radinplaid commited on
Commit
33819ce
·
verified ·
1 Parent(s): 789c3ea

Upload folder using huggingface_hub

Browse files
.ipynb_checkpoints/README-checkpoint.md ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - ko
5
+ tags:
6
+ - translation
7
+ license: cc-by-4.0
8
+ datasets:
9
+ - quickmt/quickmt-train.ko-en
10
+ model-index:
11
+ - name: quickmt-en-ko
12
+ results:
13
+ - task:
14
+ name: Translation eng-kor
15
+ type: translation
16
+ args: eng-kor
17
+ dataset:
18
+ name: flores101-devtest
19
+ type: flores_101
20
+ args: eng_Latn kor_Hang devtest
21
+ metrics:
22
+ - name: CHRF
23
+ type: chrf
24
+ value: 56.25
25
+ - name: BLEU
26
+ type: bleu
27
+ value: 27.03
28
+ - name: COMET
29
+ type: comet
30
+ value: 86.11
31
+ ---
32
+
33
+
34
+ # `quickmt-en-ko` Neural Machine Translation Model
35
+
36
+ `quickmt-en-ko` is a reasonably fast and reasonably accurate neural machine translation model for translation from `en` into `ko`.
37
+
38
+
39
+ ## Model Information
40
+
41
+ * Trained using [`eole`](https://github.com/eole-nlp/eole)
42
+ * 185M parameter transformer 'big' with 8 encoder layers and 2 decoder layers
43
+ * 20k sentencepiece vocabularies
44
+ * Exported for fast inference to [CTranslate2](https://github.com/OpenNMT/CTranslate2) format
45
+ * Training data: https://huggingface.co/datasets/quickmt/quickmt-train.ko-en/tree/main
46
+
47
+ See the `eole` model configuration in this repository for further details and the `eole-model` for the raw `eole` (pytorch) model.
48
+
49
+
50
+ ## Usage with `quickmt`
51
+
52
+ You must install the Nvidia cuda toolkit first, if you want to do GPU inference.
53
+
54
+ Next, install the `quickmt` python library and download the model:
55
+
56
+ ```bash
57
+ git clone https://github.com/quickmt/quickmt.git
58
+ pip install ./quickmt/
59
+
60
+ quickmt-model-download quickmt/quickmt-en-ko ./quickmt-en-ko
61
+ ```
62
+
63
+ Finally use the model in python:
64
+
65
+ ```python
66
+ from quickmt import Translator
67
+
68
+ # Auto-detects GPU, set to "cpu" to force CPU inference
69
+ t = Translator("./quickmt-en-ko/", device="auto")
70
+
71
+ # Translate - set beam size to 5 for higher quality (but slower speed)
72
+ sample_text = 'Dr. Ehud Ur, professor of medicine at Dalhousie University in Halifax, Nova Scotia and chair of the clinical and scientific division of the Canadian Diabetes Association cautioned that the research is still in its early days.'
73
+ t(sample_text, beam_size=5)
74
+
75
+ # Get alternative translations by sampling
76
+ # You can pass any cTranslate2 `translate_batch` arguments
77
+ t([sample_text], sampling_temperature=1.2, beam_size=1, sampling_topk=50, sampling_topp=0.9)
78
+
79
+ > '노바 스코샤 주 핼리팩스에 있는 댈하우지 대학교 의과 교수인 에후드 우르 박사와 캐나다 당뇨병 협회의 임상 및 과학 부문 의장은 이 연구가 아직 초기 단계에 있다고 경고했다.'
80
+
81
+ ```
82
+
83
+ The model is in `ctranslate2` format, and the tokenizers are `sentencepiece`, so you can use `ctranslate2` directly instead of through `quickmt`. It is also possible to get this model to work with e.g. [LibreTranslate](https://libretranslate.com/) which also uses `ctranslate2` and `sentencepiece`.
84
+
85
+
86
+ ## Metrics
87
+
88
+ `bleu` and `chrf2` are calculated with [sacrebleu](https://github.com/mjpost/sacrebleu) on the [Flores200 `devtest` test set](https://huggingface.co/datasets/facebook/flores) ("kor_Hang"->"eng_Latn"). `comet22` with the [`comet`](https://github.com/Unbabel/COMET) library and the [default model](https://huggingface.co/Unbabel/wmt22-comet-da). "Time (s)" is the time in seconds to translate (using `ctranslate2`) the flores-devtest dataset (1012 sentences) on an RTX 4070s GPU with batch size 32 (faster speed is possible using a large batch size).
