- Alternating Apéry-Type Series and Colored Multiple Zeta Values of Level Eight Ap\'{e}ry-type (inverse) binomial series have appeared prominently in the calculations of Feynman integrals in recent years. In our previous work, we showed that a few large classes of the non-alternating Ap\'ery-type (inverse) central binomial series can be evaluated using colored multiple zeta values of level four (i.e., special values of multiple polylogarithms at fourth roots of unity) by expressing them in terms of iterated integrals. In this sequel, we shall prove that for several classes of the alternating versions we need to raise the level to eight. Our main idea is to adopt hyperbolic trigonometric 1-forms to replace the ordinary trigonometric ones used in the non-alternating setting. 2 authors · May 2, 2022
- FP8 Formats for Deep Learning FP8 is a natural progression for accelerating deep learning training inference beyond the 16-bit formats common in modern processors. In this paper we propose an 8-bit floating point (FP8) binary interchange format consisting of two encodings - E4M3 (4-bit exponent and 3-bit mantissa) and E5M2 (5-bit exponent and 2-bit mantissa). While E5M2 follows IEEE 754 conventions for representatio of special values, E4M3's dynamic range is extended by not representing infinities and having only one mantissa bit-pattern for NaNs. We demonstrate the efficacy of the FP8 format on a variety of image and language tasks, effectively matching the result quality achieved by 16-bit training sessions. Our study covers the main modern neural network architectures - CNNs, RNNs, and Transformer-based models, leaving all the hyperparameters unchanged from the 16-bit baseline training sessions. Our training experiments include large, up to 175B parameter, language models. We also examine FP8 post-training-quantization of language models trained using 16-bit formats that resisted fixed point int8 quantization. 15 authors · Sep 12, 2022
1 Ascend HiFloat8 Format for Deep Learning This preliminary white paper proposes a novel 8-bit floating-point data format HiFloat8 (abbreviated as HiF8) for deep learning. HiF8 features tapered precision. For normal value encoding, it provides 7 exponent values with 3-bit mantissa, 8 exponent values with 2-bit mantissa, and 16 exponent values with 1-bit mantissa. For denormal value encoding, it extends the dynamic range by 7 extra powers of 2, from 31 to 38 binades (notice that FP16 covers 40 binades). Meanwhile, HiF8 encodes all the special values except that positive zero and negative zero are represented by only one bit-pattern. Thanks to the better balance between precision and dynamic range, HiF8 can be simultaneously used in both forward and backward passes of AI training. In this paper, we will describe the definition and rounding methods of HiF8, as well as the tentative training and inference solutions. To demonstrate the efficacy of HiF8, massive simulation results on various neural networks, including traditional neural networks and large language models (LLMs), will also be presented. 19 authors · Sep 25, 2024
- Specializations of partial differential equations for Feynman integrals Starting from the Mellin-Barnes integral representation of a Feynman integral depending on set of kinematic variables z_i, we derive a system of partial differential equations w.r.t.\ new variables x_j, which parameterize the differentiable constraints z_i=y_i(x_j). In our algorithm, the powers of propagators can be considered as arbitrary parameters. Our algorithm can also be used for the reduction of multiple hypergeometric sums to sums of lower dimension, finding special values and reduction equations of hypergeometric functions in a singular locus of continuous variables, or finding systems of partial differential equations for master integrals with arbitrary powers of propagators. As an illustration, we produce a differential equation of fourth order in one variable for the one-loop two-point Feynman diagram with two different masses and arbitrary propagator powers. 3 authors · Jul 18, 2022
- An Earth Mover's Distance Based Graph Distance Metric For Financial Statements Quantifying the similarity between a group of companies has proven to be useful for several purposes, including company benchmarking, fraud detection, and searching for investment opportunities. This exercise can be done using a variety of data sources, such as company activity data and financial data. However, ledger account data is widely available and is standardized to a large extent. Such ledger accounts within a financial statement can be represented by means of a tree, i.e. a special type of graph, representing both the values of the ledger accounts and the relationships between them. Given their broad availability and rich information content, financial statements form a prime data source based on which company similarities or distances could be computed. In this paper, we present a graph distance metric that enables one to compute the similarity between the financial statements of two companies. We conduct a comprehensive experimental study using real-world financial data to demonstrate the usefulness of our proposed distance metric. The experimental results show promising results on a number of use cases. This method may be useful for investors looking for investment opportunities, government officials attempting to identify fraudulent companies, and accountants looking to benchmark a group of companies based on their financial statements. 4 authors · Dec 14, 2021
1 Learning Distributions over Quantum Measurement Outcomes Shadow tomography for quantum states provides a sample efficient approach for predicting the properties of quantum systems when the properties are restricted to expectation values of 2-outcome POVMs. However, these shadow tomography procedures yield poor bounds if there are more than 2 outcomes per measurement. In this paper, we consider a general problem of learning properties from unknown quantum states: given an unknown d-dimensional quantum state rho and M unknown quantum measurements M_1,...,M_M with Kgeq 2 outcomes, estimating the probability distribution for applying M_i on rho to within total variation distance epsilon. Compared to the special case when K=2, we need to learn unknown distributions instead of values. We develop an online shadow tomography procedure that solves this problem with high success probability requiring O(Klog^2Mlog d/epsilon^4) copies of rho. We further prove an information-theoretic lower bound that at least Omega(min{d^2,K+log M}/epsilon^2) copies of rho are required to solve this problem with high success probability. Our shadow tomography procedure requires sample complexity with only logarithmic dependence on M and d and is sample-optimal for the dependence on K. 2 authors · Sep 7, 2022
- Linear statistics for Coulomb gases: higher order cumulants We consider N classical particles interacting via the Coulomb potential in spatial dimension d and in the presence of an external trap, at equilibrium at inverse temperature beta. In the large N limit, the particles are confined within a droplet of finite size. We study smooth linear statistics, i.e. the fluctuations of sums of the form {cal L}_N = sum_{i=1}^N f({bf x}_i), where {bf x}_i's are the positions of the particles and where f({bf x}_i) is a sufficiently regular function. There exists at present standard results for the first and second moments of {cal L}_N in the large N limit, as well as associated Central Limit Theorems in general dimension and for a wide class of confining potentials. Here we obtain explicit expressions for the higher order cumulants of {cal L}_N at large N, when the function f({bf x})=f(|{bf x}|) and the confining potential are both rotationnally invariant. A remarkable feature of our results is that these higher cumulants depend only on the value of f'(|{bf x}|) and its higher order derivatives evaluated exactly at the boundary of the droplet, which in this case is a d-dimensional sphere. In the particular two-dimensional case d=2 at the special value beta=2, a connection to the Ginibre ensemble allows us to derive these results in an alternative way using the tools of determinantal point processes. Finally we also obtain the large deviation form of the full probability distribution function of {cal L}_N. 4 authors · Oct 25, 2023