos_token = llama_vocab_sep(vocab); |
|
|
} |
|
|
|
|
|
result.reserve(doc.size() + query.size() + 4); |
|
|
result.push_back(llama_vocab_bos(vocab)); |
|
|
result.insert(result.end(), query.begin(), query.end()); |
|
|
result.push_back(eos_token); |
|
|
result.push_back(llama_vocab_sep(vocab)); |
|
|
result.insert(result.end(), doc.begin(), doc.end()); |
|
|
result.push_back(eos_token); |
|
|
|
|
|
return result; |
|
|
} |
|
|
|
|
|
|
|
|
static llama_tokens format_infill( |
|
|
const llama_vocab * vocab, |
|
|
const json & input_prefix, |
|
|
const json & input_suffix, |
|
|
const json & input_extra, |
|
|
const int n_batch, |
|
|
const int n_predict, |
|
|
const int n_ctx, |
|
|
const bool spm_infill, |
|
|
const llama_tokens & tokens_prompt |
|
|
) { |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
llama_tokens extra_tokens; |
|
|
extra_tokens.reserve(n_ctx); |
|
|
|
|
|
auto tokens_prefix = tokenize_mixed(vocab, input_prefix, false, false); |
|
|
auto tokens_suffix = tokenize_mixed(vocab, input_suffix, false, false); |
|
|
|
|
|
if (llama_vocab_fim_rep(vocab) != LLAMA_TOKEN_NULL) { |
|
|
|
|
|
static const auto k_fim_repo = common_tokenize(vocab, "myproject\n", false, false); |
|
|
|
|
|
extra_tokens.push_back(llama_vocab_fim_rep(vocab)); |
|
|
extra_tokens.insert(extra_tokens.end(), k_fim_repo.begin(), k_fim_repo.end()); |
|
|
} |
|
|
for (const auto & chunk : input_extra) { |
|
|
|
|
|
const std::string text = json_value(chunk, "text", std::string()); |
|
|
const std::string filename = json_value(chunk, "filename", std::string("tmp")); |
|
|
|
|
|
if (llama_vocab_fim_sep(vocab) != LLAMA_TOKEN_NULL) { |
|
|
const auto k_fim_file = common_tokenize(vocab, filename + "\n", false, false); |
|
|
|
|
|
extra_tokens.insert(extra_tokens.end(), llama_vocab_fim_sep(vocab)); |
|
|
extra_tokens.insert(extra_tokens.end(), k_fim_file.begin(), k_fim_file.end()); |
|
|
} else { |
|
|
|
|
|
static const char k_chunk_prefix_str[] = {0x0a, 0x0a, 0x2d, 0x2d, 0x2d, 0x20, 0x73, 0x6e, 0x69, 0x70, 0x70, 0x65, 0x74, 0x20, 0x2d, 0x2d, 0x2d, 0x0a, 0x0a, 0x00}; |
|
|
static const auto k_chunk_prefix_tokens = common_tokenize(vocab, k_chunk_prefix_str, false, false); |
|
|
|
|
|
extra_tokens.insert(extra_tokens.end(), k_chunk_prefix_tokens.begin(), k_chunk_prefix_tokens.end()); |
|
|
} |
|
|
|
|
|
const auto chunk_tokens = common_tokenize(vocab, text, false, false); |
|
|
extra_tokens.insert(extra_tokens.end(), chunk_tokens.begin(), chunk_tokens.end()); |
|
|
} |
|
|
|
|
|
if (llama_vocab_fim_sep(vocab) != LLAMA_TOKEN_NULL) { |
|
|
|
|
|
static const auto k_fim_file = common_tokenize(vocab, "filename\n", false, false); |
|
|
|
|
|
extra_tokens.insert(extra_tokens.end(), llama_vocab_fim_sep(vocab)); |
|
|
extra_tokens.insert(extra_tokens.end(), k_fim_file.begin(), k_fim_file.end()); |
|
|
} |
|
|
|
|
|
|
|
|
const int n_prefix_take = std::min<int>(tokens_prefix.size(), 3*(n_batch/4)); |
|
|
const int n_suffix_take = std::min<int>(tokens_suffix.size(), std::max<int>(0, (n_batch/4) - (2 + tokens_prompt.size()))); |
|
|
|
|
|
SRV_DBG("n_prefix_take = %d, n_suffix_take = %d, total = %d\n", n_prefix_take, n_suffix_take, (n_prefix_take + n_suffix_take)); |
|
|
|
|
|
|
|
|
const int n_extra_take = std::min<int>(std::max<int>(0, n_ctx - (n_batch) - 2*n_predict), extra_tokens.size()); |
|
|
|
|
|
tokens_prefix.erase(tokens_prefix.begin(), tokens_prefix.begin() + tokens_prefix.size() - n_prefix_take); |
|
|
tokens_suffix.resize(n_suffix_take); |
|
|
|
|
|
tokens_prefix.insert(tokens_prefix.begin(), llama_vocab_fim_pre(vocab)); |
|
|
tokens_prefix.insert(tokens_prefix.end(), tokens_prompt.begin(), tokens_prompt.end()); |
|
|
tokens_suffix.insert(tokens_suffix.begin(), llama_vocab_fim_suf(vocab)); |
|
|
|
|
|
auto embd_inp = spm_infill ? tokens_suffix : tokens_prefix; |
|
|
auto embd_end = spm_infill ? tokens_prefix : tokens_suffix; |
|
|
|
|
|
if (llama_vocab_get_add_bos(vocab)) { |
|
|
embd_inp.insert(embd_inp.begin(), llama_vocab_bos(vocab)); |
|
|
} |
|
|
|
|
|
SRV_DBG("extra: n_ctx = %d, n_extra_take = %d, n_extra = %d\n", n_ctx, n_extra_take, (int) extra_tokens.size()); |
