Upload Transactor AIBA - Multilingual Banking Transaction NER Model
Browse files- README.md +176 -0
- config.json +80 -0
- label_mapping.json +52 -0
- model.safetensors +3 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +56 -0
- training_args.bin +3 -0
- training_config.json +8 -0
- vocab.txt +0 -0
README.md
ADDED
|
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
- ru
|
| 5 |
+
- multilingual
|
| 6 |
+
license: apache-2.0
|
| 7 |
+
tags:
|
| 8 |
+
- token-classification
|
| 9 |
+
- ner
|
| 10 |
+
- named-entity-recognition
|
| 11 |
+
- banking
|
| 12 |
+
- transactions
|
| 13 |
+
- financial
|
| 14 |
+
- multilingual
|
| 15 |
+
- bert
|
| 16 |
+
datasets:
|
| 17 |
+
- custom
|
| 18 |
+
metrics:
|
| 19 |
+
- precision
|
| 20 |
+
- recall
|
| 21 |
+
- f1
|
| 22 |
+
- seqeval
|
| 23 |
+
widget:
|
| 24 |
+
- text: "Transfer 12.5mln USD to Apex Industries account 27109477752047116719 INN 123456789 bank code 01234 for consulting"
|
| 25 |
+
- text: "Send 150k RUB to ООО Ромашка счет 40817810099910004312 ИНН 987654321 за услуги"
|
| 26 |
+
- text: "Show completed transactions from 01.12.2024 to 15.12.2024"
|
| 27 |
+
pipeline_tag: token-classification
|
| 28 |
+
---
|
| 29 |
+
|
| 30 |
+
# Transactor AIBA - Banking Transaction NER Model
|
| 31 |
+
|
| 32 |
+
## Model Description
|
| 33 |
+
|
| 34 |
+
**Transactor AIBA** is a multilingual Named Entity Recognition (NER) model fine-tuned on `google-bert/bert-base-multilingual-cased` for extracting entities from banking and financial transaction texts. The model supports both English and Russian languages.
|
| 35 |
+
|
| 36 |
+
## Intended Use
|
| 37 |
+
|
| 38 |
+
This model is designed to extract key entities from banking transaction requests, including:
|
| 39 |
+
- Transaction amounts and currencies
|
| 40 |
+
- Account numbers and bank codes
|
| 41 |
+
- Tax identification numbers (INN)
|
| 42 |
+
- Recipient/sender information
|
| 43 |
+
- Transaction purposes
|
| 44 |
+
- Dates and time periods
|
| 45 |
+
|
| 46 |
+
## Entity Types
|
| 47 |
+
|
| 48 |
+
The model recognizes the following entity types:
|
| 49 |
+
|
| 50 |
+
- `amount`
|
| 51 |
+
- `bank_code`
|
| 52 |
+
- `currency`
|
| 53 |
+
- `date`
|
| 54 |
+
- `description`
|
| 55 |
+
- `end_date`
|
| 56 |
+
- `receiver_hr`
|
| 57 |
+
- `receiver_inn`
|
| 58 |
+
- `receiver_name`
|
| 59 |
+
- `start_date`
|
| 60 |
+
- `status`
|
| 61 |
+
|
| 62 |
+
## Training Data
|
| 63 |
+
|
| 64 |
+
- **Base Model**: `google-bert/bert-base-multilingual-cased`
|
| 65 |
+
- **Training Samples**: 200,015
|
| 66 |
+
- **Validation Samples**: 35,297
|
| 67 |
+
- **Dataset**: Custom banking transaction dataset with multilingual support
|
| 68 |
+
|
| 69 |
+
## Training Details
|
| 70 |
+
|
| 71 |
+
- **Epochs**: 5
|
| 72 |
+
- **Batch Size**: 16
|
| 73 |
+
- **Learning Rate**: 2e-5
|
| 74 |
+
- **Optimizer**: AdamW
|
| 75 |
+
- **LR Scheduler**: Linear with warmup
|
| 76 |
+
- **Framework**: Transformers + PyTorch
|
| 77 |
+
|
| 78 |
+
## Performance
|
| 79 |
+
|
| 80 |
+
- **Validation F1 Score**: 0.9999
|
| 81 |
+
|
| 82 |
+