89
+
90
+
91
+ | | bleu | chrf2 | comet22 | Time (s) |
92
+ |:---------------------------------|-------:|--------:|----------:|-----------:|
93
+ | quickmt/quickmt-en-ko | 14.97 | 36.96 | 87.10 | 1.36 |
94
+ | facebook/nllb-200-distilled-600M | 12.15 | 33.66 | 87.39 | 24.75 |
95
+ | facebook/nllb-200-distilled-1.3B | 13.23 | 35.62 | 88.39 | 40.29 |
96
+ | facebook/m2m100_418M | 9.91 | 30.69 | 83.20 | 22.23 |
97
+ | facebook/m2m100_1.2B | 11.35 | 33.26 | 85.65 | 41.15 |
98
+
99
+
100
+ `quickmt-en-ko` is the fastest and is higher quality than `m2m100_418m`, `m2m100_1.2B` and `nllb-200-distilled-600M`.
.ipynb_checkpoints/eole-config-checkpoint.yaml ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## IO
2
+ save_data: en-ko/data_spm
3
+ overwrite: True
4
+ seed: 1234
5
+ report_every: 100
6
+ valid_metrics: ["BLEU"]
7
+ tensorboard: true
8
+ tensorboard_log_dir: tensorboard
9
+
10
+ ### Vocab
11
+ src_vocab: en-ko/src.eole.vocab
12
+ tgt_vocab: en-ko/tgt.eole.vocab
13
+ src_vocab_size: 20000
14
+ tgt_vocab_size: 20000
15
+ vocab_size_multiple: 8
16
+ share_vocab: false
17
+ n_sample: 0
18
+
19
+ data:
20
+ corpus_1:
21
+ path_src: hf://quickmt/quickmt-train.en-ko/en
22
+ path_tgt: hf://quickmt/quickmt-train.en-ko/ko
23
+ path_sco: hf://quickmt/quickmt-train.en-ko/sco
24
+ valid:
25
+ path_src: en-ko/dev.src
26
+ path_tgt: en-ko/dev.tgt
27
+
28
+ transforms: [sentencepiece, filtertoolong]
29
+ transforms_configs:
30
+ sentencepiece:
31
+ src_subword_model: "en-ko/src.spm.model"
32
+ tgt_subword_model: "en-ko/tgt.spm.model"
33
+ filtertoolong:
34
+ src_seq_length: 256
35
+ tgt_seq_length: 256
36
+
37
+ training:
38
+ # Run configuration
39
+ model_path: en-ko/model
40
+ #train_from: en-ko/model
41
+ keep_checkpoint: 4
42
+ save_checkpoint_steps: 500
43
+ train_steps: 100000
44
+ valid_steps: 500
45
+
46
+ # Train on a single GPU
47
+ world_size: 1
48
+ gpu_ranks: [0]
49
+
50
+ # Batching
51
+ batch_type: "tokens"
52
+ batch_size: 8192
53
+ valid_batch_size: 8192
54
+ batch_size_multiple: 8
55
+ accum_count: [16]
56
+ accum_steps: [0]
57
+
58
+ # Optimizer & Compute
59
+ compute_dtype: "bf16"
60
+ optim: "pagedadamw8bit"
61
+ #optim: "adamw"
62
+ learning_rate: 2.0
63
+ warmup_steps: 10000
64
+ decay_method: "noam"
65
+ adam_beta2: 0.998
66
+
67
+ # Data loading
68
+ bucket_size: 128000
69
+ num_workers: 4
70
+ prefetch_factor: 100
71
+
72
+ # Hyperparams
73
+ dropout_steps: [0]
74
+ dropout: [0.1]
75
+ attention_dropout: [0.1]
76
+ max_grad_norm: 2
77
+ label_smoothing: 0.1
78
+ average_decay: 0.0001
79
+ param_init_method: xavier_uniform
80
+ normalization: "tokens"
81
+
82
+ model:
83
+ architecture: "transformer"
84
+ layer_norm: standard
85
+ share_embeddings: false
86
+ share_decoder_embeddings: true
87
+ add_ffnbias: true
88
+ mlp_activation_fn: gelu
89
+ add_estimator: false
90
+ add_qkvbias: false
91
+ norm_eps: 1e-6
92
+ hidden_size: 1024
93