|
|
|
|
|
|
|
|
embd_inp.insert(embd_inp.begin(), extra_tokens.end() - n_extra_take, extra_tokens.end()); |
|
|
|
|
|
embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end()); |
|
|
embd_inp.push_back(llama_vocab_fim_mid(vocab)); |
|
|
|
|
|
return embd_inp; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static const std::string base64_chars = |
|
|
"ABCDEFGHIJKLMNOPQRSTUVWXYZ" |
|
|
"abcdefghijklmnopqrstuvwxyz" |
|
|
"0123456789+/"; |
|
|
|
|
|
static inline bool is_base64(uint8_t c) { |
|
|
return (isalnum(c) || (c == '+') || (c == '/')); |
|
|
} |
|
|
|
|
|
static inline raw_buffer base64_decode(const std::string & encoded_string) { |
|
|
int i = 0; |
|
|
int j = 0; |
|
|
int in_ = 0; |
|
|
|
|
|
int in_len = encoded_string.size(); |
|
|
|
|
|
uint8_t char_array_4[4]; |
|
|
uint8_t char_array_3[3]; |
|
|
|
|
|
raw_buffer ret; |
|
|
|
|
|
while (in_len-- && (encoded_string[in_] != '=') && is_base64(encoded_string[in_])) { |
|
|
char_array_4[i++] = encoded_string[in_]; in_++; |
|
|
if (i == 4) { |
|
|
for (i = 0; i < 4; i++) { |
|
|
char_array_4[i] = base64_chars.find(char_array_4[i]); |
|
|
} |
|
|
|
|
|
char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4); |
|
|
char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2); |
|
|
char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3]; |
|
|
|
|
|
for (i = 0; (i < 3); i++) { |
|
|
ret.push_back(char_array_3[i]); |
|
|
} |
|
|
|
|
|
i = 0; |
|
|
} |
|
|
} |
|
|
|
|
|
if (i) { |
|
|
for (j = i; j < 4; j++) { |
|
|
char_array_4[j] = 0; |
|
|
} |
|
|
|
|
|
for (j = 0; j < 4; j++) { |
|
|
char_array_4[j] = base64_chars.find(char_array_4[j]); |
|
|
} |
|
|
|
|
|
char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4); |
|
|
char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2); |
|
|
char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3]; |
|
|
|
|
|
for (j = 0; j < i - 1; j++) { |
|
|
ret.push_back(char_array_3[j]); |
|
|
} |
|
|
} |
|
|
|
|
|
return ret; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static std::string random_string() { |
|
|
static const std::string str("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"); |
|
|
|
|
|
std::random_device rd; |
|
|
std::mt19937 generator(rd()); |
|
|
|
|
|
std::string result(32, ' '); |
|
|
|
|
|
for (int i = 0; i < 32; ++i) { |
|
|
result[i] = str[generator() % str.size()]; |
|
|
} |
|
|
|
|
|
return result; |
|
|
} |
|
|
|
|
|
static std::string gen_chatcmplid() { |
|
|
return "chatcmpl-" + random_string(); |
|
|
} |
|
|
|
|
|
static std::string gen_tool_call_id() { |
|
|
return random_string(); |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template <class Iter> |
|
|
static std::string tokens_to_str(llama_context * ctx, Iter begin, Iter end) { |
|
|
std::string ret; |
|
|
for (; begin != end; ++begin) { |
|
|
ret += common_token_to_piece(ctx, *begin); |
|
|
} |
|
|
|
|
|
return ret; |
|
|
} |
|
|
|
|
|
|
|
|
static std::string tokens_to_output_formatted_string(const llama_context * ctx, const llama_token token) { |
|
|
std::string out = token == LLAMA_TOKEN_NULL ? "" : common_token_to_piece(ctx, token); |
|
|
|
|
|
|
|
|
|
|
|
if (out.size() == 1 && (out[0] & 0x80) == 0x80) { |
|
|
std::stringstream ss; |
|
|
ss << std::hex << (out[0] & 0xff); |
|
|
std::string res(ss.str()); |
|
|
out = "byte: \\x" + res; |
|
|
} |
|
|
|
|
|
return out; |
|
|
} |
|
|
|
|
|
static bool server_sent_event(httplib::DataSink & sink, const char * event, const json & data) { |
|
|
const std::string str = |
|
|
std::string(event) + ": " + |
|
|
data.dump(-1, ' ', false, json::error_handler_t::replace) + |
|
|
"\n\n"; |
|
|
|
|
|
LOG_DBG("data stream, to_send: %s", str.c_str()); |
|
|
|
|
|
return sink.write(str.c_str(), str.size()); |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static json oaicompat_completion_params_parse(const json & body) { |
|
|
json llama_params; |
|
|
|
|
|
if (!body.contains("prompt")) { |
|
|
throw std::runtime_error("\"prompt\" is required"); |
|
|
} |
|
|
|
|
|
|
|
|
if (body.contains("stop") && body.at("stop").is_string()) { |
