|
|
|
|
|
''' |
|
|
This script fetches all the models used in the server tests. |
|
|
|
|
|
This is useful for slow tests that use larger models, to avoid them timing out on the model downloads. |
|
|
|
|
|
It is meant to be run from the root of the repository. |
|
|
|
|
|
Example: |
|
|
python scripts/fetch_server_test_models.py |
|
|
( cd tools/server/tests && ./tests.sh -v -x -m slow ) |
|
|
''' |
|
|
import ast |
|
|
import glob |
|
|
import logging |
|
|
import os |
|
|
from typing import Generator |
|
|
from pydantic import BaseModel |
|
|
from typing import Optional |
|
|
import subprocess |
|
|
|
|
|
|
|
|
class HuggingFaceModel(BaseModel): |
|
|
hf_repo: str |
|
|
hf_file: Optional[str] = None |
|
|
|
|
|
class Config: |
|
|
frozen = True |
|
|
|
|
|
|
|
|
def collect_hf_model_test_parameters(test_file) -> Generator[HuggingFaceModel, None, None]: |
|
|
try: |
|
|
with open(test_file) as f: |
|
|
tree = ast.parse(f.read()) |
|
|
except Exception as e: |
|
|
logging.error(f'collect_hf_model_test_parameters failed on {test_file}: {e}') |
|
|
return |
|
|
|
|
|
for node in ast.walk(tree): |
|
|
if isinstance(node, ast.FunctionDef): |
|
|
for dec in node.decorator_list: |
|
|
if isinstance(dec, ast.Call) and isinstance(dec.func, ast.Attribute) and dec.func.attr == 'parametrize': |
|
|
param_names = ast.literal_eval(dec.args[0]).split(",") |
|
|
if "hf_repo" not in param_names: |
|
|
continue |
|
|
|
|
|
raw_param_values = dec.args[1] |
|
|
if not isinstance(raw_param_values, ast.List): |
|
|
logging.warning(f'Skipping non-list parametrize entry at {test_file}:{node.lineno}') |
|
|
continue |
|
|
|
|
|
hf_repo_idx = param_names.index("hf_repo") |
|
|
hf_file_idx = param_names.index("hf_file") if "hf_file" in param_names else None |
|
|
|
|
|
for t in raw_param_values.elts: |
|
|
if not isinstance(t, ast.Tuple): |
|
|
logging.warning(f'Skipping non-tuple parametrize entry at {test_file}:{node.lineno}') |
|
|
continue |
|
|
yield HuggingFaceModel( |
|
|
hf_repo=ast.literal_eval(t.elts[hf_repo_idx]), |
|
|
hf_file=ast.literal_eval(t.elts[hf_file_idx]) if hf_file_idx is not None else None) |
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
logging.basicConfig(level=logging.INFO, format='%(levelname)s: %(message)s') |
|
|
|
|
|
models = sorted(list(set([ |
|
|
model |
|
|
for test_file in glob.glob('tools/server/tests/unit/test_*.py') |
|
|
for model in collect_hf_model_test_parameters(test_file) |
|
|
])), key=lambda m: (m.hf_repo, m.hf_file)) |
|
|
|
|
|
logging.info(f'Found {len(models)} models in parameterized tests:') |
|
|
for m in models: |
|
|
logging.info(f' - {m.hf_repo} / {m.hf_file}') |
|
|
|
|
|
cli_path = os.environ.get( |
|
|
'LLAMA_CLI_BIN_PATH', |
|
|
os.path.join( |
|
|
os.path.dirname(__file__), |
|
|
'../build/bin/Release/llama-cli.exe' if os.name == 'nt' else '../build/bin/llama-cli')) |
|
|
|
|
|
for m in models: |
|
|
if '<' in m.hf_repo or (m.hf_file is not None and '<' in m.hf_file): |
|
|
continue |
|
|
if m.hf_file is not None and '-of-' in m.hf_file: |
|
|
logging.warning(f'Skipping model at {m.hf_repo} / {m.hf_file} because it is a split file') |
|
|
continue |
|
|
logging.info(f'Using llama-cli to ensure model {m.hf_repo}/{m.hf_file} was fetched') |
|
|
cmd = [ |
|
|
cli_path, |
|
|
'-hfr', m.hf_repo, |
|
|
*([] if m.hf_file is None else ['-hff', m.hf_file]), |
|
|
'-n', '1', |
|
|
'-p', 'Hey', |
|
|
'--no-warmup', |
|
|
'--log-disable', |
|
|
'-no-cnv'] |
|
|
if m.hf_file != 'tinyllamas/stories260K.gguf' and 'Mistral-Nemo' not in m.hf_repo: |
|
|
cmd.append('-fa') |
|
|
try: |
|
|
subprocess.check_call(cmd) |
|
|
except subprocess.CalledProcessError: |
|
|
logging.error(f'Failed to fetch model at {m.hf_repo} / {m.hf_file} with command:\n {" ".join(cmd)}') |
|
|
exit(1) |
|
|
|