Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
Subscribe3DMolFormer: A Dual-channel Framework for Structure-based Drug Discovery
Structure-based drug discovery, encompassing the tasks of protein-ligand docking and pocket-aware 3D drug design, represents a core challenge in drug discovery. However, no existing work can deal with both tasks to effectively leverage the duality between them, and current methods for each task are hindered by challenges in modeling 3D information and the limitations of available data. To address these issues, we propose 3DMolFormer, a unified dual-channel transformer-based framework applicable to both docking and 3D drug design tasks, which exploits their duality by utilizing docking functionalities within the drug design process. Specifically, we represent 3D pocket-ligand complexes using parallel sequences of discrete tokens and continuous numbers, and we design a corresponding dual-channel transformer model to handle this format, thereby overcoming the challenges of 3D information modeling. Additionally, we alleviate data limitations through large-scale pre-training on a mixed dataset, followed by supervised and reinforcement learning fine-tuning techniques respectively tailored for the two tasks. Experimental results demonstrate that 3DMolFormer outperforms previous approaches in both protein-ligand docking and pocket-aware 3D drug design, highlighting its promising application in structure-based drug discovery. The code is available at: https://github.com/HXYfighter/3DMolFormer .
Empower Structure-Based Molecule Optimization with Gradient Guided Bayesian Flow Networks
Structure-Based molecule optimization (SBMO) aims to optimize molecules with both continuous coordinates and discrete types against protein targets. A promising direction is to exert gradient guidance on generative models given its remarkable success in images, but it is challenging to guide discrete data and risks inconsistencies between modalities. To this end, we leverage a continuous and differentiable space derived through Bayesian inference, presenting Molecule Joint Optimization (MolJO), the gradient-based SBMO framework that facilitates joint guidance signals across different modalities while preserving SE(3)-equivariance. We introduce a novel backward correction strategy that optimizes within a sliding window of the past histories, allowing for a seamless trade-off between explore-and-exploit during optimization. MolJO achieves state-of-the-art performance on CrossDocked2020 benchmark (Success Rate 51.3%, Vina Dock -9.05 and SA 0.78), more than 4x improvement in Success Rate compared to the gradient-based counterpart, and 2x "Me-Better" Ratio as much as 3D baselines. Furthermore, we extend MolJO to a wide range of optimization settings, including multi-objective optimization and challenging tasks in drug design such as R-group optimization and scaffold hopping, further underscoring its versatility. Code is available at https://github.com/AlgoMole/MolCRAFT.
DecompOpt: Controllable and Decomposed Diffusion Models for Structure-based Molecular Optimization
Recently, 3D generative models have shown promising performances in structure-based drug design by learning to generate ligands given target binding sites. However, only modeling the target-ligand distribution can hardly fulfill one of the main goals in drug discovery -- designing novel ligands with desired properties, e.g., high binding affinity, easily synthesizable, etc. This challenge becomes particularly pronounced when the target-ligand pairs used for training do not align with these desired properties. Moreover, most existing methods aim at solving de novo design task, while many generative scenarios requiring flexible controllability, such as R-group optimization and scaffold hopping, have received little attention. In this work, we propose DecompOpt, a structure-based molecular optimization method based on a controllable and decomposed diffusion model. DecompOpt presents a new generation paradigm which combines optimization with conditional diffusion models to achieve desired properties while adhering to the molecular grammar. Additionally, DecompOpt offers a unified framework covering both de novo design and controllable generation. To achieve so, ligands are decomposed into substructures which allows fine-grained control and local optimization. Experiments show that DecompOpt can efficiently generate molecules with improved properties than strong de novo baselines, and demonstrate great potential in controllable generation tasks.
RDesign: Hierarchical Data-efficient Representation Learning for Tertiary Structure-based RNA Design
While artificial intelligence has made remarkable strides in revealing the relationship between biological macromolecules' primary sequence and tertiary structure, designing RNA sequences based on specified tertiary structures remains challenging. Though existing approaches in protein design have thoroughly explored structure-to-sequence dependencies in proteins, RNA design still confronts difficulties due to structural complexity and data scarcity. Moreover, direct transplantation of protein design methodologies into RNA design fails to achieve satisfactory outcomes although sharing similar structural components. In this study, we aim to systematically construct a data-driven RNA design pipeline. We crafted a large, well-curated benchmark dataset and designed a comprehensive structural modeling approach to represent the complex RNA tertiary structure. More importantly, we proposed a hierarchical data-efficient representation learning framework that learns structural representations through contrastive learning at both cluster-level and sample-level to fully leverage the limited data. By constraining data representations within a limited hyperspherical space, the intrinsic relationships between data points could be explicitly imposed. Moreover, we incorporated extracted secondary structures with base pairs as prior knowledge to facilitate the RNA design process. Extensive experiments demonstrate the effectiveness of our proposed method, providing a reliable baseline for future RNA design tasks. The source code and benchmark dataset are available at https://github.com/A4Bio/RDesign.
Emergent temporal abstractions in autoregressive models enable hierarchical reinforcement learning
Large-scale autoregressive models pretrained on next-token prediction and finetuned with reinforcement learning (RL) have achieved unprecedented success on many problem domains. During RL, these models explore by generating new outputs, one token at a time. However, sampling actions token-by-token can result in highly inefficient learning, particularly when rewards are sparse. Here, we show that it is possible to overcome this problem by acting and exploring within the internal representations of an autoregressive model. Specifically, to discover temporally-abstract actions, we introduce a higher-order, non-causal sequence model whose outputs control the residual stream activations of a base autoregressive model. On grid world and MuJoCo-based tasks with hierarchical structure, we find that the higher-order model learns to compress long activation sequence chunks onto internal controllers. Critically, each controller executes a sequence of behaviorally meaningful actions that unfold over long timescales and are accompanied with a learned termination condition, such that composing multiple controllers over time leads to efficient exploration on novel tasks. We show that direct internal controller reinforcement, a process we term "internal RL", enables learning from sparse rewards in cases where standard RL finetuning fails. Our results demonstrate the benefits of latent action generation and reinforcement in autoregressive models, suggesting internal RL as a promising avenue for realizing hierarchical RL within foundation models.
PepTune: De Novo Generation of Therapeutic Peptides with Multi-Objective-Guided Discrete Diffusion
Peptide therapeutics, a major class of medicines, have achieved remarkable success across diseases such as diabetes and cancer, with landmark examples such as GLP-1 receptor agonists revolutionizing the treatment of type-2 diabetes and obesity. Despite their success, designing peptides that satisfy multiple conflicting objectives, such as target binding affinity, solubility, and membrane permeability, remains a major challenge. Classical drug development and structure-based design are ineffective for such tasks, as they fail to optimize global functional properties critical for therapeutic efficacy. Existing generative frameworks are largely limited to continuous spaces, unconditioned outputs, or single-objective guidance, making them unsuitable for discrete sequence optimization across multiple properties. To address this, we present PepTune, a multi-objective discrete diffusion model for the simultaneous generation and optimization of therapeutic peptide SMILES. Built on the Masked Discrete Language Model (MDLM) framework, PepTune ensures valid peptide structures with state-dependent masking schedules and penalty-based objectives. To guide the diffusion process, we propose a Monte Carlo Tree Search (MCTS)-based strategy that balances exploration and exploitation to iteratively refine Pareto-optimal sequences. MCTS integrates classifier-based rewards with search-tree expansion, overcoming gradient estimation challenges and data sparsity inherent to discrete spaces. Using PepTune, we generate diverse, chemically-modified peptides optimized for multiple therapeutic properties, including target binding affinity, membrane permeability, solubility, hemolysis, and non-fouling characteristics on various disease-relevant targets. In total, our results demonstrate that MCTS-guided discrete diffusion is a powerful and modular approach for multi-objective sequence design in discrete state spaces.
FilterPrompt: Guiding Image Transfer in Diffusion Models
In controllable generation tasks, flexibly manipulating the generated images to attain a desired appearance or structure based on a single input image cue remains a critical and longstanding challenge. Achieving this requires the effective decoupling of key attributes within the input image data, aiming to get representations accurately. Previous research has predominantly concentrated on disentangling image attributes within feature space. However, the complex distribution present in real-world data often makes the application of such decoupling algorithms to other datasets challenging. Moreover, the granularity of control over feature encoding frequently fails to meet specific task requirements. Upon scrutinizing the characteristics of various generative models, we have observed that the input sensitivity and dynamic evolution properties of the diffusion model can be effectively fused with the explicit decomposition operation in pixel space. This integration enables the image processing operations performed in pixel space for a specific feature distribution of the input image, and can achieve the desired control effect in the generated results. Therefore, we propose FilterPrompt, an approach to enhance the model control effect. It can be universally applied to any diffusion model, allowing users to adjust the representation of specific image features in accordance with task requirements, thereby facilitating more precise and controllable generation outcomes. In particular, our designed experiments demonstrate that the FilterPrompt optimizes feature correlation, mitigates content conflicts during the generation process, and enhances the model's control capability.
A Systematic Study of Joint Representation Learning on Protein Sequences and Structures
Learning effective protein representations is critical in a variety of tasks in biology such as predicting protein functions. Recent sequence representation learning methods based on Protein Language Models (PLMs) excel in sequence-based tasks, but their direct adaptation to tasks involving protein structures remains a challenge. In contrast, structure-based methods leverage 3D structural information with graph neural networks and geometric pre-training methods show potential in function prediction tasks, but still suffers from the limited number of available structures. To bridge this gap, our study undertakes a comprehensive exploration of joint protein representation learning by integrating a state-of-the-art PLM (ESM-2) with distinct structure encoders (GVP, GearNet, CDConv). We introduce three representation fusion strategies and explore different pre-training techniques. Our method achieves significant improvements over existing sequence- and structure-based methods, setting new state-of-the-art for function annotation. This study underscores several important design choices for fusing protein sequence and structure information. Our implementation is available at https://github.com/DeepGraphLearning/ESM-GearNet.
Efficient Evolutionary Search Over Chemical Space with Large Language Models
Molecular discovery, when formulated as an optimization problem, presents significant computational challenges because optimization objectives can be non-differentiable. Evolutionary Algorithms (EAs), often used to optimize black-box objectives in molecular discovery, traverse chemical space by performing random mutations and crossovers, leading to a large number of expensive objective evaluations. In this work, we ameliorate this shortcoming by incorporating chemistry-aware Large Language Models (LLMs) into EAs. Namely, we redesign crossover and mutation operations in EAs using LLMs trained on large corpora of chemical information. We perform extensive empirical studies on both commercial and open-source models on multiple tasks involving property optimization, molecular rediscovery, and structure-based drug design, demonstrating that the joint usage of LLMs with EAs yields superior performance over all baseline models across single- and multi-objective settings. We demonstrate that our algorithm improves both the quality of the final solution and convergence speed, thereby reducing the number of required objective evaluations. Our code is available at http://github.com/zoom-wang112358/MOLLEO
Does Table Source Matter? Benchmarking and Improving Multimodal Scientific Table Understanding and Reasoning
Recent large language models (LLMs) have advanced table understanding capabilities but rely on converting tables into text sequences. While multimodal large language models (MLLMs) enable direct visual processing, they face limitations in handling scientific tables due to fixed input image resolutions and insufficient numerical reasoning capabilities. We present a comprehensive framework for multimodal scientific table understanding and reasoning with dynamic input image resolutions. Our framework consists of three key components: (1) MMSci-Pre, a domain-specific table structure learning dataset of 52K scientific table structure recognition samples, (2) MMSci-Ins, an instruction tuning dataset with 12K samples across three table-based tasks, and (3) MMSci-Eval, a benchmark with 3,114 testing samples specifically designed to evaluate numerical reasoning capabilities. Extensive experiments demonstrate that our domain-specific approach with 52K scientific table images achieves superior performance compared to 150K general-domain tables, highlighting the importance of data quality over quantity. Our proposed table-based MLLMs with dynamic input resolutions show significant improvements in both general table understanding and numerical reasoning capabilities, with strong generalisation to held-out datasets. Our code and data are publicly available at https://github.com/Bernard-Yang/MMSci_Table.
GPSFormer: A Global Perception and Local Structure Fitting-based Transformer for Point Cloud Understanding
Despite the significant advancements in pre-training methods for point cloud understanding, directly capturing intricate shape information from irregular point clouds without reliance on external data remains a formidable challenge. To address this problem, we propose GPSFormer, an innovative Global Perception and Local Structure Fitting-based Transformer, which learns detailed shape information from point clouds with remarkable precision. The core of GPSFormer is the Global Perception Module (GPM) and the Local Structure Fitting Convolution (LSFConv). Specifically, GPM utilizes Adaptive Deformable Graph Convolution (ADGConv) to identify short-range dependencies among similar features in the feature space and employs Multi-Head Attention (MHA) to learn long-range dependencies across all positions within the feature space, ultimately enabling flexible learning of contextual representations. Inspired by Taylor series, we design LSFConv, which learns both low-order fundamental and high-order refinement information from explicitly encoded local geometric structures. Integrating the GPM and LSFConv as fundamental components, we construct GPSFormer, a cutting-edge Transformer that effectively captures global and local structures of point clouds. Extensive experiments validate GPSFormer's effectiveness in three point cloud tasks: shape classification, part segmentation, and few-shot learning. The code of GPSFormer is available at https://github.com/changshuowang/GPSFormer.
Multi-modal Molecule Structure-text Model for Text-based Retrieval and Editing
There is increasing adoption of artificial intelligence in drug discovery. However, existing studies use machine learning to mainly utilize the chemical structures of molecules but ignore the vast textual knowledge available in chemistry. Incorporating textual knowledge enables us to realize new drug design objectives, adapt to text-based instructions and predict complex biological activities. Here we present a multi-modal molecule structure-text model, MoleculeSTM, by jointly learning molecules' chemical structures and textual descriptions via a contrastive learning strategy. To train MoleculeSTM, we construct a large multi-modal dataset, namely, PubChemSTM, with over 280,000 chemical structure-text pairs. To demonstrate the effectiveness and utility of MoleculeSTM, we design two challenging zero-shot tasks based on text instructions, including structure-text retrieval and molecule editing. MoleculeSTM has two main properties: open vocabulary and compositionality via natural language. In experiments, MoleculeSTM obtains the state-of-the-art generalization ability to novel biochemical concepts across various benchmarks.
Task Memory Engine (TME): A Structured Memory Framework with Graph-Aware Extensions for Multi-Step LLM Agent Tasks
Large Language Models (LLMs) are increasingly used as autonomous agents for multi-step tasks. However, most existing frameworks fail to maintain a structured understanding of the task state, often relying on linear prompt concatenation or shallow memory buffers. This leads to brittle performance, frequent hallucinations, and poor long-range coherence. In this work, we propose the Task Memory Engine (TME), a lightweight and structured memory module that tracks task execution using a hierarchical Task Memory Tree (TMT). Each node in the tree corresponds to a task step, storing relevant input, output, status, and sub-task relationships. We introduce a prompt synthesis method that dynamically generates LLM prompts based on the active node path, significantly improving execution consistency and contextual grounding. Through case studies and comparative experiments on multi-step agent tasks, we demonstrate that TME leads to better task completion accuracy and more interpretable behavior with minimal implementation overhead. A reference implementation of the core TME components is available at https://github.com/biubiutomato/TME-Agent, including basic examples and structured memory integration. While the current implementation uses a tree-based structure, TME is designed to be graph-aware, supporting reusable substeps, converging task paths, and shared dependencies. This lays the groundwork for future DAG-based memory architectures.