|
|
llama_params["stop"] = json::array({body.at("stop").get<std::string>()}); |
|
|
} else { |
|
|
llama_params["stop"] = json_value(body, "stop", json::array()); |
|
|
} |
|
|
|
|
|
|
|
|
int n_choices = json_value(body, "n", 1); |
|
|
if (n_choices != 1) { |
|
|
throw std::runtime_error("Only one completion choice is allowed"); |
|
|
} |
|
|
|
|
|
|
|
|
if (json_value(body, "echo", false)) { |
|
|
throw std::runtime_error("Only no echo is supported"); |
|
|
} |
|
|
|
|
|
|
|
|
static const std::vector<std::string> unsupported_params { "best_of", "suffix" }; |
|
|
for (const auto & param : unsupported_params) { |
|
|
if (body.contains(param)) { |
|
|
throw std::runtime_error("Unsupported param: " + param); |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
for (const auto & item : body.items()) { |
|
|
|
|
|
if (!llama_params.contains(item.key()) || item.key() == "n_predict") { |
|
|
llama_params[item.key()] = item.value(); |
|
|
} |
|
|
} |
|
|
|
|
|
return llama_params; |
|
|
} |
|
|
|
|
|
struct oaicompat_parser_options { |
|
|
bool use_jinja; |
|
|
bool prefill_assistant; |
|
|
common_reasoning_format reasoning_format; |
|
|
common_chat_templates * tmpls; |
|
|
bool allow_image; |
|
|
bool allow_audio; |
|
|
bool enable_thinking = true; |
|
|
}; |
|
|
|
|
|
|
|
|
static json oaicompat_chat_params_parse( |
|
|
json & body, |
|
|
const oaicompat_parser_options & opt, |
|
|
std::vector<raw_buffer> & out_files) |
|
|
{ |
|
|
json llama_params; |
|
|
|
|
|
auto tools = json_value(body, "tools", json()); |
|
|
auto has_tools = tools.is_array() && !tools.empty(); |
|
|
auto stream = json_value(body, "stream", false); |
|
|
auto tool_choice = json_value(body, "tool_choice", std::string("auto")); |
|
|
|
|
|
if (!opt.use_jinja) { |
|
|
if (has_tools) { |
|
|
throw std::runtime_error("tools param requires --jinja flag"); |
|
|
} |
|
|
if (tool_choice != "auto") { |
|
|
throw std::runtime_error("tool_choice param requires --jinja flag"); |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
if (body.contains("stop") && body.at("stop").is_string()) { |
|
|
llama_params["stop"] = json::array({body.at("stop").get<std::string>()}); |
|
|
} else { |
|
|
llama_params["stop"] = json_value(body, "stop", json::array()); |
|
|
} |
|
|
|
|
|
auto json_schema = json_value(body, "json_schema", json()); |
|
|
auto grammar = json_value(body, "grammar", std::string()); |
|
|
if (!json_schema.is_null() && !grammar.empty()) { |
|
|
throw std::runtime_error("Cannot use both json_schema and grammar"); |
|
|
} |
|
|
|
|
|
|
|
|
if (body.contains("response_format")) { |
|
|
json response_format = json_value(body, "response_format", json::object()); |
|
|
std::string response_type = json_value(response_format, "type", std::string()); |
|
|
if (response_type == "json_object") { |
|
|
json_schema = json_value(response_format, "schema", json::object()); |
|
|
} else if (response_type == "json_schema") { |
|
|
auto schema_wrapper = json_value(response_format, "json_schema", json::object()); |
|
|
json_schema = json_value(schema_wrapper, "schema", json::object()); |
|
|
} else if (!response_type.empty() && response_type != "text") { |
|
|
throw std::runtime_error("response_format type must be one of \"text\" or \"json_object\", but got: " + response_type); |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
if (!body.contains("messages")) { |
|
|
throw std::runtime_error("'messages' is required"); |
|
|
} |
|
|
json & messages = body.at("messages"); |
|
|
if (!messages.is_array()) { |
|
|
throw std::runtime_error("Expected 'messages' to be an array"); |
|
|
} |
|
|
for (auto & msg : messages) { |
|
|
std::string role = json_value(msg, "role", std::string()); |
|
|
if (role != "assistant" && !msg.contains("content")) { |
|
|
throw std::runtime_error("All non-assistant messages must contain 'content'"); |
|
|
} |
|
|
if (role == "assistant") { |
|
|
if (!msg.contains("content") && !msg.contains("tool_calls")) { |
|
|
throw std::runtime_error("Assistant message must contain either 'content' or 'tool_calls'!"); |
|
|
} |
|
|
