new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 11

JanusVLN: Decoupling Semantics and Spatiality with Dual Implicit Memory for Vision-Language Navigation

Vision-and-Language Navigation requires an embodied agent to navigate through unseen environments, guided by natural language instructions and a continuous video stream. Recent advances in VLN have been driven by the powerful semantic understanding of Multimodal Large Language Models. However, these methods typically rely on explicit semantic memory, such as building textual cognitive maps or storing historical visual frames. This type of method suffers from spatial information loss, computational redundancy, and memory bloat, which impede efficient navigation. Inspired by the implicit scene representation in human navigation, analogous to the left brain's semantic understanding and the right brain's spatial cognition, we propose JanusVLN, a novel VLN framework featuring a dual implicit neural memory that models spatial-geometric and visual-semantic memory as separate, compact, and fixed-size neural representations. This framework first extends the MLLM to incorporate 3D prior knowledge from the spatial-geometric encoder, thereby enhancing the spatial reasoning capabilities of models based solely on RGB input. Then, the historical key-value caches from the spatial-geometric and visual-semantic encoders are constructed into a dual implicit memory. By retaining only the KVs of tokens in the initial and sliding window, redundant computation is avoided, enabling efficient incremental updates. Extensive experiments demonstrate that JanusVLN outperforms over 20 recent methods to achieve SOTA performance. For example, the success rate improves by 10.5-35.5 compared to methods using multiple data types as input and by 3.6-10.8 compared to methods using more RGB training data. This indicates that the proposed dual implicit neural memory, as a novel paradigm, explores promising new directions for future VLN research. Ours project page: https://miv-xjtu.github.io/JanusVLN.github.io/.

  • 9 authors
·
Sep 26, 2025 1

Lift3D Foundation Policy: Lifting 2D Large-Scale Pretrained Models for Robust 3D Robotic Manipulation

3D geometric information is essential for manipulation tasks, as robots need to perceive the 3D environment, reason about spatial relationships, and interact with intricate spatial configurations. Recent research has increasingly focused on the explicit extraction of 3D features, while still facing challenges such as the lack of large-scale robotic 3D data and the potential loss of spatial geometry. To address these limitations, we propose the Lift3D framework, which progressively enhances 2D foundation models with implicit and explicit 3D robotic representations to construct a robust 3D manipulation policy. Specifically, we first design a task-aware masked autoencoder that masks task-relevant affordance patches and reconstructs depth information, enhancing the 2D foundation model's implicit 3D robotic representation. After self-supervised fine-tuning, we introduce a 2D model-lifting strategy that establishes a positional mapping between the input 3D points and the positional embeddings of the 2D model. Based on the mapping, Lift3D utilizes the 2D foundation model to directly encode point cloud data, leveraging large-scale pretrained knowledge to construct explicit 3D robotic representations while minimizing spatial information loss. In experiments, Lift3D consistently outperforms previous state-of-the-art methods across several simulation benchmarks and real-world scenarios.

  • 11 authors
·
Nov 27, 2024

FSATFusion: Frequency-Spatial Attention Transformer for Infrared and Visible Image Fusion

The infrared and visible images fusion (IVIF) is receiving increasing attention from both the research community and industry due to its excellent results in downstream applications. Existing deep learning approaches often utilize convolutional neural networks to extract image features. However, the inherently capacity of convolution operations to capture global context can lead to information loss, thereby restricting fusion performance. To address this limitation, we propose an end-to-end fusion network named the Frequency-Spatial Attention Transformer Fusion Network (FSATFusion). The FSATFusion contains a frequency-spatial attention Transformer (FSAT) module designed to effectively capture discriminate features from source images. This FSAT module includes a frequency-spatial attention mechanism (FSAM) capable of extracting significant features from feature maps. Additionally, we propose an improved Transformer module (ITM) to enhance the ability to extract global context information of vanilla Transformer. We conducted both qualitative and quantitative comparative experiments, demonstrating the superior fusion quality and efficiency of FSATFusion compared to other state-of-the-art methods. Furthermore, our network was tested on two additional tasks without any modifications, to verify the excellent generalization capability of FSATFusion. Finally, the object detection experiment demonstrated the superiority of FSATFusion in downstream visual tasks. Our code is available at https://github.com/Lmmh058/FSATFusion.