OmniDataComposer: A Unified Data Structure for Multimodal Data Fusion and Infinite Data Generation
This paper presents OmniDataComposer, an innovative approach for multimodal data fusion and unlimited data generation with an intent to refine and uncomplicate interplay among diverse data modalities. Coming to the core breakthrough, it introduces a cohesive data structure proficient in processing and merging multimodal data inputs, which include video, audio, and text. Our crafted algorithm leverages advancements across multiple operations such as video/image caption extraction, dense caption extraction, Automatic Speech Recognition (ASR), Optical Character Recognition (OCR), Recognize Anything Model(RAM), and object tracking. OmniDataComposer is capable of identifying over 6400 categories of objects, substantially broadening the spectrum of visual information. It amalgamates these diverse modalities, promoting reciprocal enhancement among modalities and facilitating cross-modal data correction. The final output metamorphoses each video input into an elaborate sequential document, virtually transmuting videos into thorough narratives, making them easier to be processed by large language models. Future prospects include optimizing datasets for each modality to encourage unlimited data generation. This robust base will offer priceless insights to models like ChatGPT, enabling them to create higher quality datasets for video captioning and easing question-answering tasks based on video content. OmniDataComposer inaugurates a new stage in multimodal learning, imparting enormous potential for augmenting AI's understanding and generation of complex, real-world data.
Adapting Decoder-Based Language Models for Diverse Encoder Downstream Tasks
Decoder-based transformers, while revolutionizing language modeling and scaling to immense sizes, have not completely overtaken encoder-heavy architectures in natural language processing. Specifically, encoder-only models remain dominant in tasks like classification, regression, and ranking. This is primarily due to the inherent structure of decoder-based models, which limits their direct applicability to these tasks. In this paper, we introduce Gemma Encoder, adapting the powerful Gemma decoder model to an encoder architecture, thereby unlocking its potential for a wider range of non-generative applications. To optimize the adaptation from decoder to encoder, we systematically analyze various pooling strategies, attention mechanisms, and hyperparameters (e.g., dropout rate). Furthermore, we benchmark Gemma Encoder against established approaches on the GLUE benchmarks, and MS MARCO ranking benchmark, demonstrating its effectiveness and versatility.
Graph-based Document Structure Analysis
When reading a document, glancing at the spatial layout of a document is an initial step to understand it roughly. Traditional document layout analysis (DLA) methods, however, offer only a superficial parsing of documents, focusing on basic instance detection and often failing to capture the nuanced spatial and logical relations between instances. These limitations hinder DLA-based models from achieving a gradually deeper comprehension akin to human reading. In this work, we propose a novel graph-based Document Structure Analysis (gDSA) task. This task requires that model not only detects document elements but also generates spatial and logical relations in form of a graph structure, allowing to understand documents in a holistic and intuitive manner. For this new task, we construct a relation graph-based document structure analysis dataset (GraphDoc) with 80K document images and 4.13M relation annotations, enabling training models to complete multiple tasks like reading order, hierarchical structures analysis, and complex inter-element relation inference. Furthermore, a document relation graph generator (DRGG) is proposed to address the gDSA task, which achieves performance with 57.6% at [email protected] for a strong benchmark baseline on this novel task and dataset. We hope this graphical representation of document structure can mark an innovative advancement in document structure analysis and understanding. The new dataset and code will be made publicly available at https://yufanchen96.github.io/projects/GraphDoc.
Mixture of Experts Provably Detect and Learn the Latent Cluster Structure in Gradient-Based Learning
Mixture of Experts (MoE), an ensemble of specialized models equipped with a router that dynamically distributes each input to appropriate experts, has achieved successful results in the field of machine learning. However, theoretical understanding of this architecture is falling behind due to its inherent complexity. In this paper, we theoretically study the sample and runtime complexity of MoE following the stochastic gradient descent (SGD) when learning a regression task with an underlying cluster structure of single index models. On the one hand, we prove that a vanilla neural network fails in detecting such a latent organization as it can only process the problem as a whole. This is intrinsically related to the concept of information exponent which is low for each cluster, but increases when we consider the entire task. On the other hand, we show that a MoE succeeds in dividing this problem into easier subproblems by leveraging the ability of each expert to weakly recover the simpler function corresponding to an individual cluster. To the best of our knowledge, this work is among the first to explore the benefits of the MoE framework by examining its SGD dynamics in the context of nonlinear regression.
Increasing The Performance of Cognitively Inspired Data-Efficient Language Models via Implicit Structure Building
In this paper, we describe our submission to the BabyLM Challenge 2023 shared task on data-efficient language model (LM) pretraining (Warstadt et al., 2023). We train transformer-based masked language models that incorporate unsupervised predictions about hierarchical sentence structure into the model architecture. Concretely, we use the Structformer architecture (Shen et al., 2021) and variants thereof. StructFormer models have been shown to perform well on unsupervised syntactic induction based on limited pretraining data, and to yield performance improvements over a vanilla transformer architecture (Shen et al., 2021). Evaluation of our models on 39 tasks provided by the BabyLM challenge shows promising improvements of models that integrate a hierarchical bias into the architecture at some particular tasks, even though they fail to consistently outperform the RoBERTa baseline model provided by the shared task organizers on all tasks.
WiFo: Wireless Foundation Model for Channel Prediction
Channel prediction permits to acquire channel state information (CSI) without signaling overhead. However, almost all existing channel prediction methods necessitate the deployment of a dedicated model to accommodate a specific configuration. Leveraging the powerful modeling and multi-task learning capabilities of foundation models, we propose the first space-time-frequency (STF) wireless foundation model (WiFo) to address time-frequency channel prediction tasks in a one-for-all manner. Specifically, WiFo is initially pre-trained over massive and extensive diverse CSI datasets. Then, the model will be instantly used for channel prediction under various CSI configurations without any fine-tuning. We propose a masked autoencoder (MAE)-based network structure for WiFo to handle heterogeneous STF CSI data, and design several mask reconstruction tasks for self-supervised pre-training to capture the inherent 3D variations of CSI. To fully unleash its predictive power, we build a large-scale heterogeneous simulated CSI dataset consisting of 160K CSI samples for pre-training. Simulations validate its superior unified learning performance across multiple datasets and demonstrate its state-of-the-art (SOTA) zero-shot generalization performance via comparisons with other full-shot baselines.
When Two LLMs Debate, Both Think They'll Win
Can LLMs accurately adjust their confidence when facing opposition? Building on previous studies measuring calibration on static fact-based question-answering tasks, we evaluate Large Language Models (LLMs) in a dynamic, adversarial debate setting, uniquely combining two realistic factors: (a) a multi-turn format requiring models to update beliefs as new information emerges, and (b) a zero-sum structure to control for task-related uncertainty, since mutual high-confidence claims imply systematic overconfidence. We organized 60 three-round policy debates among ten state-of-the-art LLMs, with models privately rating their confidence (0-100) in winning after each round. We observed five concerning patterns: (1) Systematic overconfidence: models began debates with average initial confidence of 72.9% vs. a rational 50% baseline. (2) Confidence escalation: rather than reducing confidence as debates progressed, debaters increased their win probabilities, averaging 83% by the final round. (3) Mutual overestimation: in 61.7% of debates, both sides simultaneously claimed >=75% probability of victory, a logical impossibility. (4) Persistent self-debate bias: models debating identical copies increased confidence from 64.1% to 75.2%; even when explicitly informed their chance of winning was exactly 50%, confidence still rose (from 50.0% to 57.1%). (5) Misaligned private reasoning: models' private scratchpad thoughts sometimes differed from their public confidence ratings, raising concerns about faithfulness of chain-of-thought reasoning. These results suggest LLMs lack the ability to accurately self-assess or update their beliefs in dynamic, multi-turn tasks; a major concern as LLMs are now increasingly deployed without careful review in assistant and agentic roles. Code for our experiments is available at https://github.com/pradyuprasad/llms_overconfidence
Dynamic Snake Convolution based on Topological Geometric Constraints for Tubular Structure Segmentation
Accurate segmentation of topological tubular structures, such as blood vessels and roads, is crucial in various fields, ensuring accuracy and efficiency in downstream tasks. However, many factors complicate the task, including thin local structures and variable global morphologies. In this work, we note the specificity of tubular structures and use this knowledge to guide our DSCNet to simultaneously enhance perception in three stages: feature extraction, feature fusion, and loss constraint. First, we propose a dynamic snake convolution to accurately capture the features of tubular structures by adaptively focusing on slender and tortuous local structures. Subsequently, we propose a multi-view feature fusion strategy to complement the attention to features from multiple perspectives during feature fusion, ensuring the retention of important information from different global morphologies. Finally, a continuity constraint loss function, based on persistent homology, is proposed to constrain the topological continuity of the segmentation better. Experiments on 2D and 3D datasets show that our DSCNet provides better accuracy and continuity on the tubular structure segmentation task compared with several methods. Our codes will be publicly available.
Converse: A Tree-Based Modular Task-Oriented Dialogue System
Creating a system that can have meaningful conversations with humans to help accomplish tasks is one of the ultimate goals of Artificial Intelligence (AI). It has defined the meaning of AI since the beginning. A lot has been accomplished in this area recently, with voice assistant products entering our daily lives and chat bot systems becoming commonplace in customer service. At first glance there seems to be no shortage of options for dialogue systems. However, the frequently deployed dialogue systems today seem to all struggle with a critical weakness - they are hard to build and harder to maintain. At the core of the struggle is the need to script every single turn of interactions between the bot and the human user. This makes the dialogue systems more difficult to maintain as the tasks become more complex and more tasks are added to the system. In this paper, we propose Converse, a flexible tree-based modular task-oriented dialogue system. Converse uses an and-or tree structure to represent tasks and offers powerful multi-task dialogue management. Converse supports task dependency and task switching, which are unique features compared to other open-source dialogue frameworks. At the same time, Converse aims to make the bot building process easy and simple, for both professional and non-professional software developers. The code is available at https://github.com/salesforce/Converse.
Task-Oriented Diffusion Inversion for High-Fidelity Text-based Editing
Recent advancements in text-guided diffusion models have unlocked powerful image manipulation capabilities, yet balancing reconstruction fidelity and editability for real images remains a significant challenge. In this work, we introduce Task-Oriented Diffusion Inversion (TODInv), a novel framework that inverts and edits real images tailored to specific editing tasks by optimizing prompt embeddings within the extended \(P^*\) space. By leveraging distinct embeddings across different U-Net layers and time steps, TODInv seamlessly integrates inversion and editing through reciprocal optimization, ensuring both high fidelity and precise editability. This hierarchical editing mechanism categorizes tasks into structure, appearance, and global edits, optimizing only those embeddings unaffected by the current editing task. Extensive experiments on benchmark dataset reveal TODInv's superior performance over existing methods, delivering both quantitative and qualitative enhancements while showcasing its versatility with few-step diffusion model.
Node-Based Editing for Multimodal Generation of Text, Audio, Image, and Video
We present a node-based storytelling system for multimodal content generation. The system represents stories as graphs of nodes that can be expanded, edited, and iteratively refined through direct user edits and natural-language prompts. Each node can integrate text, images, audio, and video, allowing creators to compose multimodal narratives. A task selection agent routes between specialized generative tasks that handle story generation, node structure reasoning, node diagram formatting, and context generation. The interface supports targeted editing of individual nodes, automatic branching for parallel storylines, and node-based iterative refinement. Our results demonstrate that node-based editing supports control over narrative structure and iterative generation of text, images, audio, and video. We report quantitative outcomes on automatic story outline generation and qualitative observations of editing workflows. Finally, we discuss current limitations such as scalability to longer narratives and consistency across multiple nodes, and outline future work toward human-in-the-loop and user-centered creative AI tools.
Masked Spatio-Temporal Structure Prediction for Self-supervised Learning on Point Cloud Videos
Recently, the community has made tremendous progress in developing effective methods for point cloud video understanding that learn from massive amounts of labeled data. However, annotating point cloud videos is usually notoriously expensive. Moreover, training via one or only a few traditional tasks (e.g., classification) may be insufficient to learn subtle details of the spatio-temporal structure existing in point cloud videos. In this paper, we propose a Masked Spatio-Temporal Structure Prediction (MaST-Pre) method to capture the structure of point cloud videos without human annotations. MaST-Pre is based on spatio-temporal point-tube masking and consists of two self-supervised learning tasks. First, by reconstructing masked point tubes, our method is able to capture the appearance information of point cloud videos. Second, to learn motion, we propose a temporal cardinality difference prediction task that estimates the change in the number of points within a point tube. In this way, MaST-Pre is forced to model the spatial and temporal structure in point cloud videos. Extensive experiments on MSRAction-3D, NTU-RGBD, NvGesture, and SHREC'17 demonstrate the effectiveness of the proposed method.
HiBench: Benchmarking LLMs Capability on Hierarchical Structure Reasoning
Structure reasoning is a fundamental capability of large language models (LLMs), enabling them to reason about structured commonsense and answer multi-hop questions. However, existing benchmarks for structure reasoning mainly focus on horizontal and coordinate structures (e.g. graphs), overlooking the hierarchical relationships within them. Hierarchical structure reasoning is crucial for human cognition, particularly in memory organization and problem-solving. It also plays a key role in various real-world tasks, such as information extraction and decision-making. To address this gap, we propose HiBench, the first framework spanning from initial structure generation to final proficiency assessment, designed to benchmark the hierarchical reasoning capabilities of LLMs systematically. HiBench encompasses six representative scenarios, covering both fundamental and practical aspects, and consists of 30 tasks with varying hierarchical complexity, totaling 39,519 queries. To evaluate LLMs comprehensively, we develop five capability dimensions that depict different facets of hierarchical structure understanding. Through extensive evaluation of 20 LLMs from 10 model families, we reveal key insights into their capabilities and limitations: 1) existing LLMs show proficiency in basic hierarchical reasoning tasks; 2) they still struggle with more complex structures and implicit hierarchical representations, especially in structural modification and textual reasoning. Based on these findings, we create a small yet well-designed instruction dataset, which enhances LLMs' performance on HiBench by an average of 88.84\% (Llama-3.1-8B) and 31.38\% (Qwen2.5-7B) across all tasks. The HiBench dataset and toolkit are available here, https://github.com/jzzzzh/HiBench, to encourage evaluation.
PanoOcc: Unified Occupancy Representation for Camera-based 3D Panoptic Segmentation
Comprehensive modeling of the surrounding 3D world is key to the success of autonomous driving. However, existing perception tasks like object detection, road structure segmentation, depth & elevation estimation, and open-set object localization each only focus on a small facet of the holistic 3D scene understanding task. This divide-and-conquer strategy simplifies the algorithm development procedure at the cost of losing an end-to-end unified solution to the problem. In this work, we address this limitation by studying camera-based 3D panoptic segmentation, aiming to achieve a unified occupancy representation for camera-only 3D scene understanding. To achieve this, we introduce a novel method called PanoOcc, which utilizes voxel queries to aggregate spatiotemporal information from multi-frame and multi-view images in a coarse-to-fine scheme, integrating feature learning and scene representation into a unified occupancy representation. We have conducted extensive ablation studies to verify the effectiveness and efficiency of the proposed method. Our approach achieves new state-of-the-art results for camera-based semantic segmentation and panoptic segmentation on the nuScenes dataset. Furthermore, our method can be easily extended to dense occupancy prediction and has shown promising performance on the Occ3D benchmark. The code will be released at https://github.com/Robertwyq/PanoOcc.