## Usage
|
| 83 |
+
|
| 84 |
+
```python
|
| 85 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
| 86 |
+
import torch
|
| 87 |
+
|
| 88 |
+
# Load model and tokenizer
|
| 89 |
+
model_name = "primel/transactor-aiba"
|
| 90 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 91 |
+
model = AutoModelForTokenClassification.from_pretrained(model_name)
|
| 92 |
+
|
| 93 |
+
# Example prediction
|
| 94 |
+
def extract_entities(text):
|
| 95 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=128)
|
| 96 |
+
|
| 97 |
+
with torch.no_grad():
|
| 98 |
+
outputs = model(**inputs)
|
| 99 |
+
predictions = torch.argmax(outputs.logits, dim=2)
|
| 100 |
+
|
| 101 |
+
tokens = tokenizer.convert_ids_to_tokens(inputs['input_ids'][0])
|
| 102 |
+
predicted_labels = [model.config.id2label[pred.item()] for pred in predictions[0]]
|
| 103 |
+
|
| 104 |
+
entities = {}
|
| 105 |
+
current_entity = None
|
| 106 |
+
current_tokens = []
|
| 107 |
+
|
| 108 |
+
for token, label in zip(tokens, predicted_labels):
|
| 109 |
+
if token in ['[CLS]', '[SEP]', '[PAD]']:
|
| 110 |
+
continue
|
| 111 |
+
|
| 112 |
+
if label.startswith('B-'):
|
| 113 |
+
if current_entity and current_tokens:
|
| 114 |
+
entity_text = tokenizer.convert_tokens_to_string(current_tokens)
|
| 115 |
+
entities[current_entity] = entity_text.strip()
|
| 116 |
+
current_entity = label[2:]
|
| 117 |
+
current_tokens = [token]
|
| 118 |
+
elif label.startswith('I-') and current_entity == label[2:]:
|
| 119 |
+
current_tokens.append(token)
|
| 120 |
+
else:
|
| 121 |
+
if current_entity and current_tokens:
|
| 122 |
+
entity_text = tokenizer.convert_tokens_to_string(current_tokens)
|
| 123 |
+
entities[current_entity] = entity_text.strip()
|
| 124 |
+
current_entity = None
|
| 125 |
+
current_tokens = []
|
| 126 |
+
|
| 127 |
+
if current_entity and current_tokens:
|
| 128 |
+
entity_text = tokenizer.convert_tokens_to_string(current_tokens)
|
| 129 |
+
entities[current_entity] = entity_text.strip()
|
| 130 |
+
|
| 131 |
+
return entities
|
| 132 |
+
|
| 133 |
+
# Example
|
| 134 |
+
text = "Transfer 12.5mln USD to Apex Industries account 27109477752047116719"
|
| 135 |
+
print(extract_entities(text))
|
| 136 |
+
```
|
| 137 |
+
|
| 138 |
+
## Example Outputs
|
| 139 |
+
|
| 140 |
+
**Input**: "Transfer 12.5mln USD to Apex Industries account 27109477752047116719 INN 123456789 bank code 01234 for consulting"
|
| 141 |
+
|
| 142 |
+
**Output**:
|
| 143 |
+
```python
|
| 144 |
+
{
|
| 145 |
+
"amount": "12.5mln",
|
| 146 |
+
"currency": "USD",
|
| 147 |
+
"receiver_name": "Apex Industries",
|
| 148 |
+
"receiver_hr": "27109477752047116719",
|
| 149 |
+
"receiver_inn": "123456789",
|
| 150 |
+
"receiver_bank_code": "01234",
|
| 151 |
+
"purpose": "consulting"
|
| 152 |
+
}
|
| 153 |
+
```
|
| 154 |
+
|
| 155 |
+
## Limitations
|
| 156 |
+
|
| 157 |
+
- The model is trained on synthetic and curated banking transaction data
|
| 158 |
+
- Performance may vary on real-world data with different formatting
|
| 159 |
+
- Best results are achieved with transaction texts similar to training distribution