  • 5 authors
·
Jun 12, 2025

M3: 3D-Spatial MultiModal Memory

We present 3D Spatial MultiModal Memory (M3), a multimodal memory system designed to retain information about medium-sized static scenes through video sources for visual perception. By integrating 3D Gaussian Splatting techniques with foundation models, M3 builds a multimodal memory capable of rendering feature representations across granularities, encompassing a wide range of knowledge. In our exploration, we identify two key challenges in previous works on feature splatting: (1) computational constraints in storing high-dimensional features for each Gaussian primitive, and (2) misalignment or information loss between distilled features and foundation model features. To address these challenges, we propose M3 with key components of principal scene components and Gaussian memory attention, enabling efficient training and inference. To validate M3, we conduct comprehensive quantitative evaluations of feature similarity and downstream tasks, as well as qualitative visualizations to highlight the pixel trace of Gaussian memory attention. Our approach encompasses a diverse range of foundation models, including vision-language models (VLMs), perception models, and large multimodal and language models (LMMs/LLMs). Furthermore, to demonstrate real-world applicability, we deploy M3's feature field in indoor scenes on a quadruped robot. Notably, we claim that M3 is the first work to address the core compression challenges in 3D feature distillation.

  • 7 authors
·
Mar 20, 2025 2

DRCT: Saving Image Super-resolution away from Information Bottleneck

In recent years, Vision Transformer-based approaches for low-level vision tasks have achieved widespread success. Unlike CNN-based models, Transformers are more adept at capturing long-range dependencies, enabling the reconstruction of images utilizing non-local information. In the domain of super-resolution, Swin-transformer-based models have become mainstream due to their capability of global spatial information modeling and their shifting-window attention mechanism that facilitates the interchange of information between different windows. Many researchers have enhanced model performance by expanding the receptive fields or designing meticulous networks, yielding commendable results. However, we observed that it is a general phenomenon for the feature map intensity to be abruptly suppressed to small values towards the network's end. This implies an information bottleneck and a diminishment of spatial information, implicitly limiting the model's potential. To address this, we propose the Dense-residual-connected Transformer (DRCT), aimed at mitigating the loss of spatial information and stabilizing the information flow through dense-residual connections between layers, thereby unleashing the model's potential and saving the model away from information bottleneck. Experiment results indicate that our approach surpasses state-of-the-art methods on benchmark datasets and performs commendably at the NTIRE-2024 Image Super-Resolution (x4) Challenge. Our source code is available at https://github.com/ming053l/DRCT

  • 3 authors
·
Mar 31, 2024

Autoregressive Video Autoencoder with Decoupled Temporal and Spatial Context

Video autoencoders compress videos into compact latent representations for efficient reconstruction, playing a vital role in enhancing the quality and efficiency of video generation. However, existing video autoencoders often entangle spatial and temporal information, limiting their ability to capture temporal consistency and leading to suboptimal performance. To address this, we propose Autoregressive Video Autoencoder (ARVAE), which compresses and reconstructs each frame conditioned on its predecessor in an autoregressive manner, allowing flexible processing of videos with arbitrary lengths. ARVAE introduces a temporal-spatial decoupled representation that combines downsampled flow field for temporal coherence with spatial relative compensation for newly emerged content, achieving high compression efficiency without information loss. Specifically, the encoder compresses the current and previous frames into the temporal motion and spatial supplement, while the decoder reconstructs the original frame from the latent representations given the preceding frame. A multi-stage training strategy is employed to progressively optimize the model. Extensive experiments demonstrate that ARVAE achieves superior reconstruction quality with extremely lightweight models and small-scale training data. Moreover, evaluations on video generation tasks highlight its strong potential for downstream applications.