A Two-stage Reinforcement Learning-based Approach for Multi-entity Task Allocation
Task allocation is a key combinatorial optimization problem, crucial for modern applications such as multi-robot cooperation and resource scheduling. Decision makers must allocate entities to tasks reasonably across different scenarios. However, traditional methods assume static attributes and numbers of tasks and entities, often relying on dynamic programming and heuristic algorithms for solutions. In reality, task allocation resembles Markov decision processes, with dynamically changing task and entity attributes. Thus, algorithms must dynamically allocate tasks based on their states. To address this issue, we propose a two-stage task allocation algorithm based on similarity, utilizing reinforcement learning to learn allocation strategies. The proposed pre-assign strategy allows entities to preselect appropriate tasks, effectively avoiding local optima and thereby better finding the optimal allocation. We also introduce an attention mechanism and a hyperparameter network structure to adapt to the changing number and attributes of entities and tasks, enabling our network structure to generalize to new tasks. Experimental results across multiple environments demonstrate that our algorithm effectively addresses the challenges of dynamic task allocation in practical applications. Compared to heuristic algorithms like genetic algorithms, our reinforcement learning approach better solves dynamic allocation problems and achieves zero-shot generalization to new tasks with good performance. The code is available at https://github.com/yk7333/TaskAllocation.
Bilinear MLPs enable weight-based mechanistic interpretability
A mechanistic understanding of how MLPs do computation in deep neural networks remains elusive. Current interpretability work can extract features from hidden activations over an input dataset but generally cannot explain how MLP weights construct features. One challenge is that element-wise nonlinearities introduce higher-order interactions and make it difficult to trace computations through the MLP layer. In this paper, we analyze bilinear MLPs, a type of Gated Linear Unit (GLU) without any element-wise nonlinearity that nevertheless achieves competitive performance. Bilinear MLPs can be fully expressed in terms of linear operations using a third-order tensor, allowing flexible analysis of the weights. Analyzing the spectra of bilinear MLP weights using eigendecomposition reveals interpretable low-rank structure across toy tasks, image classification, and language modeling. We use this understanding to craft adversarial examples, uncover overfitting, and identify small language model circuits directly from the weights alone. Our results demonstrate that bilinear layers serve as an interpretable drop-in replacement for current activation functions and that weight-based interpretability is viable for understanding deep-learning models.
Protein Representation Learning by Geometric Structure Pretraining
Learning effective protein representations is critical in a variety of tasks in biology such as predicting protein function or structure. Existing approaches usually pretrain protein language models on a large number of unlabeled amino acid sequences and then finetune the models with some labeled data in downstream tasks. Despite the effectiveness of sequence-based approaches, the power of pretraining on known protein structures, which are available in smaller numbers only, has not been explored for protein property prediction, though protein structures are known to be determinants of protein function. In this paper, we propose to pretrain protein representations according to their 3D structures. We first present a simple yet effective encoder to learn the geometric features of a protein. We pretrain the protein graph encoder by leveraging multiview contrastive learning and different self-prediction tasks. Experimental results on both function prediction and fold classification tasks show that our proposed pretraining methods outperform or are on par with the state-of-the-art sequence-based methods, while using much less pretraining data. Our implementation is available at https://github.com/DeepGraphLearning/GearNet.
Incorporating Distributions of Discourse Structure for Long Document Abstractive Summarization
For text summarization, the role of discourse structure is pivotal in discerning the core content of a text. Regrettably, prior studies on incorporating Rhetorical Structure Theory (RST) into transformer-based summarization models only consider the nuclearity annotation, thereby overlooking the variety of discourse relation types. This paper introduces the 'RSTformer', a novel summarization model that comprehensively incorporates both the types and uncertainty of rhetorical relations. Our RST-attention mechanism, rooted in document-level rhetorical structure, is an extension of the recently devised Longformer framework. Through rigorous evaluation, the model proposed herein exhibits significant superiority over state-of-the-art models, as evidenced by its notable performance on several automatic metrics and human evaluation.
Unified Structure Generation for Universal Information Extraction
Information extraction suffers from its varying targets, heterogeneous structures, and demand-specific schemas. In this paper, we propose a unified text-to-structure generation framework, namely UIE, which can universally model different IE tasks, adaptively generate targeted structures, and collaboratively learn general IE abilities from different knowledge sources. Specifically, UIE uniformly encodes different extraction structures via a structured extraction language, adaptively generates target extractions via a schema-based prompt mechanism - structural schema instructor, and captures the common IE abilities via a large-scale pre-trained text-to-structure model. Experiments show that UIE achieved the state-of-the-art performance on 4 IE tasks, 13 datasets, and on all supervised, low-resource, and few-shot settings for a wide range of entity, relation, event and sentiment extraction tasks and their unification. These results verified the effectiveness, universality, and transferability of UIE.
CodeAttack: Code-Based Adversarial Attacks for Pre-trained Programming Language Models
Pre-trained programming language (PL) models (such as CodeT5, CodeBERT, GraphCodeBERT, etc.,) have the potential to automate software engineering tasks involving code understanding and code generation. However, these models operate in the natural channel of code, i.e., they are primarily concerned with the human understanding of the code. They are not robust to changes in the input and thus, are potentially susceptible to adversarial attacks in the natural channel. We propose, CodeAttack, a simple yet effective black-box attack model that uses code structure to generate effective, efficient, and imperceptible adversarial code samples and demonstrates the vulnerabilities of the state-of-the-art PL models to code-specific adversarial attacks. We evaluate the transferability of CodeAttack on several code-code (translation and repair) and code-NL (summarization) tasks across different programming languages. CodeAttack outperforms state-of-the-art adversarial NLP attack models to achieve the best overall drop in performance while being more efficient, imperceptible, consistent, and fluent. The code can be found at https://github.com/reddy-lab-code-research/CodeAttack.
Large-Scale Chemical Language Representations Capture Molecular Structure and Properties
Models based on machine learning can enable accurate and fast molecular property predictions, which is of interest in drug discovery and material design. Various supervised machine learning models have demonstrated promising performance, but the vast chemical space and the limited availability of property labels make supervised learning challenging. Recently, unsupervised transformer-based language models pretrained on a large unlabelled corpus have produced state-of-the-art results in many downstream natural language processing tasks. Inspired by this development, we present molecular embeddings obtained by training an efficient transformer encoder model, MoLFormer, which uses rotary positional embeddings. This model employs a linear attention mechanism, coupled with highly distributed training, on SMILES sequences of 1.1 billion unlabelled molecules from the PubChem and ZINC datasets. We show that the learned molecular representation outperforms existing baselines, including supervised and self-supervised graph neural networks and language models, on several downstream tasks from ten benchmark datasets. They perform competitively on two others. Further analyses, specifically through the lens of attention, demonstrate that MoLFormer trained on chemical SMILES indeed learns the spatial relationships between atoms within a molecule. These results provide encouraging evidence that large-scale molecular language models can capture sufficient chemical and structural information to predict various distinct molecular properties, including quantum-chemical properties.
UniPercept: Towards Unified Perceptual-Level Image Understanding across Aesthetics, Quality, Structure, and Texture
Multimodal large language models (MLLMs) have achieved remarkable progress in visual understanding tasks such as visual grounding, segmentation, and captioning. However, their ability to perceive perceptual-level image features remains limited. In this work, we present UniPercept-Bench, a unified framework for perceptual-level image understanding across three key domains: Aesthetics, Quality, Structure and Texture. We establish a hierarchical definition system and construct large-scale datasets to evaluate perceptual-level image understanding. Based on this foundation, we develop a strong baseline UniPercept trained via Domain-Adaptive Pre-Training and Task-Aligned RL, enabling robust generalization across both Visual Rating (VR) and Visual Question Answering (VQA) tasks. UniPercept outperforms existing MLLMs on perceptual-level image understanding and can serve as a plug-and-play reward model for text-to-image generation. This work defines Perceptual-Level Image Understanding in the era of MLLMs and, through the introduction of a comprehensive benchmark together with a strong baseline, provides a solid foundation for advancing perceptual-level multimodal image understanding.
Linguistic Structure Induction from Language Models
Linear sequences of words are implicitly represented in our brains by hierarchical structures that organize the composition of words in sentences. Linguists formalize different frameworks to model this hierarchy; two of the most common syntactic frameworks are Constituency and Dependency. Constituency represents sentences as nested groups of phrases, while dependency represents a sentence by assigning relations between its words. Recently, the pursuit of intelligent machines has produced Language Models (LMs) capable of solving many language tasks with a human-level performance. Many studies now question whether LMs implicitly represent syntactic hierarchies. This thesis focuses on producing constituency and dependency structures from LMs in an unsupervised setting. I review the critical methods in this field and highlight a line of work that utilizes a numerical representation for binary constituency trees (Syntactic Distance). I present a detailed study on StructFormer (SF) (Shen et al., 2021), which retrofits a transformer encoder architecture with a parser network to produce constituency and dependency structures. I present six experiments to analyze and address this field's challenges; experiments include investigating the effect of repositioning the parser network within the SF architecture, evaluating subword-based induced trees, and benchmarking the models developed in the thesis experiments on linguistic tasks. Models benchmarking is performed by participating in the BabyLM challenge, published at CoNLL 2023 (Momen et al., 2023). The results of this thesis encourage further development in the direction of retrofitting transformer-based models to induce syntactic structures, supported by the acceptable performance of SF in different experimental settings and the observed limitations that require innovative solutions to advance the state of syntactic structure induction.
REF-VLM: Triplet-Based Referring Paradigm for Unified Visual Decoding
Multimodal Large Language Models (MLLMs) demonstrate robust zero-shot capabilities across diverse vision-language tasks after training on mega-scale datasets. However, dense prediction tasks, such as semantic segmentation and keypoint detection, pose significant challenges for MLLMs when represented solely as text outputs. Simultaneously, current MLLMs utilizing latent embeddings for visual task decoding generally demonstrate limited adaptability to both multi-task learning and multi-granularity scenarios. In this work, we present REF-VLM, an end-to-end framework for unified training of various visual decoding tasks. To address complex visual decoding scenarios, we introduce the Triplet-Based Referring Paradigm (TRP), which explicitly decouples three critical dimensions in visual decoding tasks through a triplet structure: concepts, decoding types, and targets. TRP employs symbolic delimiters to enforce structured representation learning, enhancing the parsability and interpretability of model outputs. Additionally, we construct Visual-Task Instruction Following Dataset (VTInstruct), a large-scale multi-task dataset containing over 100 million multimodal dialogue samples across 25 task types. Beyond text inputs and outputs, VT-Instruct incorporates various visual prompts such as point, box, scribble, and mask, and generates outputs composed of text and visual units like box, keypoint, depth and mask. The combination of different visual prompts and visual units generates a wide variety of task types, expanding the applicability of REF-VLM significantly. Both qualitative and quantitative experiments demonstrate that our REF-VLM outperforms other MLLMs across a variety of standard benchmarks. The code, dataset, and demo available at https://github.com/MacavityT/REF-VLM.
GuideSR: Rethinking Guidance for One-Step High-Fidelity Diffusion-Based Super-Resolution
In this paper, we propose GuideSR, a novel single-step diffusion-based image super-resolution (SR) model specifically designed to enhance image fidelity. Existing diffusion-based SR approaches typically adapt pre-trained generative models to image restoration tasks by adding extra conditioning on a VAE-downsampled representation of the degraded input, which often compromises structural fidelity. GuideSR addresses this limitation by introducing a dual-branch architecture comprising: (1) a Guidance Branch that preserves high-fidelity structures from the original-resolution degraded input, and (2) a Diffusion Branch, which a pre-trained latent diffusion model to enhance perceptual quality. Unlike conventional conditioning mechanisms, our Guidance Branch features a tailored structure for image restoration tasks, combining Full Resolution Blocks (FRBs) with channel attention and an Image Guidance Network (IGN) with guided attention. By embedding detailed structural information directly into the restoration pipeline, GuideSR produces sharper and more visually consistent results. Extensive experiments on benchmark datasets demonstrate that GuideSR achieves state-of-the-art performance while maintaining the low computational cost of single-step approaches, with up to 1.39dB PSNR gain on challenging real-world datasets. Our approach consistently outperforms existing methods across various reference-based metrics including PSNR, SSIM, LPIPS, DISTS and FID, further representing a practical advancement for real-world image restoration.
Leveraging Invariant Principle for Heterophilic Graph Structure Distribution Shifts
Heterophilic Graph Neural Networks (HGNNs) have shown promising results for semi-supervised learning tasks on graphs. Notably, most real-world heterophilic graphs are composed of a mixture of nodes with different neighbor patterns, exhibiting local node-level homophilic and heterophilic structures. However, existing works are only devoted to designing better HGNN backbones or architectures for node classification tasks on heterophilic and homophilic graph benchmarks simultaneously, and their analyses of HGNN performance with respect to nodes are only based on the determined data distribution without exploring the effect caused by this structural difference between training and testing nodes. How to learn invariant node representations on heterophilic graphs to handle this structure difference or distribution shifts remains unexplored. In this paper, we first discuss the limitations of previous graph-based invariant learning methods from the perspective of data augmentation. Then, we propose HEI, a framework capable of generating invariant node representations through incorporating heterophily information to infer latent environments without augmentation, which are then used for invariant prediction, under heterophilic graph structure distribution shifts. We theoretically show that our proposed method can achieve guaranteed performance under heterophilic graph structure distribution shifts. Extensive experiments on various benchmarks and backbones can also demonstrate the effectiveness of our method compared with existing state-of-the-art baselines.
Neighbor-Aware Calibration of Segmentation Networks with Penalty-Based Constraints
Ensuring reliable confidence scores from deep neural networks is of paramount significance in critical decision-making systems, particularly in real-world domains such as healthcare. Recent literature on calibrating deep segmentation networks has resulted in substantial progress. Nevertheless, these approaches are strongly inspired by the advancements in classification tasks, and thus their uncertainty is usually modeled by leveraging the information of individual pixels, disregarding the local structure of the object of interest. Indeed, only the recent Spatially Varying Label Smoothing (SVLS) approach considers pixel spatial relationships across classes, by softening the pixel label assignments with a discrete spatial Gaussian kernel. In this work, we first present a constrained optimization perspective of SVLS and demonstrate that it enforces an implicit constraint on soft class proportions of surrounding pixels. Furthermore, our analysis shows that SVLS lacks a mechanism to balance the contribution of the constraint with the primary objective, potentially hindering the optimization process. Based on these observations, we propose NACL (Neighbor Aware CaLibration), a principled and simple solution based on equality constraints on the logit values, which enables to control explicitly both the enforced constraint and the weight of the penalty, offering more flexibility. Comprehensive experiments on a wide variety of well-known segmentation benchmarks demonstrate the superior calibration performance of the proposed approach, without affecting its discriminative power. Furthermore, ablation studies empirically show the model agnostic nature of our approach, which can be used to train a wide span of deep segmentation networks.
Benchmarking Large Language Models for Molecule Prediction Tasks
Large Language Models (LLMs) stand at the forefront of a number of Natural Language Processing (NLP) tasks. Despite the widespread adoption of LLMs in NLP, much of their potential in broader fields remains largely unexplored, and significant limitations persist in their design and implementation. Notably, LLMs struggle with structured data, such as graphs, and often falter when tasked with answering domain-specific questions requiring deep expertise, such as those in biology and chemistry. In this paper, we explore a fundamental question: Can LLMs effectively handle molecule prediction tasks? Rather than pursuing top-tier performance, our goal is to assess how LLMs can contribute to diverse molecule tasks. We identify several classification and regression prediction tasks across six standard molecule datasets. Subsequently, we carefully design a set of prompts to query LLMs on these tasks and compare their performance with existing Machine Learning (ML) models, which include text-based models and those specifically designed for analysing the geometric structure of molecules. Our investigation reveals several key insights: Firstly, LLMs generally lag behind ML models in achieving competitive performance on molecule tasks, particularly when compared to models adept at capturing the geometric structure of molecules, highlighting the constrained ability of LLMs to comprehend graph data. Secondly, LLMs show promise in enhancing the performance of ML models when used collaboratively. Lastly, we engage in a discourse regarding the challenges and promising avenues to harness LLMs for molecule prediction tasks. The code and models are available at https://github.com/zhiqiangzhongddu/LLMaMol.