+ encoder:
94
+ layers: 8
95
+ decoder:
96
+ layers: 2
97
+ heads: 8
98
+ transformer_ff: 4096
99
+ embeddings:
100
+ word_vec_size: 1024
101
+ position_encoding_type: "SinusoidalInterleaved"
102
+
103
+
README.md CHANGED
@@ -1,3 +1,100 @@
1
- ---
2
- license: cc-by-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - ko
5
+ tags:
6
+ - translation
7
+ license: cc-by-4.0
8
+ datasets:
9
+ - quickmt/quickmt-train.ko-en
10
+ model-index:
11
+ - name: quickmt-en-ko
12
+ results:
13
+ - task:
14
+ name: Translation eng-kor
15
+ type: translation
16
+ args: eng-kor
17
+ dataset:
18
+ name: flores101-devtest
19
+ type: flores_101
20
+ args: eng_Latn kor_Hang devtest
21
+ metrics:
22
+ - name: CHRF
23
+ type: chrf
24
+ value: 56.25
25
+ - name: BLEU
26
+ type: bleu
27
+ value: 27.03
28
+ - name: COMET
29
+ type: comet
30
+ value: 86.11
31
+ ---
32
+
33
+
34
+ # `quickmt-en-ko` Neural Machine Translation Model
35
+
36
+ `quickmt-en-ko` is a reasonably fast and reasonably accurate neural machine translation model for translation from `en` into `ko`.
37
+
38
+
39
+ ## Model Information
40
+
41
+ * Trained using [`eole`](https://github.com/eole-nlp/eole)
42
+ * 185M parameter transformer 'big' with 8 encoder layers and 2 decoder layers
43
+ * 20k sentencepiece vocabularies
44
+ * Exported for fast inference to [CTranslate2](https://github.com/OpenNMT/CTranslate2) format
45
+ * Training data: https://huggingface.co/datasets/quickmt/quickmt-train.ko-en/tree/main
46
+
47
+ See the `eole` model configuration in this repository for further details and the `eole-model` for the raw `eole` (pytorch) model.
48
+
49
+
50
+ ## Usage with `quickmt`
51
+
52
+ You must install the Nvidia cuda toolkit first, if you want to do GPU inference.
53
+
54
+ Next, install the `quickmt` python library and download the model:
55
+
56
+ ```bash
57
+ git clone https://github.com/quickmt/quickmt.git
58
+ pip install ./quickmt/
59
+
60
+ quickmt-model-download quickmt/quickmt-en-ko ./quickmt-en-ko
61
+ ```
62
+
63
+ Finally use the model in python:
64
+
65
+ ```python
66
+ from quickmt import Translator
67
+
68
+ # Auto-detects GPU, set to "cpu" to force CPU inference
69
+ t = Translator("./quickmt-en-ko/", device="auto")
70
+
71
+ # Translate - set beam size to 5 for higher quality (but slower speed)
72
+ sample_text = 'Dr. Ehud Ur, professor of medicine at Dalhousie University in Halifax, Nova Scotia and chair of the clinical and scientific division of the Canadian Diabetes Association cautioned that the research is still in its early days.'
73
+ t(sample_text, beam_size=5)
74
+
75
+ # Get alternative translations by sampling
76
+ # You can pass any cTranslate2 `translate_batch` arguments
77
+ t([sample_text], sampling_temperature=1.2, beam_size=1, sampling_topk=50, sampling_topp=0.9)
78
+
79
+ > '노바 스코샤 주 핼리팩스에 있는 댈하우지 대학교 의과 교수인 에후드 우르 박사와 캐나다 당뇨병 협회의 임상 및 과학 부문 의장은 이 연구가 아직 초기 단계에 있다고 경고했다.'