  • 4 authors
·
Dec 12, 2025

Learning Structured Output Representations from Attributes using Deep Conditional Generative Models

Structured output representation is a generative task explored in computer vision that often times requires the mapping of low dimensional features to high dimensional structured outputs. Losses in complex spatial information in deterministic approaches such as Convolutional Neural Networks (CNN) lead to uncertainties and ambiguous structures within a single output representation. A probabilistic approach through deep Conditional Generative Models (CGM) is presented by Sohn et al. in which a particular model known as the Conditional Variational Auto-encoder (CVAE) is introduced and explored. While the original paper focuses on the task of image segmentation, this paper adopts the CVAE framework for the task of controlled output representation through attributes. This approach allows us to learn a disentangled multimodal prior distribution, resulting in more controlled and robust approach to sample generation. In this work we recreate the CVAE architecture and train it on images conditioned on various attributes obtained from two image datasets; the Large-scale CelebFaces Attributes (CelebA) dataset and the Caltech-UCSD Birds (CUB-200-2011) dataset. We attempt to generate new faces with distinct attributes such as hair color and glasses, as well as different bird species samples with various attributes. We further introduce strategies for improving generalized sample generation by applying a weighted term to the variational lower bound.

  • 1 authors
·
Apr 30, 2023

Lumos-1: On Autoregressive Video Generation from a Unified Model Perspective

Autoregressive large language models (LLMs) have unified a vast range of language tasks, inspiring preliminary efforts in autoregressive video generation. Existing autoregressive video generators either diverge from standard LLM architectures, depend on bulky external text encoders, or incur prohibitive latency due to next-token decoding. In this paper, we introduce Lumos-1, an autoregressive video generator that retains the LLM architecture with minimal architectural modifications. To inject spatiotemporal correlations in LLMs, we identify the efficacy of incorporating 3D RoPE and diagnose its imbalanced frequency spectrum ranges. Therefore, we propose MM-RoPE, a RoPE scheme that preserves the original textual RoPE while providing comprehensive frequency spectra and scaled 3D positions for modeling multimodal spatiotemporal data. Moreover, Lumos-1 resorts to a token dependency strategy that obeys intra-frame bidirectionality and inter-frame temporal causality. Based on this dependency strategy, we identify the issue of frame-wise loss imbalance caused by spatial information redundancy and solve it by proposing Autoregressive Discrete Diffusion Forcing (AR-DF). AR-DF introduces temporal tube masking during training with a compatible inference-time masking policy to avoid quality degradation. By using memory-efficient training techniques, we pre-train Lumos-1 on only 48 GPUs, achieving performance comparable to EMU3 on GenEval, COSMOS-Video2World on VBench-I2V, and OpenSoraPlan on VBench-T2V. Code and models are available at https://github.com/alibaba-damo-academy/Lumos.

  • 14 authors
·
Jul 11, 2025 3

Predicting the Original Appearance of Damaged Historical Documents

Historical documents encompass a wealth of cultural treasures but suffer from severe damages including character missing, paper damage, and ink erosion over time. However, existing document processing methods primarily focus on binarization, enhancement, etc., neglecting the repair of these damages. To this end, we present a new task, termed Historical Document Repair (HDR), which aims to predict the original appearance of damaged historical documents. To fill the gap in this field, we propose a large-scale dataset HDR28K and a diffusion-based network DiffHDR for historical document repair. Specifically, HDR28K contains 28,552 damaged-repaired image pairs with character-level annotations and multi-style degradations. Moreover, DiffHDR augments the vanilla diffusion framework with semantic and spatial information and a meticulously designed character perceptual loss for contextual and visual coherence. Experimental results demonstrate that the proposed DiffHDR trained using HDR28K significantly surpasses existing approaches and exhibits remarkable performance in handling real damaged documents. Notably, DiffHDR can also be extended to document editing and text block generation, showcasing its high flexibility and generalization capacity. We believe this study could pioneer a new direction of document processing and contribute to the inheritance of invaluable cultures and civilizations. The dataset and code is available at https://github.com/yeungchenwa/HDR.