How Do Transformers Learn Topic Structure: Towards a Mechanistic Understanding
While the successes of transformers across many domains are indisputable, accurate understanding of the learning mechanics is still largely lacking. Their capabilities have been probed on benchmarks which include a variety of structured and reasoning tasks -- but mathematical understanding is lagging substantially behind. Recent lines of work have begun studying representational aspects of this question: that is, the size/depth/complexity of attention-based networks to perform certain tasks. However, there is no guarantee the learning dynamics will converge to the constructions proposed. In our paper, we provide fine-grained mechanistic understanding of how transformers learn "semantic structure", understood as capturing co-occurrence structure of words. Precisely, we show, through a combination of experiments on synthetic data modeled by Latent Dirichlet Allocation (LDA), Wikipedia data, and mathematical analysis that the embedding layer and the self-attention layer encode the topical structure. In the former case, this manifests as higher average inner product of embeddings between same-topic words. In the latter, it manifests as higher average pairwise attention between same-topic words. The mathematical results involve several assumptions to make the analysis tractable, which we verify on data, and might be of independent interest as well.
Prompt Orchestration Markup Language
Large Language Models (LLMs) require sophisticated prompting, yet current practices face challenges in structure, data integration, format sensitivity, and tooling. Existing methods lack comprehensive solutions for organizing complex prompts involving diverse data types (documents, tables, images) or managing presentation variations systematically. To address these gaps, we introduce POML (Prompt Orchestration Markup Language). POML employs component-based markup for logical structure (roles, tasks, examples), specialized tags for seamless data integration, and a CSS-like styling system to decouple content from presentation, reducing formatting sensitivity. It includes templating for dynamic prompts and a comprehensive developer toolkit (IDE support, SDKs) to improve version control and collaboration. We validate POML through two case studies demonstrating its impact on complex application integration (PomLink) and accuracy performance (TableQA), as well as a user study assessing its effectiveness in real-world development scenarios.
OmniX: From Unified Panoramic Generation and Perception to Graphics-Ready 3D Scenes
There are two prevalent ways to constructing 3D scenes: procedural generation and 2D lifting. Among them, panorama-based 2D lifting has emerged as a promising technique, leveraging powerful 2D generative priors to produce immersive, realistic, and diverse 3D environments. In this work, we advance this technique to generate graphics-ready 3D scenes suitable for physically based rendering (PBR), relighting, and simulation. Our key insight is to repurpose 2D generative models for panoramic perception of geometry, textures, and PBR materials. Unlike existing 2D lifting approaches that emphasize appearance generation and ignore the perception of intrinsic properties, we present OmniX, a versatile and unified framework. Based on a lightweight and efficient cross-modal adapter structure, OmniX reuses 2D generative priors for a broad range of panoramic vision tasks, including panoramic perception, generation, and completion. Furthermore, we construct a large-scale synthetic panorama dataset containing high-quality multimodal panoramas from diverse indoor and outdoor scenes. Extensive experiments demonstrate the effectiveness of our model in panoramic visual perception and graphics-ready 3D scene generation, opening new possibilities for immersive and physically realistic virtual world generation.
DOM-LM: Learning Generalizable Representations for HTML Documents
HTML documents are an important medium for disseminating information on the Web for human consumption. An HTML document presents information in multiple text formats including unstructured text, structured key-value pairs, and tables. Effective representation of these documents is essential for machine understanding to enable a wide range of applications, such as Question Answering, Web Search, and Personalization. Existing work has either represented these documents using visual features extracted by rendering them in a browser, which is typically computationally expensive, or has simply treated them as plain text documents, thereby failing to capture useful information presented in their HTML structure. We argue that the text and HTML structure together convey important semantics of the content and therefore warrant a special treatment for their representation learning. In this paper, we introduce a novel representation learning approach for web pages, dubbed DOM-LM, which addresses the limitations of existing approaches by encoding both text and DOM tree structure with a transformer-based encoder and learning generalizable representations for HTML documents via self-supervised pre-training. We evaluate DOM-LM on a variety of webpage understanding tasks, including Attribute Extraction, Open Information Extraction, and Question Answering. Our extensive experiments show that DOM-LM consistently outperforms all baselines designed for these tasks. In particular, DOM-LM demonstrates better generalization performance both in few-shot and zero-shot settings, making it attractive for making it suitable for real-world application settings with limited labeled data.
Information-theoretic subset selection of multivariate Markov chains via submodular optimization
We study the problem of optimally projecting the transition matrix of a finite ergodic multivariate Markov chain onto a lower-dimensional state space. Specifically, we seek to construct a projected Markov chain that optimizes various information-theoretic criteria under cardinality constraints. These criteria include entropy rate, information-theoretic distance to factorizability, independence, and stationarity. We formulate these tasks as best subset selection problems over multivariate Markov chains and leverage the submodular (or supermodular) structure of the objective functions to develop efficient greedy-based algorithms with theoretical guarantees. We extend our analysis to k-submodular settings and introduce a generalized version of the distorted greedy algorithm, which may be of independent interest. Finally, we illustrate the theory and algorithms through extensive numerical experiments with publicly available code on multivariate Markov chains associated with the Bernoulli-Laplace and Curie-Weiss model.
gRNAde: Geometric Deep Learning for 3D RNA inverse design
Computational RNA design tasks are often posed as inverse problems, where sequences are designed based on adopting a single desired secondary structure without considering 3D geometry and conformational diversity. We introduce gRNAde, a geometric RNA design pipeline operating on 3D RNA backbones to design sequences that explicitly account for structure and dynamics. Under the hood, gRNAde is a multi-state Graph Neural Network that generates candidate RNA sequences conditioned on one or more 3D backbone structures where the identities of the bases are unknown. On a single-state fixed backbone re-design benchmark of 14 RNA structures from the PDB identified by Das et al. [2010], gRNAde obtains higher native sequence recovery rates (56% on average) compared to Rosetta (45% on average), taking under a second to produce designs compared to the reported hours for Rosetta. We further demonstrate the utility of gRNAde on a new benchmark of multi-state design for structurally flexible RNAs, as well as zero-shot ranking of mutational fitness landscapes in a retrospective analysis of a recent ribozyme. Open source code: https://github.com/chaitjo/geometric-rna-design
GASP: Unifying Geometric and Semantic Self-Supervised Pre-training for Autonomous Driving
Self-supervised pre-training based on next-token prediction has enabled large language models to capture the underlying structure of text, and has led to unprecedented performance on a large array of tasks when applied at scale. Similarly, autonomous driving generates vast amounts of spatiotemporal data, alluding to the possibility of harnessing scale to learn the underlying geometric and semantic structure of the environment and its evolution over time. In this direction, we propose a geometric and semantic self-supervised pre-training method, GASP, that learns a unified representation by predicting, at any queried future point in spacetime, (1) general occupancy, capturing the evolving structure of the 3D scene; (2) ego occupancy, modeling the ego vehicle path through the environment; and (3) distilled high-level features from a vision foundation model. By modeling geometric and semantic 4D occupancy fields instead of raw sensor measurements, the model learns a structured, generalizable representation of the environment and its evolution through time. We validate GASP on multiple autonomous driving benchmarks, demonstrating significant improvements in semantic occupancy forecasting, online mapping, and ego trajectory prediction. Our results demonstrate that continuous 4D geometric and semantic occupancy prediction provides a scalable and effective pre-training paradigm for autonomous driving. For code and additional visualizations, see \href{https://research.zenseact.com/publications/gasp/.
VLM$^2$-Bench: A Closer Look at How Well VLMs Implicitly Link Explicit Matching Visual Cues
Visually linking matching cues is a crucial ability in daily life, such as identifying the same person in multiple photos based on their cues, even without knowing who they are. Despite the extensive knowledge that vision-language models (VLMs) possess, it remains largely unexplored whether they are capable of performing this fundamental task. To address this, we introduce VLM^2-Bench, a benchmark designed to assess whether VLMs can Visually Link Matching cues, with 9 subtasks and over 3,000 test cases. Comprehensive evaluation across eight open-source VLMs and GPT-4o, along with further analysis of various language-side and vision-side prompting methods, leads to a total of eight key findings. We identify critical challenges in models' ability to link visual cues, highlighting a significant performance gap where even GPT-4o lags 34.80% behind humans. Based on these insights, we advocate for (i) enhancing core visual capabilities to improve adaptability and reduce reliance on prior knowledge, (ii) establishing clearer principles for integrating language-based reasoning in vision-centric tasks to prevent unnecessary biases, and (iii) shifting vision-text training paradigms toward fostering models' ability to independently structure and infer relationships among visual cues.
Topic Segmentation of Semi-Structured and Unstructured Conversational Datasets using Language Models
Breaking down a document or a conversation into multiple contiguous segments based on its semantic structure is an important and challenging problem in NLP, which can assist many downstream tasks. However, current works on topic segmentation often focus on segmentation of structured texts. In this paper, we comprehensively analyze the generalization capabilities of state-of-the-art topic segmentation models on unstructured texts. We find that: (a) Current strategies of pre-training on a large corpus of structured text such as Wiki-727K do not help in transferability to unstructured conversational data. (b) Training from scratch with only a relatively small-sized dataset of the target unstructured domain improves the segmentation results by a significant margin. We stress-test our proposed Topic Segmentation approach by experimenting with multiple loss functions, in order to mitigate effects of imbalance in unstructured conversational datasets. Our empirical evaluation indicates that Focal Loss function is a robust alternative to Cross-Entropy and re-weighted Cross-Entropy loss function when segmenting unstructured and semi-structured chats.
Beam Tree Recursive Cells
We propose Beam Tree Recursive Cell (BT-Cell) - a backpropagation-friendly framework to extend Recursive Neural Networks (RvNNs) with beam search for latent structure induction. We further extend this framework by proposing a relaxation of the hard top-k operators in beam search for better propagation of gradient signals. We evaluate our proposed models in different out-of-distribution splits in both synthetic and realistic data. Our experiments show that BTCell achieves near-perfect performance on several challenging structure-sensitive synthetic tasks like ListOps and logical inference while maintaining comparable performance in realistic data against other RvNN-based models. Additionally, we identify a previously unknown failure case for neural models in generalization to unseen number of arguments in ListOps. The code is available at: https://github.com/JRC1995/BeamTreeRecursiveCells.
Code Recommendation for Open Source Software Developers
Open Source Software (OSS) is forming the spines of technology infrastructures, attracting millions of talents to contribute. Notably, it is challenging and critical to consider both the developers' interests and the semantic features of the project code to recommend appropriate development tasks to OSS developers. In this paper, we formulate the novel problem of code recommendation, whose purpose is to predict the future contribution behaviors of developers given their interaction history, the semantic features of source code, and the hierarchical file structures of projects. Considering the complex interactions among multiple parties within the system, we propose CODER, a novel graph-based code recommendation framework for open source software developers. CODER jointly models microscopic user-code interactions and macroscopic user-project interactions via a heterogeneous graph and further bridges the two levels of information through aggregation on file-structure graphs that reflect the project hierarchy. Moreover, due to the lack of reliable benchmarks, we construct three large-scale datasets to facilitate future research in this direction. Extensive experiments show that our CODER framework achieves superior performance under various experimental settings, including intra-project, cross-project, and cold-start recommendation. We will release all the datasets, code, and utilities for data retrieval upon the acceptance of this work.
On Pruning State-Space LLMs
Recent work proposed state-space models (SSMs) as an efficient alternative to transformer-based LLMs. Can these models be pruned to further reduce their computation costs? We adapt several pruning methods to the SSM structure, and apply them to four SSM-based LLMs across multiple tasks. We find that such models are quite robust to some pruning methods (e.g. WANDA), while using other methods lead to fast performance degradation.
Semantic Random Walk for Graph Representation Learning in Attributed Graphs
In this study, we focus on the graph representation learning (a.k.a. network embedding) in attributed graphs. Different from existing embedding methods that treat the incorporation of graph structure and semantic as the simple combination of two optimization objectives, we propose a novel semantic graph representation (SGR) method to formulate the joint optimization of the two heterogeneous sources into a common high-order proximity based framework. Concretely, we first construct an auxiliary weighted graph, where the complex homogeneous and heterogeneous relations among nodes and attributes in the original graph are comprehensively encoded. Conventional embedding methods that consider high-order topology proximities can then be easily applied to the newly constructed graph to learn the representations of both node and attribute while capturing the nonlinear high-order intrinsic correlation inside or among graph structure and semantic. The learned attribute embeddings can also effectively support some semantic-oriented inference tasks (e.g., semantic community detection), helping to reveal the graph's deep semantic. The effectiveness of SGR is further verified on a series of real graphs, where it achieves impressive performance over other baselines.
PubTables-1M: Towards comprehensive table extraction from unstructured documents
Recently, significant progress has been made applying machine learning to the problem of table structure inference and extraction from unstructured documents. However, one of the greatest challenges remains the creation of datasets with complete, unambiguous ground truth at scale. To address this, we develop a new, more comprehensive dataset for table extraction, called PubTables-1M. PubTables-1M contains nearly one million tables from scientific articles, supports multiple input modalities, and contains detailed header and location information for table structures, making it useful for a wide variety of modeling approaches. It also addresses a significant source of ground truth inconsistency observed in prior datasets called oversegmentation, using a novel canonicalization procedure. We demonstrate that these improvements lead to a significant increase in training performance and a more reliable estimate of model performance at evaluation for table structure recognition. Further, we show that transformer-based object detection models trained on PubTables-1M produce excellent results for all three tasks of detection, structure recognition, and functional analysis without the need for any special customization for these tasks. Data and code will be released at https://github.com/microsoft/table-transformer.
A Personalized Conversational Benchmark: Towards Simulating Personalized Conversations
We present PersonaConvBench, a large-scale benchmark for evaluating personalized reasoning and generation in multi-turn conversations with large language models (LLMs). Unlike existing work that focuses on either personalization or conversational structure in isolation, PersonaConvBench integrates both, offering three core tasks: sentence classification, impact regression, and user-centric text generation across ten diverse Reddit-based domains. This design enables systematic analysis of how personalized conversational context shapes LLM outputs in realistic multi-user scenarios. We benchmark several commercial and open-source LLMs under a unified prompting setup and observe that incorporating personalized history yields substantial performance improvements, including a 198 percent relative gain over the best non-conversational baseline in sentiment classification. By releasing PersonaConvBench with evaluations and code, we aim to support research on LLMs that adapt to individual styles, track long-term context, and produce contextually rich, engaging responses.
TRACE: Temporal Grounding Video LLM via Causal Event Modeling
Video Temporal Grounding (VTG) is a crucial capability for video understanding models and plays a vital role in downstream tasks such as video browsing and editing. To effectively handle various tasks simultaneously and enable zero-shot prediction, there is a growing trend in employing video LLMs for VTG tasks. However, current video LLM-based methods rely exclusively on natural language generation, lacking the ability to model the clear structure inherent in videos, which restricts their effectiveness in tackling VTG tasks. To address this issue, this paper first formally introduces causal event modeling framework, which represents videos as sequences of events, and predict the current event using previous events, video inputs, and textural instructions. Each event consists of three components: timestamps, salient scores, and textual captions. We then propose a novel task-interleaved video LLM called TRACE to effectively implement the causal event modeling framework in practice. The TRACE processes visual frames, timestamps, salient scores, and text as distinct tasks, employing various encoders and decoding heads for each. Task tokens are arranged in an interleaved sequence according to the causal event modeling framework's formulation. Extensive experiments on various VTG tasks and datasets demonstrate the superior performance of TRACE compared to state-of-the-art video LLMs. Our model and code are available at https://github.com/gyxxyg/TRACE.