80
+
81
+ ```
82
+
83
+ The model is in `ctranslate2` format, and the tokenizers are `sentencepiece`, so you can use `ctranslate2` directly instead of through `quickmt`. It is also possible to get this model to work with e.g. [LibreTranslate](https://libretranslate.com/) which also uses `ctranslate2` and `sentencepiece`.
84
+
85
+
86
+ ## Metrics
87
+
88
+ `bleu` and `chrf2` are calculated with [sacrebleu](https://github.com/mjpost/sacrebleu) on the [Flores200 `devtest` test set](https://huggingface.co/datasets/facebook/flores) ("kor_Hang"->"eng_Latn"). `comet22` with the [`comet`](https://github.com/Unbabel/COMET) library and the [default model](https://huggingface.co/Unbabel/wmt22-comet-da). "Time (s)" is the time in seconds to translate (using `ctranslate2`) the flores-devtest dataset (1012 sentences) on an RTX 4070s GPU with batch size 32 (faster speed is possible using a large batch size).
89
+
90
+
91
+ | | bleu | chrf2 | comet22 | Time (s) |
92
+ |:---------------------------------|-------:|--------:|----------:|-----------:|
93
+ | quickmt/quickmt-en-ko | 14.97 | 36.96 | 87.10 | 1.36 |
94
+ | facebook/nllb-200-distilled-600M | 12.15 | 33.66 | 87.39 | 24.75 |
95
+ | facebook/nllb-200-distilled-1.3B | 13.23 | 35.62 | 88.39 | 40.29 |
96
+ | facebook/m2m100_418M | 9.91 | 30.69 | 83.20 | 22.23 |
97
+ | facebook/m2m100_1.2B | 11.35 | 33.26 | 85.65 | 41.15 |
98
+
99
+
100
+ `quickmt-en-ko` is the fastest and is higher quality than `m2m100_418m`, `m2m100_1.2B` and `nllb-200-distilled-600M`.
config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_source_bos": false,
3
+ "add_source_eos": false,
4
+ "bos_token": "<s>",
5
+ "decoder_start_token": "<s>",
6
+ "eos_token": "</s>",
7
+ "layer_norm_epsilon": 1e-06,
8
+ "multi_query_attention": false,
9
+ "unk_token": "<unk>"
10
+ }
eole-config.yaml ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## IO
2
+ save_data: en-ko/data_spm
3
+ overwrite: True
4
+ seed: 1234
5
+ report_every: 100
6
+ valid_metrics: ["BLEU"]
7
+ tensorboard: true
8
+ tensorboard_log_dir: tensorboard
9
+
10
+ ### Vocab
11
+ src_vocab: en-ko/src.eole.vocab
12
+ tgt_vocab: en-ko/tgt.eole.vocab
13
+ src_vocab_size: 20000
14
+ tgt_vocab_size: 20000
15
+ vocab_size_multiple: 8
16
+ share_vocab: false
17
+ n_sample: 0
18
+
19
+ data:
20
+ corpus_1:
21
+ path_src: hf://quickmt/quickmt-train.en-ko/en
22
+ path_tgt: hf://quickmt/quickmt-train.en-ko/ko
23
+ path_sco: hf://quickmt/quickmt-train.en-ko/sco
24
+ valid:
25
+ path_src: en-ko/dev.src
26
+ path_tgt: en-ko/dev.tgt
27
+
28
+ transforms: [sentencepiece, filtertoolong]
29
+ transforms_configs:
30
+ sentencepiece:
31
+ src_subword_model: "en-ko/src.spm.model"
32
+ tgt_subword_model: "en-ko/tgt.spm.model"
33
+ filtertoolong:
34
+ src_seq_length: 256
35
+ tgt_seq_length: 256
36
+
37
+ training:
38
+ # Run configuration
39
+ model_path: en-ko/model
40
+ #train_from: en-ko/model
41
+ keep_checkpoint: 4
42
+ save_checkpoint_steps: 500
43
+ train_steps: 100000
44
+ valid_steps: 500
45
+
46
+ # Train on a single GPU
47
+ world_size: 1
48
+ gpu_ranks: [0]
49
+
50
+ # Batching
51
+ batch_type: "tokens"