  • 6 authors
·
Dec 16, 2024 2

Mavors: Multi-granularity Video Representation for Multimodal Large Language Model

Long-context video understanding in multimodal large language models (MLLMs) faces a critical challenge: balancing computational efficiency with the retention of fine-grained spatio-temporal patterns. Existing approaches (e.g., sparse sampling, dense sampling with low resolution, and token compression) suffer from significant information loss in temporal dynamics, spatial details, or subtle interactions, particularly in videos with complex motion or varying resolutions. To address this, we propose Mavors, a novel framework that introduces Multi-granularity video representation for holistic long-video modeling. Specifically, Mavors directly encodes raw video content into latent representations through two core components: 1) an Intra-chunk Vision Encoder (IVE) that preserves high-resolution spatial features via 3D convolutions and Vision Transformers, and 2) an Inter-chunk Feature Aggregator (IFA) that establishes temporal coherence across chunks using transformer-based dependency modeling with chunk-level rotary position encodings. Moreover, the framework unifies image and video understanding by treating images as single-frame videos via sub-image decomposition. Experiments across diverse benchmarks demonstrate Mavors' superiority in maintaining both spatial fidelity and temporal continuity, significantly outperforming existing methods in tasks requiring fine-grained spatio-temporal reasoning.

  • 15 authors
·
Apr 14, 2025 2

WaveMix: A Resource-efficient Neural Network for Image Analysis

We propose WaveMix -- a novel neural architecture for computer vision that is resource-efficient yet generalizable and scalable. WaveMix networks achieve comparable or better accuracy than the state-of-the-art convolutional neural networks, vision transformers, and token mixers for several tasks, establishing new benchmarks for segmentation on Cityscapes; and for classification on Places-365, five EMNIST datasets, and iNAT-mini. Remarkably, WaveMix architectures require fewer parameters to achieve these benchmarks compared to the previous state-of-the-art. Moreover, when controlled for the number of parameters, WaveMix requires lesser GPU RAM, which translates to savings in time, cost, and energy. To achieve these gains we used multi-level two-dimensional discrete wavelet transform (2D-DWT) in WaveMix blocks, which has the following advantages: (1) It reorganizes spatial information based on three strong image priors -- scale-invariance, shift-invariance, and sparseness of edges, (2) in a lossless manner without adding parameters, (3) while also reducing the spatial sizes of feature maps, which reduces the memory and time required for forward and backward passes, and (4) expanding the receptive field faster than convolutions do. The whole architecture is a stack of self-similar and resolution-preserving WaveMix blocks, which allows architectural flexibility for various tasks and levels of resource availability. Our code and trained models are publicly available.

  • 4 authors
·
May 28, 2022

LaVida Drive: Vision-Text Interaction VLM for Autonomous Driving with Token Selection, Recovery and Enhancement

Recent advancements in Visual Language Models (VLMs) have made them crucial for visual question answering (VQA) in autonomous driving, enabling natural human-vehicle interactions. However, existing methods often struggle in dynamic driving environments, as they usually focus on static images or videos and rely on downsampling to manage computational costs. This results in the loss of critical details and the difficulty in effectively integrating spatial and temporal information, undermining fine-grained perception and temporal coherence essential for effective decision-making. To tackle these challenges, we introduce LaVida Drive, a novel and efficient VQA framework for autonomous driving. LaVida Drive seamlessly integrates temporal data while maintaining high-resolution inputs for detailed visual perception. It optimizes spatial processing by retaining high-resolution data for intricate details and using lower-resolution inputs for temporal analysis to focus on motion-related features, thereby boosting computational efficiency. The core of LaVida Drive consists of two modules: the Query-aware Token Selection module and the Spatial-Temporal Token Recovery and Enhancement module. The former dynamically selects the most relevant visual tokens based on semantic alignment with the input query, reducing the token count from high-resolution spatial input. The latter ensures smooth and coherent interactions between spatial and temporal information, preserving contextual continuity across frames. Extensive experiments on various autonomous driving question-answering benchmarks show that LaVida Drive significantly reduces visual tokens, enhances efficiency, and improves overall performance.