Lighting Every Darkness with 3DGS: Fast Training and Real-Time Rendering for HDR View Synthesis
Volumetric rendering based methods, like NeRF, excel in HDR view synthesis from RAWimages, especially for nighttime scenes. While, they suffer from long training times and cannot perform real-time rendering due to dense sampling requirements. The advent of 3D Gaussian Splatting (3DGS) enables real-time rendering and faster training. However, implementing RAW image-based view synthesis directly using 3DGS is challenging due to its inherent drawbacks: 1) in nighttime scenes, extremely low SNR leads to poor structure-from-motion (SfM) estimation in distant views; 2) the limited representation capacity of spherical harmonics (SH) function is unsuitable for RAW linear color space; and 3) inaccurate scene structure hampers downstream tasks such as refocusing. To address these issues, we propose LE3D (Lighting Every darkness with 3DGS). Our method proposes Cone Scatter Initialization to enrich the estimation of SfM, and replaces SH with a Color MLP to represent the RAW linear color space. Additionally, we introduce depth distortion and near-far regularizations to improve the accuracy of scene structure for downstream tasks. These designs enable LE3D to perform real-time novel view synthesis, HDR rendering, refocusing, and tone-mapping changes. Compared to previous volumetric rendering based methods, LE3D reduces training time to 1% and improves rendering speed by up to 4,000 times for 2K resolution images in terms of FPS. Code and viewer can be found in https://github.com/Srameo/LE3D .
Exploring Vision Transformers as Diffusion Learners
Score-based diffusion models have captured widespread attention and funded fast progress of recent vision generative tasks. In this paper, we focus on diffusion model backbone which has been much neglected before. We systematically explore vision Transformers as diffusion learners for various generative tasks. With our improvements the performance of vanilla ViT-based backbone (IU-ViT) is boosted to be on par with traditional U-Net-based methods. We further provide a hypothesis on the implication of disentangling the generative backbone as an encoder-decoder structure and show proof-of-concept experiments verifying the effectiveness of a stronger encoder for generative tasks with ASymmetriC ENcoder Decoder (ASCEND). Our improvements achieve competitive results on CIFAR-10, CelebA, LSUN, CUB Bird and large-resolution text-to-image tasks. To the best of our knowledge, we are the first to successfully train a single diffusion model on text-to-image task beyond 64x64 resolution. We hope this will motivate people to rethink the modeling choices and the training pipelines for diffusion-based generative models.
The Web Is Your Oyster - Knowledge-Intensive NLP against a Very Large Web Corpus
In order to address increasing demands of real-world applications, the research for knowledge-intensive NLP (KI-NLP) should advance by capturing the challenges of a truly open-domain environment: web-scale knowledge, lack of structure, inconsistent quality and noise. To this end, we propose a new setup for evaluating existing knowledge intensive tasks in which we generalize the background corpus to a universal web snapshot. We investigate a slate of NLP tasks which rely on knowledge - either factual or common sense, and ask systems to use a subset of CCNet - the Sphere corpus - as a knowledge source. In contrast to Wikipedia, otherwise a common background corpus in KI-NLP, Sphere is orders of magnitude larger and better reflects the full diversity of knowledge on the web. Despite potential gaps in coverage, challenges of scale, lack of structure and lower quality, we find that retrieval from Sphere enables a state of the art system to match and even outperform Wikipedia-based models on several tasks. We also observe that while a dense index can outperform a sparse BM25 baseline on Wikipedia, on Sphere this is not yet possible. To facilitate further research and minimise the community's reliance on proprietary, black-box search engines, we share our indices, evaluation metrics and infrastructure.
Learning Anatomically Consistent Embedding for Chest Radiography
Self-supervised learning (SSL) approaches have recently shown substantial success in learning visual representations from unannotated images. Compared with photographic images, medical images acquired with the same imaging protocol exhibit high consistency in anatomy. To exploit this anatomical consistency, this paper introduces a novel SSL approach, called PEAC (patch embedding of anatomical consistency), for medical image analysis. Specifically, in this paper, we propose to learn global and local consistencies via stable grid-based matching, transfer pre-trained PEAC models to diverse downstream tasks, and extensively demonstrate that (1) PEAC achieves significantly better performance than the existing state-of-the-art fully/self-supervised methods, and (2) PEAC captures the anatomical structure consistency across views of the same patient and across patients of different genders, weights, and healthy statuses, which enhances the interpretability of our method for medical image analysis.
Emergent Analogical Reasoning in Large Language Models
The recent advent of large language models has reinvigorated debate over whether human cognitive capacities might emerge in such generic models given sufficient training data. Of particular interest is the ability of these models to reason about novel problems zero-shot, without any direct training. In human cognition, this capacity is closely tied to an ability to reason by analogy. Here, we performed a direct comparison between human reasoners and a large language model (the text-davinci-003 variant of GPT-3) on a range of analogical tasks, including a non-visual matrix reasoning task based on the rule structure of Raven's Standard Progressive Matrices. We found that GPT-3 displayed a surprisingly strong capacity for abstract pattern induction, matching or even surpassing human capabilities in most settings; preliminary tests of GPT-4 indicated even better performance. Our results indicate that large language models such as GPT-3 have acquired an emergent ability to find zero-shot solutions to a broad range of analogy problems.
Learning Subpocket Prototypes for Generalizable Structure-based Drug Design
Generating molecules with high binding affinities to target proteins (a.k.a. structure-based drug design) is a fundamental and challenging task in drug discovery. Recently, deep generative models have achieved remarkable success in generating 3D molecules conditioned on the protein pocket. However, most existing methods consider molecular generation for protein pockets independently while neglecting the underlying connections such as subpocket-level similarities. Subpockets are the local protein environments of ligand fragments and pockets with similar subpockets may bind the same molecular fragment (motif) even though their overall structures are different. Therefore, the trained models can hardly generalize to unseen protein pockets in real-world applications. In this paper, we propose a novel method DrugGPS for generalizable structure-based drug design. With the biochemical priors, we propose to learn subpocket prototypes and construct a global interaction graph to model the interactions between subpocket prototypes and molecular motifs. Moreover, a hierarchical graph transformer encoder and motif-based 3D molecule generation scheme are used to improve the model's performance. The experimental results show that our model consistently outperforms baselines in generating realistic drug candidates with high affinities in challenging out-of-distribution settings.
'Don't Get Too Technical with Me': A Discourse Structure-Based Framework for Science Journalism
Science journalism refers to the task of reporting technical findings of a scientific paper as a less technical news article to the general public audience. We aim to design an automated system to support this real-world task (i.e., automatic science journalism) by 1) introducing a newly-constructed and real-world dataset (SciTechNews), with tuples of a publicly-available scientific paper, its corresponding news article, and an expert-written short summary snippet; 2) proposing a novel technical framework that integrates a paper's discourse structure with its metadata to guide generation; and, 3) demonstrating with extensive automatic and human experiments that our framework outperforms other baseline methods (e.g. Alpaca and ChatGPT) in elaborating a content plan meaningful for the target audience, simplifying the information selected, and producing a coherent final report in a layman's style.
TAP4LLM: Table Provider on Sampling, Augmenting, and Packing Semi-structured Data for Large Language Model Reasoning
Table reasoning tasks have shown remarkable progress with the development of large language models (LLMs), which involve interpreting and drawing conclusions from tabular data based on natural language (NL) questions. Existing solutions mainly tested on smaller tables face scalability issues and struggle with complex queries due to incomplete or dispersed data across different table sections. To alleviate these challenges, we propose TAP4LLM as a versatile pre-processor suite for leveraging LLMs in table-based tasks effectively. It covers several distinct components: (1) table sampling to decompose large tables into manageable sub-tables based on query semantics, (2) table augmentation to enhance tables with additional knowledge from external sources or models, and (3) table packing & serialization to convert tables into various formats suitable for LLMs' understanding. In each module, we design and compare several common methods under various usage scenarios, aiming to shed light on the best practices for leveraging LLMs for table-reasoning tasks. Our experiments show that our method improves LLMs' reasoning capabilities in various tabular tasks and enhances the interaction between LLMs and tabular data by employing effective pre-processing.
StruQ: Defending Against Prompt Injection with Structured Queries
Recent advances in Large Language Models (LLMs) enable exciting LLM-integrated applications, which perform text-based tasks by utilizing their advanced language understanding capabilities. However, as LLMs have improved, so have the attacks against them. Prompt injection attacks are an important threat: they trick the model to deviate from the original application's instructions and instead follow user directives. These attacks rely on the LLM's ability to follow instructions and inability to separate the prompts and user data. We introduce structured queries, a general approach to tackle this problem. Structured queries separate prompts and data into two channels. We implement a system that supports structured queries. This system is made of (1) a secure front-end that formats a prompt and user data into a special format, and (2) a specially trained LLM that can produce high-quality outputs from these inputs. The LLM is trained using a novel fine-tuning strategy: we convert a base (non-instruction-tuned) LLM to a structured instruction-tuned model that will only follow instructions in the prompt portion of a query. To do so, we augment standard instruction tuning datasets with examples that also include instructions in the data portion of the query, and fine-tune the model to ignore these. Our system significantly improves resistance to prompt injection attacks, with little or no impact on utility. Our code is released at https://github.com/Sizhe-Chen/PromptInjectionDefense.
StructGPT: A General Framework for Large Language Model to Reason over Structured Data
In this paper, we study how to improve the zero-shot reasoning ability of large language models~(LLMs) over structured data in a unified way. Inspired by the study on tool augmentation for LLMs, we develop an Iterative Reading-then-Reasoning~(IRR) approach for solving question answering tasks based on structured data, called StructGPT. In our approach, we construct the specialized function to collect relevant evidence from structured data (\ie reading), and let LLMs concentrate the reasoning task based on the collected information (\ie reasoning). Specially, we propose an invoking-linearization-generation procedure to support LLMs in reasoning on the structured data with the help of the external interfaces. By iterating this procedures with provided interfaces, our approach can gradually approach the target answer to a given query. Extensive experiments conducted on three types of structured data demonstrate the effectiveness of our approach, which can significantly boost the performance of ChatGPT and achieve comparable performance against the full-data supervised-tuning baselines. Our codes and data are publicly available at~https://github.com/RUCAIBox/StructGPT.
APT: Architectural Planning and Text-to-Blueprint Construction Using Large Language Models for Open-World Agents
We present APT, an advanced Large Language Model (LLM)-driven framework that enables autonomous agents to construct complex and creative structures within the Minecraft environment. Unlike previous approaches that primarily concentrate on skill-based open-world tasks or rely on image-based diffusion models for generating voxel-based structures, our method leverages the intrinsic spatial reasoning capabilities of LLMs. By employing chain-of-thought decomposition along with multimodal inputs, the framework generates detailed architectural layouts and blueprints that the agent can execute under zero-shot or few-shot learning scenarios. Our agent incorporates both memory and reflection modules to facilitate lifelong learning, adaptive refinement, and error correction throughout the building process. To rigorously evaluate the agent's performance in this emerging research area, we introduce a comprehensive benchmark consisting of diverse construction tasks designed to test creativity, spatial reasoning, adherence to in-game rules, and the effective integration of multimodal instructions. Experimental results using various GPT-based LLM backends and agent configurations demonstrate the agent's capacity to accurately interpret extensive instructions involving numerous items, their positions, and orientations. The agent successfully produces complex structures complete with internal functionalities such as Redstone-powered systems. A/B testing indicates that the inclusion of a memory module leads to a significant increase in performance, emphasizing its role in enabling continuous learning and the reuse of accumulated experience. Additionally, the agent's unexpected emergence of scaffolding behavior highlights the potential of future LLM-driven agents to utilize subroutine planning and leverage the emergence ability of LLMs to autonomously develop human-like problem-solving techniques.
Toward Human Centered Interactive Clinical Question Answering System
Unstructured clinical notes contain essential patient information but are challenging for physicians to search and interpret efficiently. Although large language models (LLMs) have shown promise in question answering (QA), most existing systems lack transparency, usability, and alignment with clinical workflows. This work introduces an interactive QA system that enables physicians to query clinical notes via text or voice and receive extractive answers highlighted directly in the note for traceability. The system was built using OpenAI models with zero-shot prompting and evaluated across multiple metrics, including exact string match, word overlap, SentenceTransformer similarity, and BERTScore. Results show that while exact match scores ranged from 47 to 62 percent, semantic similarity scores exceeded 87 percent, indicating strong contextual alignment even when wording varied. To assess usability, the system was also evaluated using simulated clinical personas. Seven diverse physician and nurse personas interacted with the system across scenario-based tasks and provided structured feedback. The evaluations highlighted strengths in intuitive design and answer accessibility, alongside opportunities for enhancing explanation clarity.
SpeechR: A Benchmark for Speech Reasoning in Large Audio-Language Models
Large audio-language models (LALMs) have achieved near-human performance in sentence-level transcription and emotion recognition. However, existing evaluations focus mainly on surface-level perception, leaving the capacity of models for contextual and inference-driven reasoning in speech-based scenarios insufficiently examined. To address this gap, we introduce SpeechR, a unified benchmark for evaluating reasoning over speech in large audio-language models. SpeechR evaluates models along three key dimensions: factual retrieval, procedural inference, and normative judgment. It includes three distinct evaluation formats. The multiple-choice version measures answer selection accuracy. The generative version assesses the coherence and logical consistency of reasoning chains. The acoustic-feature version investigates whether variations in stress and emotion affect reasoning performance. Evaluations on eleven state-of-the-art LALMs reveal that high transcription accuracy does not translate into strong reasoning capabilities. SpeechR establishes a structured benchmark for evaluating reasoning in spoken language, enabling more targeted analysis of model capabilities across diverse dialogue-based tasks.
Video-As-Prompt: Unified Semantic Control for Video Generation
Unified, generalizable semantic control in video generation remains a critical open challenge. Existing methods either introduce artifacts by enforcing inappropriate pixel-wise priors from structure-based controls, or rely on non-generalizable, condition-specific finetuning or task-specific architectures. We introduce Video-As-Prompt (VAP), a new paradigm that reframes this problem as in-context generation. VAP leverages a reference video as a direct semantic prompt, guiding a frozen Video Diffusion Transformer (DiT) via a plug-and-play Mixture-of-Transformers (MoT) expert. This architecture prevents catastrophic forgetting and is guided by a temporally biased position embedding that eliminates spurious mapping priors for robust context retrieval. To power this approach and catalyze future research, we built VAP-Data, the largest dataset for semantic-controlled video generation with over 100K paired videos across 100 semantic conditions. As a single unified model, VAP sets a new state-of-the-art for open-source methods, achieving a 38.7% user preference rate that rivals leading condition-specific commercial models. VAP's strong zero-shot generalization and support for various downstream applications mark a significant advance toward general-purpose, controllable video generation.
Large Language Models Meet Text-Attributed Graphs: A Survey of Integration Frameworks and Applications
Large Language Models (LLMs) have achieved remarkable success in natural language processing through strong semantic understanding and generation. However, their black-box nature limits structured and multi-hop reasoning. In contrast, Text-Attributed Graphs (TAGs) provide explicit relational structures enriched with textual context, yet often lack semantic depth. Recent research shows that combining LLMs and TAGs yields complementary benefits: enhancing TAG representation learning and improving the reasoning and interpretability of LLMs. This survey provides the first systematic review of LLM--TAG integration from an orchestration perspective. We introduce a novel taxonomy covering two fundamental directions: LLM for TAG, where LLMs enrich graph-based tasks, and TAG for LLM, where structured graphs improve LLM reasoning. We categorize orchestration strategies into sequential, parallel, and multi-module frameworks, and discuss advances in TAG-specific pretraining, prompting, and parameter-efficient fine-tuning. Beyond methodology, we summarize empirical insights, curate available datasets, and highlight diverse applications across recommendation systems, biomedical analysis, and knowledge-intensive question answering. Finally, we outline open challenges and promising research directions, aiming to guide future work at the intersection of language and graph learning.