if (!msg.contains("content")) { |
|
|
continue; |
|
|
} |
|
|
} |
|
|
json & content = msg.at("content"); |
|
|
if (content.is_string() || content.is_null()) { |
|
|
continue; |
|
|
} |
|
|
|
|
|
if (!content.is_array()) { |
|
|
throw std::runtime_error("Expected 'content' to be a string or an array"); |
|
|
} |
|
|
|
|
|
for (auto & p : content) { |
|
|
std::string type = json_value(p, "type", std::string()); |
|
|
if (type == "image_url") { |
|
|
if (!opt.allow_image) { |
|
|
throw std::runtime_error("image input is not supported - hint: if this is unexpected, you may need to provide the mmproj"); |
|
|
} |
|
|
|
|
|
json image_url = json_value(p, "image_url", json::object()); |
|
|
std::string url = json_value(image_url, "url", std::string()); |
|
|
if (string_starts_with(url, "http")) { |
|
|
|
|
|
|
|
|
common_remote_params params; |
|
|
params.headers.push_back("User-Agent: llama.cpp/" + build_info); |
|
|
params.max_size = 1024 * 1024 * 10; |
|
|
params.timeout = 10; |
|
|
SRV_INF("downloading image from '%s'\n", url.c_str()); |
|
|
auto res = common_remote_get_content(url, params); |
|
|
if (200 <= res.first && res.first < 300) { |
|
|
SRV_INF("downloaded %ld bytes\n", res.second.size()); |
|
|
raw_buffer data; |
|
|
data.insert(data.end(), res.second.begin(), res.second.end()); |
|
|
out_files.push_back(data); |
|
|
} else { |
|
|
throw std::runtime_error("Failed to download image"); |
|
|
} |
|
|
|
|
|
} else { |
|
|
|
|
|
std::vector<std::string> parts = string_split<std::string>(url, ','); |
|
|
if (parts.size() != 2) { |
|
|
throw std::runtime_error("Invalid image_url.url value"); |
|
|
} else if (!string_starts_with(parts[0], "data:image/")) { |
|
|
throw std::runtime_error("Invalid image_url.url format: " + parts[0]); |
|
|
} else if (!string_ends_with(parts[0], "base64")) { |
|
|
throw std::runtime_error("image_url.url must be base64 encoded"); |
|
|
} else { |
|
|
auto base64_data = parts[1]; |
|
|
auto decoded_data = base64_decode(base64_data); |
|
|
out_files.push_back(decoded_data); |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
p["type"] = "text"; |
|
|
p["text"] = mtmd_default_marker(); |
|
|
p.erase("image_url"); |
|
|
|
|
|
} else if (type == "input_audio") { |
|
|
if (!opt.allow_audio) { |
|
|
throw std::runtime_error("audio input is not supported - hint: if this is unexpected, you may need to provide the mmproj"); |
|
|
} |
|
|
|
|
|
json input_audio = json_value(p, "input_audio", json::object()); |
|
|
std::string data = json_value(input_audio, "data", std::string()); |
|
|
std::string format = json_value(input_audio, "format", std::string()); |
|
|
|
|
|
if (format != "wav" && format != "mp3") { |
|
|
throw std::runtime_error("input_audio.format must be either 'wav' or 'mp3'"); |
|
|
} |
|
|
auto decoded_data = base64_decode(data); |
|
|
out_files.push_back(decoded_data); |
|
|
|
|
|
|
|
|
p["type"] = "text"; |
|
|
p["text"] = mtmd_default_marker(); |
|
|
p.erase("input_audio"); |
|
|
|
|
|
} else if (type != "text") { |
|
|
throw std::runtime_error("unsupported content[].type"); |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
common_chat_templates_inputs inputs; |
|
|
inputs.messages = common_chat_msgs_parse_oaicompat(messages); |
|
|
inputs.tools = common_chat_tools_parse_oaicompat(tools); |
|
|
inputs.tool_choice = common_chat_tool_choice_parse_oaicompat(tool_choice); |
|
|
inputs.json_schema = json_schema.is_null() ? "" : json_schema.dump(); |
|
|
inputs.grammar = grammar; |
|
|
inputs.use_jinja = opt.use_jinja; |
|
|
inputs.parallel_tool_calls = json_value(body, "parallel_tool_calls", false); |
|
|
inputs.add_generation_prompt = json_value(body, "add_generation_prompt", true); |
|
|
inputs.reasoning_format = opt.reasoning_format; |
|
|
inputs.enable_thinking = opt.enable_thinking; |
|
|
if (!inputs.tools.empty() && inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_NONE) { |
|
|
if (body.contains("grammar")) { |
|
|
throw std::runtime_error("Cannot use custom grammar constraints with tools."); |
|
|
} |
|
|
llama_params["parse_tool_calls"] = true; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