  • 5 authors
·
Nov 19, 2024

GLaMa: Joint Spatial and Frequency Loss for General Image Inpainting

The purpose of image inpainting is to recover scratches and damaged areas using context information from remaining parts. In recent years, thanks to the resurgence of convolutional neural networks (CNNs), image inpainting task has made great breakthroughs. However, most of the work consider insufficient types of mask, and their performance will drop dramatically when encountering unseen masks. To combat these challenges, we propose a simple yet general method to solve this problem based on the LaMa image inpainting framework, dubbed GLaMa. Our proposed GLaMa can better capture different types of missing information by using more types of masks. By incorporating more degraded images in the training phase, we can expect to enhance the robustness of the model with respect to various masks. In order to yield more reasonable results, we further introduce a frequency-based loss in addition to the traditional spatial reconstruction loss and adversarial loss. In particular, we introduce an effective reconstruction loss both in the spatial and frequency domain to reduce the chessboard effect and ripples in the reconstructed image. Extensive experiments demonstrate that our method can boost the performance over the original LaMa method for each type of mask on FFHQ, ImageNet, Places2 and WikiArt dataset. The proposed GLaMa was ranked first in terms of PSNR, LPIPS and SSIM in the NTIRE 2022 Image Inpainting Challenge Track 1 Unsupervised.

  • 5 authors
·
May 14, 2022

STAR: Spatial-Temporal Augmentation with Text-to-Video Models for Real-World Video Super-Resolution

Image diffusion models have been adapted for real-world video super-resolution to tackle over-smoothing issues in GAN-based methods. However, these models struggle to maintain temporal consistency, as they are trained on static images, limiting their ability to capture temporal dynamics effectively. Integrating text-to-video (T2V) models into video super-resolution for improved temporal modeling is straightforward. However, two key challenges remain: artifacts introduced by complex degradations in real-world scenarios, and compromised fidelity due to the strong generative capacity of powerful T2V models (e.g., CogVideoX-5B). To enhance the spatio-temporal quality of restored videos, we introduce~\name (Spatial-Temporal Augmentation with T2V models for Real-world video super-resolution), a novel approach that leverages T2V models for real-world video super-resolution, achieving realistic spatial details and robust temporal consistency. Specifically, we introduce a Local Information Enhancement Module (LIEM) before the global attention block to enrich local details and mitigate degradation artifacts. Moreover, we propose a Dynamic Frequency (DF) Loss to reinforce fidelity, guiding the model to focus on different frequency components across diffusion steps. Extensive experiments demonstrate~\name~outperforms state-of-the-art methods on both synthetic and real-world datasets.

  • 10 authors
·
Jan 6, 2025 3

Reasoning Path and Latent State Analysis for Multi-view Visual Spatial Reasoning: A Cognitive Science Perspective