ATLANTIC: Structure-Aware Retrieval-Augmented Language Model for Interdisciplinary Science
Large language models record impressive performance on many natural language processing tasks. However, their knowledge capacity is limited to the pretraining corpus. Retrieval augmentation offers an effective solution by retrieving context from external knowledge sources to complement the language model. However, existing retrieval augmentation techniques ignore the structural relationships between these documents. Furthermore, retrieval models are not explored much in scientific tasks, especially in regard to the faithfulness of retrieved documents. In this paper, we propose a novel structure-aware retrieval augmented language model that accommodates document structure during retrieval augmentation. We create a heterogeneous document graph capturing multiple types of relationships (e.g., citation, co-authorship, etc.) that connect documents from more than 15 scientific disciplines (e.g., Physics, Medicine, Chemistry, etc.). We train a graph neural network on the curated document graph to act as a structural encoder for the corresponding passages retrieved during the model pretraining. Particularly, along with text embeddings of the retrieved passages, we obtain structural embeddings of the documents (passages) and fuse them together before feeding them to the language model. We evaluate our model extensively on various scientific benchmarks that include science question-answering and scientific document classification tasks. Experimental results demonstrate that structure-aware retrieval improves retrieving more coherent, faithful and contextually relevant passages, while showing a comparable performance in the overall accuracy.
WebSRC: A Dataset for Web-Based Structural Reading Comprehension
Web search is an essential way for humans to obtain information, but it's still a great challenge for machines to understand the contents of web pages. In this paper, we introduce the task of structural reading comprehension (SRC) on web. Given a web page and a question about it, the task is to find the answer from the web page. This task requires a system not only to understand the semantics of texts but also the structure of the web page. Moreover, we proposed WebSRC, a novel Web-based Structural Reading Comprehension dataset. WebSRC consists of 400K question-answer pairs, which are collected from 6.4K web pages. Along with the QA pairs, corresponding HTML source code, screenshots, and metadata are also provided in our dataset. Each question in WebSRC requires a certain structural understanding of a web page to answer, and the answer is either a text span on the web page or yes/no. We evaluate various baselines on our dataset to show the difficulty of our task. We also investigate the usefulness of structural information and visual features. Our dataset and baselines have been publicly available at https://x-lance.github.io/WebSRC/.
Retrieving Texts based on Abstract Descriptions
In this work, we aim to connect two research areas: instruction models and retrieval-based models. While instruction-tuned Large Language Models (LLMs) excel at extracting information from text, they are not suitable for semantic retrieval. Similarity search over embedding vectors allows to index and query vectors, but the similarity reflected in the embedding is sub-optimal for many use cases. We identify the task of retrieving sentences based on abstract descriptions of their content. We demonstrate the inadequacy of current text embeddings and propose an alternative model that significantly improves when used in standard nearest neighbor search. The model is trained using positive and negative pairs sourced through prompting an a large language model (LLM). While it is easy to source the training material from an LLM, the retrieval task cannot be performed by the LLM directly. This demonstrates that data from LLMs can be used not only for distilling more efficient specialized models than the original LLM, but also for creating new capabilities not immediately possible using the original model.
Adaptive Activation-based Structured Pruning
Pruning is a promising approach to compress complex deep learning models in order to deploy them on resource-constrained edge devices. However, many existing pruning solutions are based on unstructured pruning, which yields models that cannot efficiently run on commodity hardware and require users to manually explore and tune the pruning process, which is time-consuming and often leads to sub-optimal results. To address these limitations, this paper presents an adaptive, activation-based, structured pruning approach to automatically and efficiently generate small, accurate, and hardware-efficient models that meet user requirements. First, it proposes iterative structured pruning using activation-based attention feature maps to effectively identify and prune unimportant filters. Then, it proposes adaptive pruning policies for automatically meeting the pruning objectives of accuracy-critical, memory-constrained, and latency-sensitive tasks. A comprehensive evaluation shows that the proposed method can substantially outperform the state-of-the-art structured pruning works on CIFAR-10 and ImageNet datasets. For example, on ResNet-56 with CIFAR-10, without any accuracy drop, our method achieves the largest parameter reduction (79.11%), outperforming the related works by 22.81% to 66.07%, and the largest FLOPs reduction (70.13%), outperforming the related works by 14.13% to 26.53%.
Unleashing Scientific Reasoning for Bio-experimental Protocol Generation via Structured Component-based Reward Mechanism
The foundation of reproducible science lies in protocols that are precise, logically ordered, and executable. The autonomous generation of these protocols through natural language queries could greatly improve the efficiency of the reproduction process. However, current leading large language models (LLMs) often generate incomplete or inconsistent protocols, limiting their utility. To address this limitation, we first introduce SciRecipe, a large-scale dataset of over 12K structured protocols spanning 27 biological subfields and encompassing both comprehension and problem-solving tasks. To further improve protocol generation, we propose the "Sketch-and-Fill" paradigm, which separates analysis, structuring, and expression to ensure each step is explicit and verifiable. Complementing this, the structured component-based reward mechanism evaluates step granularity, action order, and semantic fidelity, aligning model optimization with experimental reliability. Building on these components, we develop Thoth, trained through a staged Knowledge-to-Action process that progresses from knowledge acquisition to operational reasoning and ultimately to robust, executable protocol generation. Across multiple benchmarks, Thoth consistently surpasses both proprietary and open-source LLMs, achieving significant improvements in step alignment, logical sequencing, and semantic accuracy. Our approach paves the way for reliable scientific assistants that bridge knowledge with experimental execution. All data, code, and models will be released publicly.
SR-FoT: A Syllogistic-Reasoning Framework of Thought for Large Language Models Tackling Knowledge-based Reasoning Tasks
Deductive reasoning is a crucial logical capability that assists us in solving complex problems based on existing knowledge. Although augmented by Chain-of-Thought prompts, Large Language Models (LLMs) might not follow the correct reasoning paths. Enhancing the deductive reasoning abilities of LLMs, and leveraging their extensive built-in knowledge for various reasoning tasks, remains an open question. Attempting to mimic the human deductive reasoning paradigm, we propose a multi-stage Syllogistic-Reasoning Framework of Thought (SR-FoT) that enables LLMs to perform syllogistic deductive reasoning to handle complex knowledge-based reasoning tasks. Our SR-FoT begins by interpreting the question and then uses the interpretation and the original question to propose a suitable major premise. It proceeds by generating and answering minor premise questions in two stages to match the minor premises. Finally, it guides LLMs to use the previously generated major and minor premises to perform syllogistic deductive reasoning to derive the answer to the original question. Extensive and thorough experiments on knowledge-based reasoning tasks have demonstrated the effectiveness and advantages of our SR-FoT.
LasUIE: Unifying Information Extraction with Latent Adaptive Structure-aware Generative Language Model
Universally modeling all typical information extraction tasks (UIE) with one generative language model (GLM) has revealed great potential by the latest study, where various IE predictions are unified into a linearized hierarchical expression under a GLM. Syntactic structure information, a type of effective feature which has been extensively utilized in IE community, should also be beneficial to UIE. In this work, we propose a novel structure-aware GLM, fully unleashing the power of syntactic knowledge for UIE. A heterogeneous structure inductor is explored to unsupervisedly induce rich heterogeneous structural representations by post-training an existing GLM. In particular, a structural broadcaster is devised to compact various latent trees into explicit high-order forests, helping to guide a better generation during decoding. We finally introduce a task-oriented structure fine-tuning mechanism, further adjusting the learned structures to most coincide with the end-task's need. Over 12 IE benchmarks across 7 tasks our system shows significant improvements over the baseline UIE system. Further in-depth analyses show that our GLM learns rich task-adaptive structural bias that greatly resolves the UIE crux, the long-range dependence issue and boundary identifying. Source codes are open at https://github.com/ChocoWu/LasUIE.
Enhancing Visual Planning with Auxiliary Tasks and Multi-token Prediction
Visual Planning for Assistance (VPA) aims to predict a sequence of user actions required to achieve a specified goal based on a video showing the user's progress. Although recent advances in multimodal large language models (MLLMs) have shown promising results in video understanding, long-horizon visual planning remains a challenging problem. We identify two challenges in training large MLLMs for video-based planning tasks: (1) scarcity of procedural annotations, limiting the model's ability to learn procedural task dynamics effectively, and (2) inefficiency of next-token prediction objective to explicitly capture the structured action space for visual planning when compared to free-form, natural language. To tackle data scarcity, we introduce Auxiliary Task Augmentation. We design and train our model on auxiliary tasks relevant to long-horizon video-based planning (e.g., goal prediction) to augment the model's planning ability. To more explicitly model the structured action space unique to visual planning tasks, we leverage Multi-token Prediction, extending traditional next-token prediction by using multiple heads to predict multiple future tokens during training. Our approach, VideoPlan, achieves state-of-the-art VPA performance on the COIN and CrossTask datasets, surpassing prior methods by 7.3% and 3.4%, respectively, when predicting 3 future actions. We further extend our method to the challenging Ego4D Long-term Action Anticipation task, and show that it is on par with the state-of-the-art approaches despite not using specialized egocentric features. Code will be made available.
Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes
Long Short Term Memory LSTM-based structures have demonstrated their efficiency for daily living recognition activities in smart homes by capturing the order of sensor activations and their temporal dependencies. Nevertheless, they still fail in dealing with the semantics and the context of the sensors. More than isolated id and their ordered activation values, sensors also carry meaning. Indeed, their nature and type of activation can translate various activities. Their logs are correlated with each other, creating a global context. We propose to use and compare two Natural Language Processing embedding methods to enhance LSTM-based structures in activity-sequences classification tasks: Word2Vec, a static semantic embedding, and ELMo, a contextualized embedding. Results, on real smart homes datasets, indicate that this approach provides useful information, such as a sensor organization map, and makes less confusion between daily activity classes. It helps to better perform on datasets with competing activities of other residents or pets. Our tests show also that the embeddings can be pretrained on different datasets than the target one, enabling transfer learning. We thus demonstrate that taking into account the context of the sensors and their semantics increases the classification performances and enables transfer learning.
IAO Prompting: Making Knowledge Flow Explicit in LLMs through Structured Reasoning Templates
While Large Language Models (LLMs) demonstrate impressive reasoning capabilities, understanding and validating their knowledge utilization remains challenging. Chain-of-thought (CoT) prompting partially addresses this by revealing intermediate reasoning steps, but the knowledge flow and application remain implicit. We introduce IAO (Input-Action-Output) prompting, a structured template-based method that explicitly models how LLMs access and apply their knowledge during complex reasoning tasks. IAO decomposes problems into sequential steps, each clearly identifying the input knowledge being used, the action being performed, and the resulting output. This structured decomposition enables us to trace knowledge flow, verify factual consistency, and identify potential knowledge gaps or misapplications. Through experiments across diverse reasoning tasks, we demonstrate that IAO not only improves zero-shot performance but also provides transparency in how LLMs leverage their stored knowledge. Human evaluation confirms that this structured approach enhances our ability to verify knowledge utilization and detect potential hallucinations or reasoning errors. Our findings provide insights into both knowledge representation within LLMs and methods for more reliable knowledge application.
Scene Coordinate Reconstruction: Posing of Image Collections via Incremental Learning of a Relocalizer
We address the task of estimating camera parameters from a set of images depicting a scene. Popular feature-based structure-from-motion (SfM) tools solve this task by incremental reconstruction: they repeat triangulation of sparse 3D points and registration of more camera views to the sparse point cloud. We re-interpret incremental structure-from-motion as an iterated application and refinement of a visual relocalizer, that is, of a method that registers new views to the current state of the reconstruction. This perspective allows us to investigate alternative visual relocalizers that are not rooted in local feature matching. We show that scene coordinate regression, a learning-based relocalization approach, allows us to build implicit, neural scene representations from unposed images. Different from other learning-based reconstruction methods, we do not require pose priors nor sequential inputs, and we optimize efficiently over thousands of images. Our method, ACE0 (ACE Zero), estimates camera poses to an accuracy comparable to feature-based SfM, as demonstrated by novel view synthesis. Project page: https://nianticlabs.github.io/acezero/
RoboHorizon: An LLM-Assisted Multi-View World Model for Long-Horizon Robotic Manipulation
Efficient control in long-horizon robotic manipulation is challenging due to complex representation and policy learning requirements. Model-based visual reinforcement learning (RL) has shown great potential in addressing these challenges but still faces notable limitations, particularly in handling sparse rewards and complex visual features in long-horizon environments. To address these limitations, we propose the Recognize-Sense-Plan-Act (RSPA) pipeline for long-horizon tasks and further introduce RoboHorizon, an LLM-assisted multi-view world model tailored for long-horizon robotic manipulation. In RoboHorizon, pre-trained LLMs generate dense reward structures for multi-stage sub-tasks based on task language instructions, enabling robots to better recognize long-horizon tasks. Keyframe discovery is then integrated into the multi-view masked autoencoder (MAE) architecture to enhance the robot's ability to sense critical task sequences, strengthening its multi-stage perception of long-horizon processes. Leveraging these dense rewards and multi-view representations, a robotic world model is constructed to efficiently plan long-horizon tasks, enabling the robot to reliably act through RL algorithms. Experiments on two representative benchmarks, RLBench and FurnitureBench, show that RoboHorizon outperforms state-of-the-art visual model-based RL methods, achieving a 23.35% improvement in task success rates on RLBench's 4 short-horizon tasks and a 29.23% improvement on 6 long-horizon tasks from RLBench and 3 furniture assembly tasks from FurnitureBench.
Toward Better EHR Reasoning in LLMs: Reinforcement Learning with Expert Attention Guidance
Improving large language models (LLMs) for electronic health record (EHR) reasoning is essential for enabling accurate and generalizable clinical predictions. While LLMs excel at medical text understanding, they underperform on EHR-based prediction tasks due to challenges in modeling temporally structured, high-dimensional data. Existing approaches often rely on hybrid paradigms, where LLMs serve merely as frozen prior retrievers while downstream deep learning (DL) models handle prediction, failing to improve the LLM's intrinsic reasoning capacity and inheriting the generalization limitations of DL models. To this end, we propose EAG-RL, a novel two-stage training framework designed to intrinsically enhance LLMs' EHR reasoning ability through expert attention guidance, where expert EHR models refer to task-specific DL models trained on EHR data. Concretely, EAG-RL first constructs high-quality, stepwise reasoning trajectories using expert-guided Monte Carlo Tree Search to effectively initialize the LLM's policy. Then, EAG-RL further optimizes the policy via reinforcement learning by aligning the LLM's attention with clinically salient features identified by expert EHR models. Extensive experiments on two real-world EHR datasets show that EAG-RL improves the intrinsic EHR reasoning ability of LLMs by an average of 14.62%, while also enhancing robustness to feature perturbations and generalization to unseen clinical domains. These results demonstrate the practical potential of EAG-RL for real-world deployment in clinical prediction tasks. Our code have been available at https://github.com/devilran6/EAG-RL.
Enhancing Fairness in Autoencoders for Node-Level Graph Anomaly Detection
Graph anomaly detection (GAD) has become an increasingly important task across various domains. With the rapid development of graph neural networks (GNNs), GAD methods have achieved significant performance improvements. However, fairness considerations in GAD remain largely underexplored. Indeed, GNN-based GAD models can inherit and amplify biases present in training data, potentially leading to unfair outcomes. While existing efforts have focused on developing fair GNNs, most approaches target node classification tasks, where models often rely on simple layer architectures rather than autoencoder-based structures, which are the most widely used architecturs for anomaly detection. To address fairness in autoencoder-based GAD models, we propose DisEntangled Counterfactual Adversarial Fair (DECAF)-GAD, a framework that alleviates bias while preserving GAD performance. Specifically, we introduce a structural causal model (SCM) to disentangle sensitive attributes from learned representations. Based on this causal framework, we formulate a specialized autoencoder architecture along with a fairness-guided loss function. Through extensive experiments on both synthetic and real-world datasets, we demonstrate that DECAF-GAD not only achieves competitive anomaly detection performance but also significantly enhances fairness metrics compared to baseline GAD methods. Our code is available at https://github.com/Tlhey/decaf_code.