bool prefill_assistant_message = !inputs.messages.empty() && inputs.messages.back().role == "assistant" && opt.prefill_assistant; |
|
|
common_chat_msg last_message; |
|
|
if (prefill_assistant_message) { |
|
|
last_message = inputs.messages.back(); |
|
|
inputs.messages.pop_back(); |
|
|
|
|
|
|
|
|
if (!inputs.messages.empty() && inputs.messages.back().role == "assistant"){ |
|
|
throw std::runtime_error("Cannot have 2 or more assistant messages at the end of the list."); |
|
|
} |
|
|
|
|
|
|
|
|
inputs.reasoning_format = COMMON_REASONING_FORMAT_NONE; |
|
|
inputs.add_generation_prompt = true; |
|
|
} |
|
|
|
|
|
|
|
|
auto chat_params = common_chat_templates_apply(opt.tmpls, inputs); |
|
|
|
|
|
|
|
|
if (prefill_assistant_message) { |
|
|
chat_params.prompt += last_message.content; |
|
|
} |
|
|
|
|
|
llama_params["chat_format"] = static_cast<int>(chat_params.format); |
|
|
llama_params["prompt"] = chat_params.prompt; |
|
|
if (!chat_params.grammar.empty()) { |
|
|
llama_params["grammar"] = chat_params.grammar; |
|
|
} |
|
|
llama_params["grammar_lazy"] = chat_params.grammar_lazy; |
|
|
auto grammar_triggers = json::array(); |
|
|
for (const auto & trigger : chat_params.grammar_triggers) { |
|
|
server_grammar_trigger ct(trigger); |
|
|
grammar_triggers.push_back(ct.to_json()); |
|
|
} |
|
|
llama_params["grammar_triggers"] = grammar_triggers; |
|
|
llama_params["preserved_tokens"] = chat_params.preserved_tokens; |
|
|
llama_params["thinking_forced_open"] = chat_params.thinking_forced_open; |
|
|
for (const auto & stop : chat_params.additional_stops) { |
|
|
llama_params["stop"].push_back(stop); |
|
|
} |
|
|
|
|
|
|
|
|
int n_choices = json_value(body, "n", 1); |
|
|
if (n_choices != 1) { |
|
|
throw std::runtime_error("Only one completion choice is allowed"); |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
if (json_value(body, "logprobs", false)) { |
|
|
if (has_tools && stream) { |
|
|
throw std::runtime_error("logprobs is not supported with tools + stream"); |
|
|
} |
|
|
llama_params["n_probs"] = json_value(body, "top_logprobs", 20); |
|
|
} else if (body.contains("top_logprobs") && !body.at("top_logprobs").is_null()) { |
|
|
throw std::runtime_error("top_logprobs requires logprobs to be set to true"); |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for (const auto & item : body.items()) { |
|
|
|
|
|
if (!llama_params.contains(item.key()) || item.key() == "n_predict") { |
|
|
llama_params[item.key()] = item.value(); |
|
|
} |
|
|
} |
|
|
|
|
|
return llama_params; |
|
|
} |
|
|
|
|
|
static json format_embeddings_response_oaicompat(const json & request, const json & embeddings, bool use_base64 = false) { |
|
|
json data = json::array(); |
|
|
int32_t n_tokens = 0; |
|
|
int i = 0; |
|
|
for (const auto & elem : embeddings) { |
|
|
json embedding_obj; |
|
|
|
|
|
if (use_base64) { |
|
|
const auto& vec = json_value(elem, "embedding", json::array()).get<std::vector<float>>(); |
|
|
const char* data_ptr = reinterpret_cast<const char*>(vec.data()); |
|
|
size_t data_size = vec.size() * sizeof(float); |
|
|
embedding_obj = { |
|
|
{"embedding", base64::encode(data_ptr, data_size)}, |
|
|
{"index", i++}, |
|
|
{"object", "embedding"}, |
|
|
{"encoding_format", "base64"} |
|
|
}; |
|
|
} else { |
|
|
embedding_obj = { |
|
|
{"embedding", json_value(elem, "embedding", json::array())}, |
|
|
{"index", i++}, |
|
|
{"object", "embedding"} |
|
|
}; |
|
|
} |
|
|
data.push_back(embedding_obj); |
|
|
|
|
|
n_tokens += json_value(elem, "tokens_evaluated", 0); |
|
|
} |
|
|
|
|
|
json res = json { |
|
|
{"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))}, |
|
|
{"object", "list"}, |
|
|
{"usage", json { |
|
|
{"prompt_tokens", n_tokens}, |
|
|
{"total_tokens", n_tokens} |
|
|
}}, |
|
|
{"data", data} |
|
|
}; |
|
|
|
|
|
return res; |
|
|
} |
|
|
|
|
|
static json format_response_rerank( |
|
|
const json & request, |
|
|
const json & ranks, |
|
|
bool is_tei_format, |
|
|
std::vector<std::string> & texts) { |
|
|
json res; |
|
|
if (is_tei_format) { |
|
|