Spatial reasoning is a core aspect of human intelligence that allows perception, inference and planning in 3D environments. However, current vision-language models (VLMs) struggle to maintain geometric coherence and cross-view consistency for spatial reasoning in multi-view settings. We attribute this gap to the lack of fine-grained benchmarks that isolate multi-view reasoning from single-view perception and temporal factors. To address this, we present ReMindView-Bench, a cognitively grounded benchmark for evaluating how VLMs construct, align and maintain spatial mental models across complementary viewpoints. ReMindView-Bench systematically varies viewpoint spatial pattern and query type to probe key factors of spatial cognition. Evaluations of 15 current VLMs reveals consistent failures in cross-view alignment and perspective-taking in multi-view spatial reasoning, motivating deeper analysis on the reasoning process. Explicit phase-wise analysis using LLM-as-a-judge and self-consistency prompting shows that VLMs perform well on in-frame perception but degrade sharply when integrating information across views. Implicit analysis, including linear probing and entropy dynamics, further show progressive loss of task-relevant information and uncertainty separation between correct and incorrect trajectories. These results provide a cognitively grounded diagnosis of VLM spatial reasoning and reveal how multi-view spatial mental models are formed, degraded and destabilized across reasoning phases. The ReMindView-Bench benchmark is available at https://huggingface.co/datasets/Xue0823/ReMindView-Bench, and the source codes of benchmark construction and VLM reasoning analysis are available at https://github.com/pittisl/ReMindView-Bench.

  • 6 authors
·
Dec 1, 2025

Vision Remember: Alleviating Visual Forgetting in Efficient MLLM with Vision Feature Resample

In this work, we study the Efficient Multimodal Large Language Model. Redundant vision tokens consume a significant amount of computational memory and resources. Therefore, many previous works compress them in the Vision Projector to reduce the number of vision tokens. However, simply compressing in the Vision Projector can lead to the loss of visual information, especially for tasks that rely on fine-grained spatial relationships, such as OCR and Chart \& Table Understanding. To address this problem, we propose Vision Remember, which is inserted between the LLM decoder layers to allow vision tokens to re-memorize vision features. Specifically, we retain multi-level vision features and resample them with the vision tokens that have interacted with the text token. During the resampling process, each vision token only attends to a local region in vision features, which is referred to as saliency-enhancing local attention. Saliency-enhancing local attention not only improves computational efficiency but also captures more fine-grained contextual information and spatial relationships within the region. Comprehensive experiments on multiple visual understanding benchmarks validate the effectiveness of our method when combined with various Efficient Vision Projectors, showing performance gains without sacrificing efficiency. Based on Vision Remember, LLaVA-VR with only 2B parameters is also superior to previous representative MLLMs such as Tokenpacker-HD-7B and DeepSeek-VL-7B.

  • 7 authors
·
Jun 4, 2025

API: Empowering Generalizable Real-World Image Dehazing via Adaptive Patch Importance Learning

Real-world image dehazing is a fundamental yet challenging task in low-level vision. Existing learning-based methods often suffer from significant performance degradation when applied to complex real-world hazy scenes, primarily due to limited training data and the intrinsic complexity of haze density distributions.To address these challenges, we introduce a novel Adaptive Patch Importance-aware (API) framework for generalizable real-world image dehazing. Specifically, our framework consists of an Automatic Haze Generation (AHG) module and a Density-aware Haze Removal (DHR) module. AHG provides a hybrid data augmentation strategy by generating realistic and diverse hazy images as additional high-quality training data. DHR considers hazy regions with varying haze density distributions for generalizable real-world image dehazing in an adaptive patch importance-aware manner. To alleviate the ambiguity of the dehazed image details, we further introduce a new Multi-Negative Contrastive Dehazing (MNCD) loss, which fully utilizes information from multiple negative samples across both spatial and frequency domains. Extensive experiments demonstrate that our framework achieves state-of-the-art performance across multiple real-world benchmarks, delivering strong results in both quantitative metrics and qualitative visual quality, and exhibiting robust generalization across diverse haze distributions.