Enhancing LLM's Cognition via Structurization
When reading long-form text, human cognition is complex and structurized. While large language models (LLMs) process input contexts through a causal and sequential perspective, this approach can potentially limit their ability to handle intricate and complex inputs effectively. To enhance LLM's cognition capability, this paper presents a novel concept of context structurization. Specifically, we transform the plain, unordered contextual sentences into well-ordered and hierarchically structurized elements. By doing so, LLMs can better grasp intricate and extended contexts through precise attention and information-seeking along the organized structures. Extensive evaluations are conducted across various model architectures and sizes (including a series of auto-regressive LLMs as well as BERT-like masking models) on a diverse set of NLP tasks (e.g., context-based question-answering, exhaustive hallucination evaluation, and passage-level dense retrieval). Empirical results show consistent and significant performance gains afforded by a single-round structurization. In particular, we boost the open-sourced LLaMA2-70B model to achieve comparable performance against GPT-3.5-Turbo as the hallucination evaluator. Besides, we show the feasibility of distilling advanced LLMs' language processing abilities to a smaller yet effective StruXGPT-7B to execute structurization, addressing the practicality of our approach. Code is available at https://github.com/alibaba/struxgpt.
Task-aware Retrieval with Instructions
We study the problem of retrieval with instructions, where users of a retrieval system explicitly describe their intent along with their queries. We aim to develop a general-purpose task-aware retrieval system using multi-task instruction tuning, which can follow human-written instructions to find the best documents for a given query. We introduce the first large-scale collection of approximately 40 retrieval datasets with instructions, BERRI, and present TART, a multi-task retrieval system trained on BERRI with instructions. TART shows strong capabilities to adapt to a new retrieval task via instructions and advances the state of the art on two zero-shot retrieval benchmarks, BEIR and LOTTE, outperforming models up to three times larger. We further introduce a new evaluation setup, X^2-Retrieval to better reflect real-world scenarios, where diverse domains and tasks are pooled and a system needs to find documents aligning users' intents. In this setup, TART significantly outperforms competitive baselines, further demonstrating the effectiveness of guiding retrieval with instructions.
NS3: Neuro-Symbolic Semantic Code Search
Semantic code search is the task of retrieving a code snippet given a textual description of its functionality. Recent work has been focused on using similarity metrics between neural embeddings of text and code. However, current language models are known to struggle with longer, compositional text, and multi-step reasoning. To overcome this limitation, we propose supplementing the query sentence with a layout of its semantic structure. The semantic layout is used to break down the final reasoning decision into a series of lower-level decisions. We use a Neural Module Network architecture to implement this idea. We compare our model - NS3 (Neuro-Symbolic Semantic Search) - to a number of baselines, including state-of-the-art semantic code retrieval methods, and evaluate on two datasets - CodeSearchNet and Code Search and Question Answering. We demonstrate that our approach results in more precise code retrieval, and we study the effectiveness of our modular design when handling compositional queries.
Structural Text Segmentation of Legal Documents
The growing complexity of legal cases has lead to an increasing interest in legal information retrieval systems that can effectively satisfy user-specific information needs. However, such downstream systems typically require documents to be properly formatted and segmented, which is often done with relatively simple pre-processing steps, disregarding topical coherence of segments. Systems generally rely on representations of individual sentences or paragraphs, which may lack crucial context, or document-level representations, which are too long for meaningful search results. To address this issue, we propose a segmentation system that can predict topical coherence of sequential text segments spanning several paragraphs, effectively segmenting a document and providing a more balanced representation for downstream applications. We build our model on top of popular transformer networks and formulate structural text segmentation as topical change detection, by performing a series of independent classifications that allow for efficient fine-tuning on task-specific data. We crawl a novel dataset consisting of roughly 74,000 online Terms-of-Service documents, including hierarchical topic annotations, which we use for training. Results show that our proposed system significantly outperforms baselines, and adapts well to structural peculiarities of legal documents. We release both data and trained models to the research community for future work.https://github.com/dennlinger/TopicalChange
Autoregressive Structured Prediction with Language Models
Recent years have seen a paradigm shift in NLP towards using pretrained language models ({PLM}) for a wide range of tasks. However, there are many difficult design decisions to represent structures (e.g. tagged text, coreference chains) in a way such that they can be captured by PLMs. Prior work on structured prediction with PLMs typically flattens the structured output into a sequence, which limits the quality of structural information being learned and leads to inferior performance compared to classic discriminative models. In this work, we describe an approach to model structures as sequences of actions in an autoregressive manner with PLMs, allowing in-structure dependencies to be learned without any loss. Our approach achieves the new state-of-the-art on all the structured prediction tasks we looked at, namely, named entity recognition, end-to-end relation extraction, and coreference resolution.
INSTRUCTIR: A Benchmark for Instruction Following of Information Retrieval Models
Despite the critical need to align search targets with users' intention, retrievers often only prioritize query information without delving into the users' intended search context. Enhancing the capability of retrievers to understand intentions and preferences of users, akin to language model instructions, has the potential to yield more aligned search targets. Prior studies restrict the application of instructions in information retrieval to a task description format, neglecting the broader context of diverse and evolving search scenarios. Furthermore, the prevailing benchmarks utilized for evaluation lack explicit tailoring to assess instruction-following ability, thereby hindering progress in this field. In response to these limitations, we propose a novel benchmark,INSTRUCTIR, specifically designed to evaluate instruction-following ability in information retrieval tasks. Our approach focuses on user-aligned instructions tailored to each query instance, reflecting the diverse characteristics inherent in real-world search scenarios. Through experimental analysis, we observe that retrievers fine-tuned to follow task-style instructions, such as INSTRUCTOR, can underperform compared to their non-instruction-tuned counterparts. This underscores potential overfitting issues inherent in constructing retrievers trained on existing instruction-aware retrieval datasets.
Dual Process Learning: Controlling Use of In-Context vs. In-Weights Strategies with Weight Forgetting
Language models have the ability to perform in-context learning (ICL), allowing them to flexibly adapt their behavior based on context. This contrasts with in-weights learning, where information is statically encoded in model parameters from iterated observations of the data. Despite this apparent ability to learn in-context, language models are known to struggle when faced with unseen or rarely seen tokens. Hence, we study structural in-context learning, which we define as the ability of a model to execute in-context learning on arbitrary tokens -- so called because the model must generalize on the basis of e.g. sentence structure or task structure, rather than semantic content encoded in token embeddings. An ideal model would be able to do both: flexibly deploy in-weights operations (in order to robustly accommodate ambiguous or unknown contexts using encoded semantic information) and structural in-context operations (in order to accommodate novel tokens). We study structural in-context algorithms in a simple part-of-speech setting using both practical and toy models. We find that active forgetting, a technique that was recently introduced to help models generalize to new languages, forces models to adopt structural in-context learning solutions. Finally, we introduce temporary forgetting, a straightforward extension of active forgetting that enables one to control how much a model relies on in-weights vs. in-context solutions. Importantly, temporary forgetting allows us to induce a dual process strategy where in-context and in-weights solutions coexist within a single model.
Autoregressive Search Engines: Generating Substrings as Document Identifiers
Knowledge-intensive language tasks require NLP systems to both provide the correct answer and retrieve supporting evidence for it in a given corpus. Autoregressive language models are emerging as the de-facto standard for generating answers, with newer and more powerful systems emerging at an astonishing pace. In this paper we argue that all this (and future) progress can be directly applied to the retrieval problem with minimal intervention to the models' architecture. Previous work has explored ways to partition the search space into hierarchical structures and retrieve documents by autoregressively generating their unique identifier. In this work we propose an alternative that doesn't force any structure in the search space: using all ngrams in a passage as its possible identifiers. This setup allows us to use an autoregressive model to generate and score distinctive ngrams, that are then mapped to full passages through an efficient data structure. Empirically, we show this not only outperforms prior autoregressive approaches but also leads to an average improvement of at least 10 points over more established retrieval solutions for passage-level retrieval on the KILT benchmark, establishing new state-of-the-art downstream performance on some datasets, while using a considerably lighter memory footprint than competing systems. Code and pre-trained models at https://github.com/facebookresearch/SEAL.
SetCSE: Set Operations using Contrastive Learning of Sentence Embeddings
Taking inspiration from Set Theory, we introduce SetCSE, an innovative information retrieval framework. SetCSE employs sets to represent complex semantics and incorporates well-defined operations for structured information querying under the provided context. Within this framework, we introduce an inter-set contrastive learning objective to enhance comprehension of sentence embedding models concerning the given semantics. Furthermore, we present a suite of operations, including SetCSE intersection, difference, and operation series, that leverage sentence embeddings of the enhanced model for complex sentence retrieval tasks. Throughout this paper, we demonstrate that SetCSE adheres to the conventions of human language expressions regarding compounded semantics, provides a significant enhancement in the discriminatory capability of underlying sentence embedding models, and enables numerous information retrieval tasks involving convoluted and intricate prompts which cannot be achieved using existing querying methods.
Induce, Edit, Retrieve: Language Grounded Multimodal Schema for Instructional Video Retrieval
Schemata are structured representations of complex tasks that can aid artificial intelligence by allowing models to break down complex tasks into intermediate steps. We propose a novel system that induces schemata from web videos and generalizes them to capture unseen tasks with the goal of improving video retrieval performance. Our system proceeds in three major phases: (1) Given a task with related videos, we construct an initial schema for a task using a joint video-text model to match video segments with text representing steps from wikiHow; (2) We generalize schemata to unseen tasks by leveraging language models to edit the text within existing schemata. Through generalization, we can allow our schemata to cover a more extensive range of tasks with a small amount of learning data; (3) We conduct zero-shot instructional video retrieval with the unseen task names as the queries. Our schema-guided approach outperforms existing methods for video retrieval, and we demonstrate that the schemata induced by our system are better than those generated by other models.
DART: Open-Domain Structured Data Record to Text Generation
We present DART, an open domain structured DAta Record to Text generation dataset with over 82k instances (DARTs). Data-to-Text annotations can be a costly process, especially when dealing with tables which are the major source of structured data and contain nontrivial structures. To this end, we propose a procedure of extracting semantic triples from tables that encodes their structures by exploiting the semantic dependencies among table headers and the table title. Our dataset construction framework effectively merged heterogeneous sources from open domain semantic parsing and dialogue-act-based meaning representation tasks by utilizing techniques such as: tree ontology annotation, question-answer pair to declarative sentence conversion, and predicate unification, all with minimum post-editing. We present systematic evaluation on DART as well as new state-of-the-art results on WebNLG 2017 to show that DART (1) poses new challenges to existing data-to-text datasets and (2) facilitates out-of-domain generalization. Our data and code can be found at https://github.com/Yale-LILY/dart.
Modeling Graph Structure in Transformer for Better AMR-to-Text Generation
Recent studies on AMR-to-text generation often formalize the task as a sequence-to-sequence (seq2seq) learning problem by converting an Abstract Meaning Representation (AMR) graph into a word sequence. Graph structures are further modeled into the seq2seq framework in order to utilize the structural information in the AMR graphs. However, previous approaches only consider the relations between directly connected concepts while ignoring the rich structure in AMR graphs. In this paper we eliminate such a strong limitation and propose a novel structure-aware self-attention approach to better modeling the relations between indirectly connected concepts in the state-of-the-art seq2seq model, i.e., the Transformer. In particular, a few different methods are explored to learn structural representations between two concepts. Experimental results on English AMR benchmark datasets show that our approach significantly outperforms the state of the art with 29.66 and 31.82 BLEU scores on LDC2015E86 and LDC2017T10, respectively. To the best of our knowledge, these are the best results achieved so far by supervised models on the benchmarks.
Learning from Task Descriptions
Typically, machine learning systems solve new tasks by training on thousands of examples. In contrast, humans can solve new tasks by reading some instructions, with perhaps an example or two. To take a step toward closing this gap, we introduce a framework for developing NLP systems that solve new tasks after reading their descriptions, synthesizing prior work in this area. We instantiate this framework with a new English language dataset, ZEST, structured for task-oriented evaluation on unseen tasks. Formulating task descriptions as questions, we ensure each is general enough to apply to many possible inputs, thus comprehensively evaluating a model's ability to solve each task. Moreover, the dataset's structure tests specific types of systematic generalization. We find that the state-of-the-art T5 model achieves a score of 12% on ZEST, leaving a significant challenge for NLP researchers.
Dense X Retrieval: What Retrieval Granularity Should We Use?
Dense retrieval has become a prominent method to obtain relevant context or world knowledge in open-domain NLP tasks. When we use a learned dense retriever on a retrieval corpus at inference time, an often-overlooked design choice is the retrieval unit in which the corpus is indexed, e.g. document, passage, or sentence. We discover that the retrieval unit choice significantly impacts the performance of both retrieval and downstream tasks. Distinct from the typical approach of using passages or sentences, we introduce a novel retrieval unit, proposition, for dense retrieval. Propositions are defined as atomic expressions within text, each encapsulating a distinct factoid and presented in a concise, self-contained natural language format. We conduct an empirical comparison of different retrieval granularity. Our results reveal that proposition-based retrieval significantly outperforms traditional passage or sentence-based methods in dense retrieval. Moreover, retrieval by proposition also enhances the performance of downstream QA tasks, since the retrieved texts are more condensed with question-relevant information, reducing the need for lengthy input tokens and minimizing the inclusion of extraneous, irrelevant information.
SemEval 2023 Task 6: LegalEval - Understanding Legal Texts
In populous countries, pending legal cases have been growing exponentially. There is a need for developing NLP-based techniques for processing and automatically understanding legal documents. To promote research in the area of Legal NLP we organized the shared task LegalEval - Understanding Legal Texts at SemEval 2023. LegalEval task has three sub-tasks: Task-A (Rhetorical Roles Labeling) is about automatically structuring legal documents into semantically coherent units, Task-B (Legal Named Entity Recognition) deals with identifying relevant entities in a legal document and Task-C (Court Judgement Prediction with Explanation) explores the possibility of automatically predicting the outcome of a legal case along with providing an explanation for the prediction. In total 26 teams (approx. 100 participants spread across the world) submitted systems paper. In each of the sub-tasks, the proposed systems outperformed the baselines; however, there is a lot of scope for improvement. This paper describes the tasks, and analyzes techniques proposed by various teams.
A picture of the space of typical learnable tasks
We develop information geometric techniques to understand the representations learned by deep networks when they are trained on different tasks using supervised, meta-, semi-supervised and contrastive learning. We shed light on the following phenomena that relate to the structure of the space of tasks: (1) the manifold of probabilistic models trained on different tasks using different representation learning methods is effectively low-dimensional; (2) supervised learning on one task results in a surprising amount of progress even on seemingly dissimilar tasks; progress on other tasks is larger if the training task has diverse classes; (3) the structure of the space of tasks indicated by our analysis is consistent with parts of the Wordnet phylogenetic tree; (4) episodic meta-learning algorithms and supervised learning traverse different trajectories during training but they fit similar models eventually; (5) contrastive and semi-supervised learning methods traverse trajectories similar to those of supervised learning. We use classification tasks constructed from the CIFAR-10 and Imagenet datasets to study these phenomena.