52
+ batch_size: 8192
53
+ valid_batch_size: 8192
54
+ batch_size_multiple: 8
55
+ accum_count: [16]
56
+ accum_steps: [0]
57
+
58
+ # Optimizer & Compute
59
+ compute_dtype: "bf16"
60
+ optim: "pagedadamw8bit"
61
+ #optim: "adamw"
62
+ learning_rate: 2.0
63
+ warmup_steps: 10000
64
+ decay_method: "noam"
65
+ adam_beta2: 0.998
66
+
67
+ # Data loading
68
+ bucket_size: 128000
69
+ num_workers: 4
70
+ prefetch_factor: 100
71
+
72
+ # Hyperparams
73
+ dropout_steps: [0]
74
+ dropout: [0.1]
75
+ attention_dropout: [0.1]
76
+ max_grad_norm: 2
77
+ label_smoothing: 0.1
78
+ average_decay: 0.0001
79
+ param_init_method: xavier_uniform
80
+ normalization: "tokens"
81
+
82
+ model:
83
+ architecture: "transformer"
84
+ layer_norm: standard
85
+ share_embeddings: false
86
+ share_decoder_embeddings: true
87
+ add_ffnbias: true
88
+ mlp_activation_fn: gelu
89
+ add_estimator: false
90
+ add_qkvbias: false
91
+ norm_eps: 1e-6
92
+ hidden_size: 1024
93
+ encoder:
94
+ layers: 8
95
+ decoder:
96
+ layers: 2
97
+ heads: 8
98
+ transformer_ff: 4096
99
+ embeddings:
100
+ word_vec_size: 1024
101
+ position_encoding_type: "SinusoidalInterleaved"
102
+
103
+
eole-model/config.json ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "src_vocab_size": 20000,
3
+ "src_vocab": "en-ko/src.eole.vocab",
4
+ "n_sample": 0,
5
+ "tensorboard_log_dir": "tensorboard",
6
+ "overwrite": true,
7
+ "tgt_vocab": "en-ko/tgt.eole.vocab",
8
+ "valid_metrics": [
9
+ "BLEU"
10
+ ],
11
+ "seed": 1234,
12
+ "save_data": "en-ko/data_spm",
13
+ "tensorboard_log_dir_dated": "tensorboard/Feb-26_17-05-11",
14
+ "report_every": 100,
15
+ "transforms": [
16
+ "sentencepiece",
17
+ "filtertoolong"
18
+ ],
19
+ "share_vocab": false,
20
+ "vocab_size_multiple": 8,
21
+ "tensorboard": true,
22
+ "tgt_vocab_size": 20000,
23
+ "training": {
24
+ "bucket_size": 128000,
25
+ "gpu_ranks": [
26
+ 0
27
+ ],
28
+ "learning_rate": 2.0,
29
+ "valid_batch_size": 8192,
30
+ "model_path": "en-ko/model",
31
+ "decay_method": "noam",
32
+ "optim": "pagedadamw8bit",
33
+ "average_decay": 0.0001,
34
+ "compute_dtype": "torch.bfloat16",
35
+ "normalization": "tokens",
36
+ "label_smoothing": 0.1,
37
+ "world_size": 1,
38
+ "adam_beta2": 0.998,
39
+ "accum_steps": [
40
+ 0
41
+ ],
42
+ "batch_size_multiple": 8,
43
+ "attention_dropout": [
44
+ 0.1
45
+ ],
46
+ "batch_size": 8192,
47
+ "valid_steps": 500,
48
+ "keep_checkpoint": 4,
49
+ "num_workers": 0,
50
+ "save_checkpoint_steps": 500,
51
+ "accum_count": [
52
+ 16
53
+ ],
54
+ "max_grad_norm": 2.0,
55
+ "train_steps": 100000,
56
+ "prefetch_factor": 100,
57
+ "warmup_steps": 10000,
58
+ "dropout_steps": [
59
+ 0
60
+ ],
61
+ "batch_type": "tokens",
62
+ "dropout": [
63
+ 0.1
64
+ ],
65
+ "param_init_method": "xavier_uniform"
66
+ },
67
+ "transforms_configs": {
68
+ "filtertoolong": {
69
+ "src_seq_length": 256,
70
+ "tgt_seq_length": 256
71
+ },
72
+ "sentencepiece": {
73
+ "tgt_subword_model": "${MODEL_PATH}/tgt.spm.model",
74
+ "src_subword_model": "${MODEL_PATH}/src.spm.model"
75
+ }
76
+ },
77
+ "model": {
78
+ "add_qkvbias": false,
79
+ "add_estimator": false,