  • 5 authors
·
Jan 5

CRISP-SAM2: SAM2 with Cross-Modal Interaction and Semantic Prompting for Multi-Organ Segmentation

Multi-organ medical segmentation is a crucial component of medical image processing, essential for doctors to make accurate diagnoses and develop effective treatment plans. Despite significant progress in this field, current multi-organ segmentation models often suffer from inaccurate details, dependence on geometric prompts and loss of spatial information. Addressing these challenges, we introduce a novel model named CRISP-SAM2 with CRoss-modal Interaction and Semantic Prompting based on SAM2. This model represents a promising approach to multi-organ medical segmentation guided by textual descriptions of organs. Our method begins by converting visual and textual inputs into cross-modal contextualized semantics using a progressive cross-attention interaction mechanism. These semantics are then injected into the image encoder to enhance the detailed understanding of visual information. To eliminate reliance on geometric prompts, we use a semantic prompting strategy, replacing the original prompt encoder to sharpen the perception of challenging targets. In addition, a similarity-sorting self-updating strategy for memory and a mask-refining process is applied to further adapt to medical imaging and enhance localized details. Comparative experiments conducted on seven public datasets indicate that CRISP-SAM2 outperforms existing models. Extensive analysis also demonstrates the effectiveness of our method, thereby confirming its superior performance, especially in addressing the limitations mentioned earlier. Our code is available at: https://github.com/YU-deep/CRISP\_SAM2.git.

  • 8 authors
·
Jun 29, 2025 1

2D-TPE: Two-Dimensional Positional Encoding Enhances Table Understanding for Large Language Models

Tables are ubiquitous across various domains for concisely representing structured information. Empowering large language models (LLMs) to reason over tabular data represents an actively explored direction. However, since typical LLMs only support one-dimensional~(1D) inputs, existing methods often flatten the two-dimensional~(2D) table structure into a sequence of tokens, which can severely disrupt the spatial relationships and result in an inevitable loss of vital contextual information. In this paper, we first empirically demonstrate the detrimental impact of such flattening operations on the performance of LLMs in capturing the spatial information of tables through two elaborate proxy tasks. Subsequently, we introduce a simple yet effective positional encoding method, termed ``2D-TPE'' (Two-Dimensional Table Positional Encoding), to address this challenge. 2D-TPE enables each attention head to dynamically select a permutation order of tokens within the context for attending to them, where each permutation represents a distinct traversal mode for the table, such as column-wise or row-wise traversal. 2D-TPE effectively mitigates the risk of losing essential spatial information while preserving computational efficiency, thus better preserving the table structure. Extensive experiments across five benchmarks demonstrate that 2D-TPE outperforms strong baselines, underscoring the importance of preserving the table structure for accurate table comprehension. Comprehensive analysis further reveals the substantially better scalability of 2D-TPE to large tables than baselines.

  • 5 authors
·
Sep 29, 2024

A-STAR: Test-time Attention Segregation and Retention for Text-to-image Synthesis

While recent developments in text-to-image generative models have led to a suite of high-performing methods capable of producing creative imagery from free-form text, there are several limitations. By analyzing the cross-attention representations of these models, we notice two key issues. First, for text prompts that contain multiple concepts, there is a significant amount of pixel-space overlap (i.e., same spatial regions) among pairs of different concepts. This eventually leads to the model being unable to distinguish between the two concepts and one of them being ignored in the final generation. Next, while these models attempt to capture all such concepts during the beginning of denoising (e.g., first few steps) as evidenced by cross-attention maps, this knowledge is not retained by the end of denoising (e.g., last few steps). Such loss of knowledge eventually leads to inaccurate generation outputs. To address these issues, our key innovations include two test-time attention-based loss functions that substantially improve the performance of pretrained baseline text-to-image diffusion models. First, our attention segregation loss reduces the cross-attention overlap between attention maps of different concepts in the text prompt, thereby reducing the confusion/conflict among various concepts and the eventual capture of all concepts in the generated output. Next, our attention retention loss explicitly forces text-to-image diffusion models to retain cross-attention information for all concepts across all denoising time steps, thereby leading to reduced information loss and the preservation of all concepts in the generated output.