|
|
|
res = json::array(); |
|
|
bool return_text = json_value(request, "return_text", false); |
|
|
for (const auto & rank : ranks) { |
|
|
int index = json_value(rank, "index", 0); |
|
|
json elem = json{ |
|
|
{"index", index}, |
|
|
{"score", json_value(rank, "score", 0.0)}, |
|
|
}; |
|
|
if (return_text) { |
|
|
elem["text"] = std::move(texts[index]); |
|
|
} |
|
|
res.push_back(elem); |
|
|
} |
|
|
} else { |
|
|
|
|
|
json results = json::array(); |
|
|
int32_t n_tokens = 0; |
|
|
for (const auto & rank : ranks) { |
|
|
results.push_back(json{ |
|
|
{"index", json_value(rank, "index", 0)}, |
|
|
{"relevance_score", json_value(rank, "score", 0.0)}, |
|
|
}); |
|
|
|
|
|
n_tokens += json_value(rank, "tokens_evaluated", 0); |
|
|
} |
|
|
|
|
|
res = json{ |
|
|
{"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))}, |
|
|
{"object", "list"}, |
|
|
{"usage", json{ |
|
|
{"prompt_tokens", n_tokens}, |
|
|
{"total_tokens", n_tokens} |
|
|
}}, |
|
|
{"results", results} |
|
|
}; |
|
|
} |
|
|
|
|
|
return res; |
|
|
} |
|
|
|
|
|
static bool is_valid_utf8(const std::string & str) { |
|
|
const unsigned char* bytes = reinterpret_cast<const unsigned char*>(str.data()); |
|
|
const unsigned char* end = bytes + str.length(); |
|
|
|
|
|
while (bytes < end) { |
|
|
if (*bytes <= 0x7F) { |
|
|
|
|
|
bytes++; |
|
|
} else if ((*bytes & 0xE0) == 0xC0) { |
|
|
|
|
|
if (end - bytes < 2 || (bytes[1] & 0xC0) != 0x80) |
|
|
return false; |
|
|
bytes += 2; |
|
|
} else if ((*bytes & 0xF0) == 0xE0) { |
|
|
|
|
|
if (end - bytes < 3 || (bytes[1] & 0xC0) != 0x80 || (bytes[2] & 0xC0) != 0x80) |
|
|
return false; |
|
|
bytes += 3; |
|
|
} else if ((*bytes & 0xF8) == 0xF0) { |
|
|
|
|
|
if (end - bytes < 4 || (bytes[1] & 0xC0) != 0x80 || |
|
|
(bytes[2] & 0xC0) != 0x80 || (bytes[3] & 0xC0) != 0x80) |
|
|
return false; |
|
|
bytes += 4; |
|
|
} else { |
|
|
|
|
|
return false; |
|
|
} |
|
|
} |
|
|
|
|
|
return true; |
|
|
} |
|
|
|
|
|
static json format_tokenizer_response(const json & tokens) { |
|
|
return json { |
|
|
{"tokens", tokens} |
|
|
}; |
|
|
} |
|
|
|
|
|
static json format_detokenized_response(const std::string & content) { |
|
|
return json { |
|
|
{"content", content} |
|
|
}; |
|
|
} |
|
|
|
|
|
static json format_logit_bias(const std::vector<llama_logit_bias> & logit_bias) { |
|
|
json data = json::array(); |
|
|
for (const auto & lb : logit_bias) { |
|
|
data.push_back(json{ |
|
|
{"bias", lb.bias}, |
|
|
{"token", lb.token}, |
|
|
}); |
|
|
} |
|
|
return data; |
|
|
} |
|
|
|
|
|
static std::string safe_json_to_str(const json & data) { |
|
|
return data.dump(-1, ' ', false, json::error_handler_t::replace); |
|
|
} |
|
|
|
|
|
static std::vector<llama_token_data> get_token_probabilities(llama_context * ctx, int idx) { |
|
|
std::vector<llama_token_data> cur; |
|
|
const auto * logits = llama_get_logits_ith(ctx, idx); |
|
|
|
|
|
const llama_model * model = llama_get_model(ctx); |
|
|
const llama_vocab * vocab = llama_model_get_vocab(model); |
|
|
|
|
|
const int n_vocab = llama_vocab_n_tokens(vocab); |
|
|
|
|
|
cur.resize(n_vocab); |
|
|
for (llama_token token_id = 0; token_id < n_vocab; token_id++) { |
|
|
cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f}; |
|
|
} |
|
|
|
|
|
|
|
|
std::sort(cur.begin(), cur.end(), [](const llama_token_data & a, const llama_token_data & b) { |
|
|
return a.logit > b.logit; |
|
|
}); |
|
|
|
|
|
|
|
|
float max_l = cur[0].logit; |
|
|
float cum_sum = 0.0f; |
|
|
for (size_t i = 0; i < cur.size(); ++i) { |
|
|
float p = expf(cur[i].logit - max_l); |
|
|
cur[i].p = p; |
|
|
cum_sum += p; |
|
|
} |
|
|
for (size_t i = 0; i < cur.size(); ++i) { |
|
|
cur[i].p /= cum_sum; |
|
|
} |
|
|
|
|
|
return cur; |
|
|
} |
|
|
|
|
|
static bool are_lora_equal( |
|
|
const std::vector<common_adapter_lora_info> & l1, |
|
|
const std::vector<common_adapter_lora_info> & l2) { |
|
|
if (l1.size() != l2.size()) { |
|
|
return false; |
|
|
} |
|
|
for (size_t i = 0; i < l1.size(); ++i) { |
|
|
|
|
|
if (l1[i].scale != l2[i].scale || l1[i].ptr != l2[i].ptr) { |
|
|
return false; |
|
|
} |