80
+ "position_encoding_type": "SinusoidalInterleaved",
81
+ "heads": 8,
82
+ "mlp_activation_fn": "gelu",
83
+ "add_ffnbias": true,
84
+ "share_decoder_embeddings": true,
85
+ "share_embeddings": false,
86
+ "architecture": "transformer",
87
+ "hidden_size": 1024,
88
+ "transformer_ff": 4096,
89
+ "layer_norm": "standard",
90
+ "norm_eps": 1e-06,
91
+ "encoder": {
92
+ "norm_eps": 1e-06,
93
+ "encoder_type": "transformer",
94
+ "add_ffnbias": true,
95
+ "add_qkvbias": false,
96
+ "n_positions": null,
97
+ "hidden_size": 1024,
98
+ "transformer_ff": 4096,
99
+ "layer_norm": "standard",
100
+ "rope_config": null,
101
+ "position_encoding_type": "SinusoidalInterleaved",
102
+ "heads": 8,
103
+ "mlp_activation_fn": "gelu",
104
+ "layers": 8,
105
+ "src_word_vec_size": 1024
106
+ },
107
+ "embeddings": {
108
+ "position_encoding_type": "SinusoidalInterleaved",
109
+ "word_vec_size": 1024,
110
+ "tgt_word_vec_size": 1024,
111
+ "src_word_vec_size": 1024
112
+ },
113
+ "decoder": {
114
+ "norm_eps": 1e-06,
115
+ "add_ffnbias": true,
116
+ "tgt_word_vec_size": 1024,
117
+ "add_qkvbias": false,
118
+ "n_positions": null,
119
+ "decoder_type": "transformer",
120
+ "hidden_size": 1024,
121
+ "transformer_ff": 4096,
122
+ "layer_norm": "standard",
123
+ "rope_config": null,
124
+ "position_encoding_type": "SinusoidalInterleaved",
125
+ "heads": 8,
126
+ "mlp_activation_fn": "gelu",
127
+ "layers": 2
128
+ }
129
+ },
130
+ "data": {
131
+ "corpus_1": {
132
+ "path_align": null,
133
+ "path_src": "en-ko/train.cleaned.src",
134
+ "transforms": [
135
+ "sentencepiece",
136
+ "filtertoolong"
137
+ ],
138
+ "path_tgt": "en-ko/train.cleaned.tgt"
139
+ },
140
+ "valid": {
141
+ "path_align": null,
142
+ "path_src": "en-ko/dev.src",
143
+ "transforms": [
144
+ "sentencepiece",
145
+ "filtertoolong"
146
+ ],
147
+ "path_tgt": "en-ko/dev.tgt"
148
+ }
149
+ }
150
+ }
eole-model/model.00.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8004dac673c79631d277735cb9d9b8b9418543c7d8c9496e7aa3165ed3ba9517
3
+ size 721690008
eole-model/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af8530438e3c8ccbd9a8f8d0247402a233ec52ddd00398d9e028e8a68629d25b
3
+ size 356561850
eole-model/src.spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec0fe572b92a529c3fcd8d411f39667ae3cb83ad1a4e41c75f4ad48ea99f5925
3
+ size 583195
eole-model/tgt.spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:70eb68076fe5c8ae7d8b7370aee0a8e713d3dd280d0359a4cfae3890313502dd
3
+ size 570981
eole-model/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb5463eeffda398b93efb809168410a194b94d05628ee976a7ab0b50430c1c79
3
+ size 360796810
source_vocabulary.json ADDED
The diff for this file is too large to render. See raw diff
 
src.spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec0fe572b92a529c3fcd8d411f39667ae3cb83ad1a4e41c75f4ad48ea99f5925
3
+ size 583195
target_vocabulary.json ADDED
The diff for this file is too large to render. See raw diff
 
tgt.spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:70eb68076fe5c8ae7d8b7370aee0a8e713d3dd280d0359a4cfae3890313502dd
3
+ size 570981