|
| 160 |
+
- May require fine-tuning for specific banking systems or regional variations
|
| 161 |
+
|
| 162 |
+
## License
|
| 163 |
+
|
| 164 |
+
Apache 2.0
|
| 165 |
+
|
| 166 |
+
## Citation
|
| 167 |
+
|
| 168 |
+
```bibtex
|
| 169 |
+
@misc{transactor-aiba,
|
| 170 |
+
author = {Primel},
|
| 171 |
+
title = {Transactor AIBA: Multilingual Banking Transaction NER},
|
| 172 |
+
year = {2025},
|
| 173 |
+
publisher = {Hugging Face},
|
| 174 |
+
howpublished = {\url{https://huggingface.co/primel/transactor-aiba}}
|
| 175 |
+
}
|
| 176 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"BertForTokenClassification"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.1,
|
| 6 |
+
"classifier_dropout": null,
|
| 7 |
+
"directionality": "bidi",
|
| 8 |
+
"dtype": "float32",
|
| 9 |
+
"hidden_act": "gelu",
|
| 10 |
+
"hidden_dropout_prob": 0.1,
|
| 11 |
+
"hidden_size": 768,
|
| 12 |
+
"id2label": {
|
| 13 |
+
"0": "B-amount",
|
| 14 |
+
"1": "B-bank_code",
|
| 15 |
+
"2": "B-currency",
|
| 16 |
+
"3": "B-date",
|
| 17 |
+
"4": "B-description",
|
| 18 |
+
"5": "B-end_date",
|
| 19 |
+
"6": "B-receiver_hr",
|
| 20 |
+
"7": "B-receiver_inn",
|
| 21 |
+
"8": "B-receiver_name",
|
| 22 |
+
"9": "B-start_date",
|
| 23 |
+
"10": "B-status",
|
| 24 |
+
"11": "I-amount",
|
| 25 |
+
"12": "I-bank_code",
|
| 26 |
+
"13": "I-currency",
|
| 27 |
+
"14": "I-date",
|
| 28 |
+
"15": "I-description",
|
| 29 |
+
"16": "I-end_date",
|
| 30 |
+
"17": "I-receiver_hr",
|
| 31 |
+
"18": "I-receiver_inn",
|
| 32 |
+
"19": "I-receiver_name",
|
| 33 |
+
"20": "I-start_date",
|
| 34 |
+
"21": "I-status",
|
| 35 |
+
"22": "O"
|
| 36 |
+
},
|
| 37 |
+
"initializer_range": 0.02,
|
| 38 |
+
"intermediate_size": 3072,
|
| 39 |
+
"label2id": {
|
| 40 |
+
"B-amount": 0,
|
| 41 |
+
"B-bank_code": 1,
|
| 42 |
+
"B-currency": 2,
|
| 43 |
+
"B-date": 3,
|
| 44 |
+
"B-description": 4,
|
| 45 |
+
"B-end_date": 5,
|
| 46 |
+
"B-receiver_hr": 6,
|
| 47 |
+
"B-receiver_inn": 7,
|
| 48 |
+
"B-receiver_name": 8,
|
| 49 |
+
"B-start_date": 9,
|
| 50 |
+
"B-status": 10,
|
| 51 |
+
"I-amount": 11,
|
| 52 |
+
"I-bank_code": 12,
|
| 53 |
+
"I-currency": 13,
|
| 54 |
+
"I-date": 14,
|
| 55 |
+
"I-description": 15,
|
| 56 |
+
"I-end_date": 16,
|
| 57 |
+
"I-receiver_hr": 17,
|
| 58 |
+
"I-receiver_inn": 18,
|
| 59 |
+
"I-receiver_name": 19,
|
| 60 |
+
"I-start_date": 20,
|
| 61 |
+
"I-status": 21,
|
| 62 |
+
"O": 22
|
| 63 |
+
},
|
| 64 |
+
"layer_norm_eps": 1e-12,
|
| 65 |
+
"max_position_embeddings": 512,
|
| 66 |
+
"model_type": "bert",
|
| 67 |
+
"num_attention_heads": 12,
|
| 68 |
+
"num_hidden_layers": 12,
|
| 69 |
+
"pad_token_id": 0,
|
| 70 |
+
"pooler_fc_size": 768,
|
| 71 |
+
"pooler_num_attention_heads": 12,
|
| 72 |
+
"pooler_num_fc_layers": 3,
|
| 73 |
+
"pooler_size_per_head": 128,
|
| 74 |
+
"pooler_type": "first_token_transform",
|
| 75 |
+
"position_embedding_type": "absolute",
|
| 76 |
+
"transformers_version": "4.57.1",
|
| 77 |
+
"type_vocab_size": 2,
|
| 78 |
+
"use_cache": true,
|
| 79 |
+
"vocab_size": 119547
|
| 80 |
+
}
|