|
|
} |
|
|
return true; |
|
|
} |
|
|
|
|
|
|
|
|
static std::vector<common_adapter_lora_info> parse_lora_request( |
|
|
const std::vector<common_adapter_lora_info> & lora_base, |
|
|
const json & data) { |
|
|
std::vector<common_adapter_lora_info> lora(lora_base); |
|
|
int max_idx = lora.size(); |
|
|
|
|
|
|
|
|
for (auto & entry : lora) { |
|
|
entry.scale = 0.0f; |
|
|
} |
|
|
|
|
|
|
|
|
for (const auto & entry : data) { |
|
|
int id = json_value(entry, "id", -1); |
|
|
float scale = json_value(entry, "scale", 0.0f); |
|
|
if (0 <= id && id < max_idx) { |
|
|
lora[id].scale = scale; |
|
|
} else { |
|
|
throw std::runtime_error("invalid adapter id"); |
|
|
} |
|
|
} |
|
|
|
|
|
return lora; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
struct server_tokens { |
|
|
bool has_mtmd = false; |
|
|
|
|
|
private: |
|
|
|
|
|
|
|
|
std::unordered_map<llama_pos, mtmd::input_chunk_ptr> map_pos_to_media; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
llama_tokens tokens; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public: |
|
|
server_tokens() = default; |
|
|
~server_tokens() = default; |
|
|
|
|
|
|
|
|
server_tokens(const server_tokens&) = delete; |
|
|
server_tokens& operator=(const server_tokens&) = delete; |
|
|
|
|
|
|
|
|
server_tokens(server_tokens&&) = default; |
|
|
server_tokens& operator=(server_tokens&&) = default; |
|
|
|
|
|
|
|
|
llama_token operator[](size_t index) { return tokens[index]; } |
|
|
const llama_token& operator[](size_t index) const { return tokens[index]; } |
|
|
|
|
|
server_tokens(mtmd::input_chunks & mtmd_chunks, bool has_mtmd) : has_mtmd(has_mtmd) { |
|
|
for (size_t i = 0; i < mtmd_chunks.size(); ++i) { |
|
|
push_back(mtmd_chunks[i]); |
|
|
} |
|
|
} |
|
|
|
|
|
server_tokens(llama_tokens & tokens, bool has_mtmd) : has_mtmd(has_mtmd), tokens(tokens) {} |
|
|
|
|
|
|
|
|
std::string str() const { |
|
|
std::ostringstream oss; |
|
|
oss << "tokens: "; |
|
|
for (const auto & t : tokens) { |
|
|
if (t == LLAMA_TOKEN_NULL) { |
|
|
oss << "<embd> "; |
|
|
} else { |
|
|
oss << t << " "; |
|
|
} |
|
|
} |
|
|
oss << "\n"; |
|
|
oss << "image pos: "; |
|
|
for (const auto & it : map_pos_to_media) { |
|
|
oss << it.first << ", "; |
|
|
} |
|
|
return oss.str(); |
|
|
} |
|
|
|
|
|
const mtmd::input_chunk_ptr & find_chunk(llama_pos pos) const { |
|
|
auto it = map_pos_to_media.find(pos); |
|
|
if (it != map_pos_to_media.end()) { |
|
|
return it->second; |
|
|
} else { |
|
|
throw std::runtime_error("Chunk not found"); |
|
|
} |
|
|
} |
|
|
|
|
|
void push_back(llama_token tok) { |
|
|
if (tok == LLAMA_TOKEN_NULL) { |
|
|
throw std::runtime_error("Invalid token"); |
|
|
} |
|
|
tokens.emplace_back(tok); |
|
|
} |
|
|
|
|
|
|
|
|
void push_back(const mtmd_input_chunk * chunk) { |
|
|
auto type = mtmd_input_chunk_get_type(chunk); |
|
|
if (type == MTMD_INPUT_CHUNK_TYPE_IMAGE || type == MTMD_INPUT_CHUNK_TYPE_AUDIO) { |
|
|
GGML_ASSERT(has_mtmd); |
|
|
const int n_pos = mtmd_input_chunk_get_n_pos(chunk); |
|
|
llama_pos start_pos = tokens.size(); |
|
|
for (int i = 0; i < n_pos; ++i) { |
|
|
tokens.emplace_back(LLAMA_TOKEN_NULL); |
|
|
} |
|
|
mtmd::input_chunk_ptr new_chunk(mtmd_input_chunk_copy(chunk)); |
|
|
map_pos_to_media[start_pos] = std::move(new_chunk); |
|
|
} else if (type == MTMD_INPUT_CHUNK_TYPE_TEXT) { |
|
|
size_t n_tokens; |
|
|
auto text_tokens = mtmd_input_chunk_get_tokens_text(chunk, &n_tokens); |
|
|
for (size_t i = 0; i < n_tokens; ++i) { |
|
|
push_back(text_tokens[i]); |
|
|
} |
|
|
} else { |
|
|
GGML_ABORT("Invalid chunk type"); |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
void insert(const llama_tokens & inp_tokens) { |
|
|
GGML_ASSERT(!has_mtmd); |
|
|
tokens.insert(tokens.end(), inp_tokens.begin(), inp_tokens.end()); |
|
|
} |
|
|
|
|
|
|
|
|
const llama_tokens & get_text_tokens() const { |
|
|
GGML_ASSERT(!has_mtmd); |
|
|
return tokens; |
|
|
} |
|
|
|
|
|
|
|
|
void set_token(llama_pos pos, llama_token id) { |
|
|
GGML_ASSERT(!has_mtmd); |
|
|
tokens[pos] = id; |
|
|
} |
|
|
|
|
|
size_t size() const { |
|
|
return tokens.size(); |