On the Structural Memory of LLM Agents
Memory plays a pivotal role in enabling large language model~(LLM)-based agents to engage in complex and long-term interactions, such as question answering (QA) and dialogue systems. While various memory modules have been proposed for these tasks, the impact of different memory structures across tasks remains insufficiently explored. This paper investigates how memory structures and memory retrieval methods affect the performance of LLM-based agents. Specifically, we evaluate four types of memory structures, including chunks, knowledge triples, atomic facts, and summaries, along with mixed memory that combines these components. In addition, we evaluate three widely used memory retrieval methods: single-step retrieval, reranking, and iterative retrieval. Extensive experiments conducted across four tasks and six datasets yield the following key insights: (1) Different memory structures offer distinct advantages, enabling them to be tailored to specific tasks; (2) Mixed memory structures demonstrate remarkable resilience in noisy environments; (3) Iterative retrieval consistently outperforms other methods across various scenarios. Our investigation aims to inspire further research into the design of memory systems for LLM-based agents.
TartuNLP at SemEval-2025 Task 5: Subject Tagging as Two-Stage Information Retrieval
We present our submission to the Task 5 of SemEval-2025 that aims to aid librarians in assigning subject tags to the library records by producing a list of likely relevant tags for a given document. We frame the task as an information retrieval problem, where the document content is used to retrieve subject tags from a large subject taxonomy. We leverage two types of encoder models to build a two-stage information retrieval system -- a bi-encoder for coarse-grained candidate extraction at the first stage, and a cross-encoder for fine-grained re-ranking at the second stage. This approach proved effective, demonstrating significant improvements in recall compared to single-stage methods and showing competitive results according to qualitative evaluation.
Tabular Data Understanding with LLMs: A Survey of Recent Advances and Challenges
Tables have gained significant attention in large language models (LLMs) and multimodal large language models (MLLMs) due to their complex and flexible structure. Unlike linear text inputs, tables are two-dimensional, encompassing formats that range from well-structured database tables to complex, multi-layered spreadsheets, each with different purposes. This diversity in format and purpose has led to the development of specialized methods and tasks, instead of universal approaches, making navigation of table understanding tasks challenging. To address these challenges, this paper introduces key concepts through a taxonomy of tabular input representations and an introduction of table understanding tasks. We highlight several critical gaps in the field that indicate the need for further research: (1) the predominance of retrieval-focused tasks that require minimal reasoning beyond mathematical and logical operations; (2) significant challenges faced by models when processing complex table structures, large-scale tables, length context, or multi-table scenarios; and (3) the limited generalization of models across different tabular representations and formats.
Can Large Language Models Recall Reference Location Like Humans?
When completing knowledge-intensive tasks, humans sometimes need not just an answer but also a corresponding reference passage for auxiliary reading. Previous methods required obtaining pre-segmented article chunks through additional retrieval models. This paper explores leveraging the parameterized knowledge stored during the pre-training phase of large language models (LLMs) to independently recall reference passage from any starting position. We propose a two-stage framework that simulates the scenario of humans recalling easily forgotten references. Initially, the LLM is prompted to recall document title identifiers to obtain a coarse-grained document set. Then, based on the acquired coarse-grained document set, it recalls fine-grained passage. In the two-stage recall process, we use constrained decoding to ensure that content outside of the stored documents is not generated. To increase speed, we only recall a short prefix in the second stage, then locate its position to retrieve a complete passage. Experiments on KILT knowledge-sensitive tasks have verified that LLMs can independently recall reference passage location in various task forms, and the obtained reference significantly assist downstream tasks.
Struc-Bench: Are Large Language Models Really Good at Generating Complex Structured Data?
Despite the power of Large Language Models (LLMs) like GPT-4, they still struggle with tasks that require generating complex, structured outputs. In this study, we assess the capability of Current LLMs in generating complex structured data and propose a structure-aware fine-tuning approach as a solution to improve this ability. To perform a comprehensive evaluation, we propose Struc-Bench, include five representative LLMs (i.e., GPT-NeoX 20B, GPT-3.5, GPT-4, and Vicuna) and evaluate them on our carefully constructed datasets spanning raw text, HTML, and LaTeX tables. Based on our analysis of current model performance, we identify specific common formatting errors and areas of potential improvement. To address complex formatting requirements, we utilize FormatCoT (Chain-of-Thought) to generate format instructions from target outputs. Our experiments show that our structure-aware fine-tuning method, when applied to LLaMA-7B, significantly improves adherence to natural language constraints, outperforming other evaluated LLMs. Based on these results, we present an ability map of model capabilities from six dimensions (i.e., coverage, formatting, reasoning, comprehension, pragmatics, and hallucination). This map highlights the weaknesses of LLMs in handling complex structured outputs and suggests promising directions for future work. Our code and models can be found at https://github.com/gersteinlab/Struc-Bench.
ResPlan: A Large-Scale Vector-Graph Dataset of 17,000 Residential Floor Plans
We introduce ResPlan, a large-scale dataset of 17,000 detailed, structurally rich, and realistic residential floor plans, created to advance spatial AI research. Each plan includes precise annotations of architectural elements (walls, doors, windows, balconies) and functional spaces (such as kitchens, bedrooms, and bathrooms). ResPlan addresses key limitations of existing datasets such as RPLAN (Wu et al., 2019) and MSD (van Engelenburg et al., 2024) by offering enhanced visual fidelity and greater structural diversity, reflecting realistic and non-idealized residential layouts. Designed as a versatile, general-purpose resource, ResPlan supports a wide range of applications including robotics, reinforcement learning, generative AI, virtual and augmented reality, simulations, and game development. Plans are provided in both geometric and graph-based formats, enabling direct integration into simulation engines and fast 3D conversion. A key contribution is an open-source pipeline for geometry cleaning, alignment, and annotation refinement. Additionally, ResPlan includes structured representations of room connectivity, supporting graph-based spatial reasoning tasks. Finally, we present comparative analyses with existing benchmarks and outline several open benchmark tasks enabled by ResPlan. Ultimately, ResPlan offers a significant advance in scale, realism, and usability, providing a robust foundation for developing and benchmarking next-generation spatial intelligence systems.
Topologies of Reasoning: Demystifying Chains, Trees, and Graphs of Thoughts
The field of natural language processing (NLP) has witnessed significant progress in recent years, with a notable focus on improving large language models' (LLM) performance through innovative prompting techniques. Among these, prompt engineering coupled with structures has emerged as a promising paradigm, with designs such as Chain-of-Thought, Tree of Thoughts, or Graph of Thoughts, in which the overall LLM reasoning is guided by a structure such as a graph. As illustrated with numerous examples, this paradigm significantly enhances the LLM's capability to solve numerous tasks, ranging from logical or mathematical reasoning to planning or creative writing. To facilitate the understanding of this growing field and pave the way for future developments, we devise a general blueprint for effective and efficient LLM reasoning schemes. For this, we conduct an in-depth analysis of the prompt execution pipeline, clarifying and clearly defining different concepts. We then build the first taxonomy of structure-enhanced LLM reasoning schemes. We focus on identifying fundamental classes of harnessed structures, and we analyze the representations of these structures, algorithms executed with these structures, and many others. We refer to these structures as reasoning topologies, because their representation becomes to a degree spatial, as they are contained within the LLM context. Our study compares existing prompting schemes using the proposed taxonomy, discussing how certain design choices lead to different patterns in performance and cost. We also outline theoretical underpinnings, relationships between prompting and others parts of the LLM ecosystem such as knowledge bases, and the associated research challenges. Our work will help to advance future prompt engineering techniques.
Linking Theories and Methods in Cognitive Sciences via Joint Embedding of the Scientific Literature: The Example of Cognitive Control
Traditionally, theory and practice of Cognitive Control are linked via literature reviews by human domain experts. This approach, however, is inadequate to track the ever-growing literature. It may also be biased, and yield redundancies and confusion. Here we present an alternative approach. We performed automated text analyses on a large body of scientific texts to create a joint representation of tasks and constructs. More specifically, 385,705 scientific abstracts were first mapped into an embedding space using a transformers-based language model. Document embeddings were then used to identify a task-construct graph embedding that grounds constructs on tasks and supports nuanced meaning of the constructs by taking advantage of constrained random walks in the graph. This joint task-construct graph embedding, can be queried to generate task batteries targeting specific constructs, may reveal knowledge gaps in the literature, and inspire new tasks and novel hypotheses.
Long Short-Term Memory Over Tree Structures
The chain-structured long short-term memory (LSTM) has showed to be effective in a wide range of problems such as speech recognition and machine translation. In this paper, we propose to extend it to tree structures, in which a memory cell can reflect the history memories of multiple child cells or multiple descendant cells in a recursive process. We call the model S-LSTM, which provides a principled way of considering long-distance interaction over hierarchies, e.g., language or image parse structures. We leverage the models for semantic composition to understand the meaning of text, a fundamental problem in natural language understanding, and show that it outperforms a state-of-the-art recursive model by replacing its composition layers with the S-LSTM memory blocks. We also show that utilizing the given structures is helpful in achieving a performance better than that without considering the structures.
DAPR: A Benchmark on Document-Aware Passage Retrieval
Recent neural retrieval mainly focuses on ranking short texts and is challenged with long documents. Existing work mainly evaluates either ranking passages or whole documents. However, there are many cases where the users want to find a relevant passage within a long document from a huge corpus, e.g. legal cases, research papers, etc. In this scenario, the passage often provides little document context and thus challenges the current approaches to finding the correct document and returning accurate results. To fill this gap, we propose and name this task Document-Aware Passage Retrieval (DAPR) and build a benchmark including multiple datasets from various domains, covering both DAPR and whole-document retrieval. In experiments, we extend the state-of-the-art neural passage retrievers with document-level context via different approaches including prepending document summary, pooling over passage representations, and hybrid retrieval with BM25. The hybrid-retrieval systems, the overall best, can only improve on the DAPR tasks marginally while significantly improving on the document-retrieval tasks. This motivates further research in developing better retrieval systems for the new task. The code and the data are available at https://github.com/kwang2049/dapr
Some Like It Small: Czech Semantic Embedding Models for Industry Applications
This article focuses on the development and evaluation of Small-sized Czech sentence embedding models. Small models are important components for real-time industry applications in resource-constrained environments. Given the limited availability of labeled Czech data, alternative approaches, including pre-training, knowledge distillation, and unsupervised contrastive fine-tuning, are investigated. Comprehensive intrinsic and extrinsic analyses are conducted, showcasing the competitive performance of our models compared to significantly larger counterparts, with approximately 8 times smaller size and 5 times faster speed than conventional Base-sized models. To promote cooperation and reproducibility, both the models and the evaluation pipeline are made publicly accessible. Ultimately, this article presents practical applications of the developed sentence embedding models in Seznam.cz, the Czech search engine. These models have effectively replaced previous counterparts, enhancing the overall search experience for instance, in organic search, featured snippets, and image search. This transition has yielded improved performance.
Did You Read the Instructions? Rethinking the Effectiveness of Task Definitions in Instruction Learning
Large language models (LLMs) have shown impressive performance in following natural language instructions to solve unseen tasks. However, it remains unclear whether models truly understand task definitions and whether the human-written definitions are optimal. In this paper, we systematically study the role of task definitions in instruction learning. We first conduct an ablation analysis informed by human annotations to understand which parts of a task definition are most important, and find that model performance only drops substantially when removing contents describing the task output, in particular label information. Next, we propose an automatic algorithm to compress task definitions to a minimal supporting set of tokens, and find that 60\% of tokens can be removed while maintaining or even improving model performance. Based on these results, we propose two strategies to help models better leverage task instructions: (1) providing only key information for tasks in a common structured format, and (2) adding a meta-tuning stage to help the model better understand the definitions. With these two strategies, we achieve a 4.2 Rouge-L improvement over 119 unseen test tasks.
Neural Passage Quality Estimation for Static Pruning
Neural networks -- especially those that use large, pre-trained language models -- have improved search engines in various ways. Most prominently, they can estimate the relevance of a passage or document to a user's query. In this work, we depart from this direction by exploring whether neural networks can effectively predict which of a document's passages are unlikely to be relevant to any query submitted to the search engine. We refer to this query-agnostic estimation of passage relevance as a passage's quality. We find that our novel methods for estimating passage quality allow passage corpora to be pruned considerably while maintaining statistically equivalent effectiveness; our best methods can consistently prune >25% of passages in a corpora, across various retrieval pipelines. Such substantial pruning reduces the operating costs of neural search engines in terms of computing resources, power usage, and carbon footprint -- both when processing queries (thanks to a smaller index size) and when indexing (lightweight models can prune low-quality passages prior to the costly dense or learned sparse encoding step). This work sets the stage for developing more advanced neural "learning-what-to-index" methods.
Mapping Natural Language Commands to Web Elements
The web provides a rich, open-domain environment with textual, structural, and spatial properties. We propose a new task for grounding language in this environment: given a natural language command (e.g., "click on the second article"), choose the correct element on the web page (e.g., a hyperlink or text box). We collected a dataset of over 50,000 commands that capture various phenomena such as functional references (e.g. "find who made this site"), relational reasoning (e.g. "article by john"), and visual reasoning (e.g. "top-most article"). We also implemented and analyzed three baseline models that capture different phenomena present in the dataset.
Structural Scaffolds for Citation Intent Classification in Scientific Publications
Identifying the intent of a citation in scientific papers (e.g., background information, use of methods, comparing results) is critical for machine reading of individual publications and automated analysis of the scientific literature. We propose structural scaffolds, a multitask model to incorporate structural information of scientific papers into citations for effective classification of citation intents. Our model achieves a new state-of-the-art on an existing ACL anthology dataset (ACL-ARC) with a 13.3% absolute increase in F1 score, without relying on external linguistic resources or hand-engineered features as done in existing methods. In addition, we introduce a new dataset of citation intents (SciCite) which is more than five times larger and covers multiple scientific domains compared with existing datasets. Our code and data are available at: https://github.com/allenai/scicite.
Mixture of Structural-and-Textual Retrieval over Text-rich Graph Knowledge Bases
Text-rich Graph Knowledge Bases (TG-KBs) have become increasingly crucial for answering queries by providing textual and structural knowledge. However, current retrieval methods often retrieve these two types of knowledge in isolation without considering their mutual reinforcement and some hybrid methods even bypass structural retrieval entirely after neighboring aggregation. To fill in this gap, we propose a Mixture of Structural-and-Textual Retrieval (MoR) to retrieve these two types of knowledge via a Planning-Reasoning-Organizing framework. In the Planning stage, MoR generates textual planning graphs delineating the logic for answering queries. Following planning graphs, in the Reasoning stage, MoR interweaves structural traversal and textual matching to obtain candidates from TG-KBs. In the Organizing stage, MoR further reranks fetched candidates based on their structural trajectory. Extensive experiments demonstrate the superiority of MoR in harmonizing structural and textual retrieval with insights, including uneven retrieving performance across different query logics and the benefits of integrating structural trajectories for candidate reranking. Our code is available at https://github.com/Yoega/MoR.
Learning Embeddings that Capture Spatial Semantics for Indoor Navigation
Incorporating domain-specific priors in search and navigation tasks has shown promising results in improving generalization and sample complexity over end-to-end trained policies. In this work, we study how object embeddings that capture spatial semantic priors can guide search and navigation tasks in a structured environment. We know that humans can search for an object like a book, or a plate in an unseen house, based on the spatial semantics of bigger objects detected. For example, a book is likely to be on a bookshelf or a table, whereas a plate is likely to be in a cupboard or dishwasher. We propose a method to incorporate such spatial semantic awareness in robots by leveraging pre-trained language models and multi-relational knowledge bases as object embeddings. We demonstrate using these object embeddings to search a query object in an unseen indoor environment. We measure the performance of these embeddings in an indoor simulator (AI2Thor). We further evaluate different pre-trained embedding onSuccess Rate(SR) and success weighted by Path Length(SPL).