label_mapping.json
ADDED
|
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"tag2id": {
|
| 3 |
+
"B-amount": 0,
|
| 4 |
+
"B-bank_code": 1,
|
| 5 |
+
"B-currency": 2,
|
| 6 |
+
"B-date": 3,
|
| 7 |
+
"B-description": 4,
|
| 8 |
+
"B-end_date": 5,
|
| 9 |
+
"B-receiver_hr": 6,
|
| 10 |
+
"B-receiver_inn": 7,
|
| 11 |
+
"B-receiver_name": 8,
|
| 12 |
+
"B-start_date": 9,
|
| 13 |
+
"B-status": 10,
|
| 14 |
+
"I-amount": 11,
|
| 15 |
+
"I-bank_code": 12,
|
| 16 |
+
"I-currency": 13,
|
| 17 |
+
"I-date": 14,
|
| 18 |
+
"I-description": 15,
|
| 19 |
+
"I-end_date": 16,
|
| 20 |
+
"I-receiver_hr": 17,
|
| 21 |
+
"I-receiver_inn": 18,
|
| 22 |
+
"I-receiver_name": 19,
|
| 23 |
+
"I-start_date": 20,
|
| 24 |
+
"I-status": 21,
|
| 25 |
+
"O": 22
|
| 26 |
+
},
|
| 27 |
+
"id2tag": {
|
| 28 |
+
"0": "B-amount",
|
| 29 |
+
"1": "B-bank_code",
|
| 30 |
+
"2": "B-currency",
|
| 31 |
+
"3": "B-date",
|
| 32 |
+
"4": "B-description",
|
| 33 |
+
"5": "B-end_date",
|
| 34 |
+
"6": "B-receiver_hr",
|
| 35 |
+
"7": "B-receiver_inn",
|
| 36 |
+
"8": "B-receiver_name",
|
| 37 |
+
"9": "B-start_date",
|
| 38 |
+
"10": "B-status",
|
| 39 |
+
"11": "I-amount",
|
| 40 |
+
"12": "I-bank_code",
|
| 41 |
+
"13": "I-currency",
|
| 42 |
+
"14": "I-date",
|
| 43 |
+
"15": "I-description",
|
| 44 |
+
"16": "I-end_date",
|
| 45 |
+
"17": "I-receiver_hr",
|
| 46 |
+
"18": "I-receiver_inn",
|
| 47 |
+
"19": "I-receiver_name",
|
| 48 |
+
"20": "I-start_date",
|
| 49 |
+
"21": "I-status",
|
| 50 |
+
"22": "O"
|
| 51 |
+
}
|
| 52 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4b1f78ffa7bcf7a93fcdb56fda925503257074b7ba3ef383e047d934c940d4f9
|
| 3 |
+
size 709145500
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": "[CLS]",
|
| 3 |
+
"mask_token": "[MASK]",
|
| 4 |
+
"pad_token": "[PAD]",
|
| 5 |
+
"sep_token": "[SEP]",
|
| 6 |
+
"unk_token": "[UNK]"
|
| 7 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"100": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"101": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"102": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"103": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": false,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_lower_case": false,
|
| 47 |
+
"extra_special_tokens": {},
|
| 48 |
+
"mask_token": "[MASK]",
|
| 49 |
+
"model_max_length": 512,
|
| 50 |
+
"pad_token": "[PAD]",
|
| 51 |
+
"sep_token": "[SEP]",
|
| 52 |
+
"strip_accents": null,
|
| 53 |
+
"tokenize_chinese_chars": true,
|
| 54 |
+
"tokenizer_class": "BertTokenizer",
|
| 55 |
+
"unk_token": "[UNK]"
|
| 56 |
+
}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d41dd6c606f9b015995295fdb80c0ab243a2ace6beec1bde55e410d7efa85a40
|
| 3 |
+
size 5777
|
training_config.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model_name": "google-bert/bert-base-multilingual-cased",
|
| 3 |
+
"num_train_samples": 200015,
|
| 4 |
+
"num_val_samples": 35297,
|
| 5 |
+
"num_epochs": 5,
|
| 6 |
+
"batch_size": 16,
|
| 7 |
+
"validation_f1": 0.9998642818660011
|
| 8 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|