|
|
} |
|
|
|
|
|
bool empty() const { |
|
|
return tokens.empty(); |
|
|
} |
|
|
|
|
|
void clear() { |
|
|
tokens.clear(); |
|
|
} |
|
|
|
|
|
void keep_first(size_t n) { |
|
|
GGML_ASSERT(n <= tokens.size()); |
|
|
if (has_mtmd) { |
|
|
if (n == tokens.size()) { |
|
|
return; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (n > 0) { |
|
|
llama_token last_token = tokens[n - 1]; |
|
|
|
|
|
if (last_token == LLAMA_TOKEN_NULL) { |
|
|
find_chunk(n - 1); |
|
|
} |
|
|
} |
|
|
|
|
|
for (auto it = map_pos_to_media.begin(); it != map_pos_to_media.end(); ) { |
|
|
llama_pos pos = it->first; |
|
|
if (pos >= (llama_pos)n) { |
|
|
it = map_pos_to_media.erase(it); |
|
|
} else { |
|
|
++it; |
|
|
} |
|
|
} |
|
|
} |
|
|
tokens.resize(n); |
|
|
} |
|
|
|
|
|
std::string detokenize(const llama_context * ctx, bool special) const { |
|
|
llama_tokens text_tokens; |
|
|
text_tokens.reserve(tokens.size()); |
|
|
for (const auto & t : tokens) { |
|
|
if (t != LLAMA_TOKEN_NULL) { |
|
|
text_tokens.push_back(t); |
|
|
} |
|
|
} |
|
|
return common_detokenize(ctx, text_tokens, special); |
|
|
} |
|
|
|
|
|
size_t get_common_prefix(const server_tokens & b) const { |
|
|
size_t max_idx = std::min(tokens.size(), b.tokens.size()); |
|
|
for (size_t i = 0; i < max_idx; ++i) { |
|
|
auto & ai = tokens[i]; |
|
|
auto & bi = b.tokens[i]; |
|
|
|
|
|
if (ai == LLAMA_TOKEN_NULL && bi == LLAMA_TOKEN_NULL) { |
|
|
GGML_ASSERT(has_mtmd); |
|
|
const auto & a_chunk = find_chunk(i); |
|
|
const auto & b_chunk = b.find_chunk(i); |
|
|
GGML_ASSERT(a_chunk && b_chunk); |
|
|
std::string ai_id = mtmd_input_chunk_get_id(a_chunk.get()); |
|
|
std::string bi_id = mtmd_input_chunk_get_id(b_chunk.get()); |
|
|
size_t a_pos = mtmd_input_chunk_get_n_pos(a_chunk.get()); |
|
|
size_t b_pos = mtmd_input_chunk_get_n_pos(b_chunk.get()); |
|
|
if (ai_id == bi_id && a_pos == b_pos) { |
|
|
GGML_ASSERT(a_pos > 0 && "Invalid media chunk"); |
|
|
i += a_pos - 1; |
|
|
continue; |
|
|
} else { |
|
|
return i; |
|
|
} |
|
|
} else if (ai == bi) { |
|
|
continue; |
|
|
} else { |
|
|
return i; |
|
|
} |
|
|
} |
|
|
return max_idx; |
|
|
} |
|
|
|
|
|
|
|
|
bool validate(const struct llama_context * ctx) const { |
|
|
const llama_model * model = llama_get_model(ctx); |
|
|
const llama_vocab * vocab = llama_model_get_vocab(model); |
|
|
const int32_t n_vocab = llama_vocab_n_tokens(vocab); |
|
|
|
|
|
for (size_t i = 0; i < tokens.size(); ++i) { |
|
|
auto & t = tokens[i]; |
|
|
if (t == LLAMA_TOKEN_NULL) { |
|
|
try { |
|
|
const auto & chunk = find_chunk(i); |
|
|
size_t n_pos = mtmd_input_chunk_get_n_pos(chunk.get()); |
|
|
i += n_pos - 1; |
|
|
} catch (const std::exception & e) { |
|
|
return false; |
|
|
} |
|
|
} else if (t < 0 || t >= n_vocab) { |
|
|
return false; |
|
|
} |
|
|
} |
|
|
return true; |
|
|
} |
|
|
|
|
|
|
|
|
int32_t process_chunk( |
|
|
llama_context * ctx, |
|
|
mtmd_context * mctx, |
|
|
llama_pos n_past, |
|
|
int32_t seq_id, |
|
|
llama_pos & n_pos_out) { |
|
|
auto & chunk = find_chunk(n_past); |
|
|
const char * name = mtmd_input_chunk_get_type(chunk.get()) == MTMD_INPUT_CHUNK_TYPE_IMAGE |
|
|
? "image" : "audio"; |
|
|
SRV_INF("processing %s...\n", name); |
|
|
int32_t n_batch = llama_n_batch(ctx); |
|
|
int64_t t0 = ggml_time_ms(); |
|
|
llama_pos new_n_past = n_past; |
|
|
int32_t result = mtmd_helper_eval_chunk_single(mctx, ctx, |
|
|
chunk.get(), |
|
|
n_past, |
|
|
seq_id, |
|
|
n_batch, |
|
|
true, |
|
|
&new_n_past); |
|
|
SRV_INF("%s processed in %" PRId64 " ms\n", name, ggml_time_ms() - t0); |
|
|
if (result != 0) { |
|
|
LOG_ERR("mtmd_helper_eval failed with status %d", result); |
|
|
n_pos_out = n_past; |
|
|
return result; |
|
|
} |
|
|
n_pos_out = new_n_past; |
|
|
return 0; |
|
|
} |
|
|
}; |
|
|
|
|
|
|
|
|
static std::string fnv_hash(const uint8_t * data, size_t len) { |
|
|
const uint64_t fnv_prime = 0x100000001b3ULL; |
|
|
uint64_t hash = 0xcbf29ce484222325ULL; |
|
|
|
|
|
for (size_t i = 0; i < len; ++i) { |
|
|
hash ^= data[i]; |
|
|
hash *= fnv_prime; |
|
|
} |
|
|
return std::to_string(hash); |
|
|
} |
|
|
|