  • 6 authors
·
Jun 26, 2023

CoMPaSS: Enhancing Spatial Understanding in Text-to-Image Diffusion Models

Text-to-image diffusion models excel at generating photorealistic images, but commonly struggle to render accurate spatial relationships described in text prompts. We identify two core issues underlying this common failure: 1) the ambiguous nature of spatial-related data in existing datasets, and 2) the inability of current text encoders to accurately interpret the spatial semantics of input descriptions. We address these issues with CoMPaSS, a versatile training framework that enhances spatial understanding of any T2I diffusion model. CoMPaSS solves the ambiguity of spatial-related data with the Spatial Constraints-Oriented Pairing (SCOP) data engine, which curates spatially-accurate training data through a set of principled spatial constraints. To better exploit the curated high-quality spatial priors, CoMPaSS further introduces a Token ENcoding ORdering (TENOR) module to allow better exploitation of high-quality spatial priors, effectively compensating for the shortcoming of text encoders. Extensive experiments on four popular open-weight T2I diffusion models covering both UNet- and MMDiT-based architectures demonstrate the effectiveness of CoMPaSS by setting new state-of-the-arts with substantial relative gains across well-known benchmarks on spatial relationships generation, including VISOR (+98%), T2I-CompBench Spatial (+67%), and GenEval Position (+131%). Code will be available at https://github.com/blurgyy/CoMPaSS.

  • 8 authors
·
Dec 17, 2024

Theory of Space: Can Foundation Models Construct Spatial Beliefs through Active Exploration?

Spatial embodied intelligence requires agents to act to acquire information under partial observability. While multimodal foundation models excel at passive perception, their capacity for active, self-directed exploration remains understudied. We propose Theory of Space, defined as an agent's ability to actively acquire information through self-directed, active exploration and to construct, revise, and exploit a spatial belief from sequential, partial observations. We evaluate this through a benchmark where the goal is curiosity-driven exploration to build an accurate cognitive map. A key innovation is spatial belief probing, which prompts models to reveal their internal spatial representations at each step. Our evaluation of state-of-the-art models reveals several critical bottlenecks. First, we identify an Active-Passive Gap, where performance drops significantly when agents must autonomously gather information. Second, we find high inefficiency, as models explore unsystematically compared to program-based proxies. Through belief probing, we diagnose that while perception is an initial bottleneck, global beliefs suffer from instability that causes spatial knowledge to degrade over time. Finally, using a false belief paradigm, we uncover Belief Inertia, where agents fail to update obsolete priors with new evidence. This issue is present in text-based agents but is particularly severe in vision-based models. Our findings suggest that current foundation models struggle to maintain coherent, revisable spatial beliefs during active exploration.

Everything in Its Place: Benchmarking Spatial Intelligence of Text-to-Image Models

Text-to-image (T2I) models have achieved remarkable success in generating high-fidelity images, but they often fail in handling complex spatial relationships, e.g., spatial perception, reasoning, or interaction. These critical aspects are largely overlooked by current benchmarks due to their short or information-sparse prompt design. In this paper, we introduce SpatialGenEval, a new benchmark designed to systematically evaluate the spatial intelligence of T2I models, covering two key aspects: (1) SpatialGenEval involves 1,230 long, information-dense prompts across 25 real-world scenes. Each prompt integrates 10 spatial sub-domains and corresponding 10 multi-choice question-answer pairs, ranging from object position and layout to occlusion and causality. Our extensive evaluation of 21 state-of-the-art models reveals that higher-order spatial reasoning remains a primary bottleneck. (2) To demonstrate that the utility of our information-dense design goes beyond simple evaluation, we also construct the SpatialT2I dataset. It contains 15,400 text-image pairs with rewritten prompts to ensure image consistency while preserving information density. Fine-tuned results on current foundation models (i.e., Stable Diffusion-XL, Uniworld-V1, OmniGen2) yield consistent performance gains (+4.2%, +5.7%, +4.4%) and more realistic effects in spatial relations, highlighting a data-centric paradigm to achieve spatial intelligence in T2I models.

alibaba-inc alibaba-inc
·
Jan 28 3

Spatial-MLLM: Boosting MLLM Capabilities in Visual-based Spatial Intelligence

Recent advancements in Multimodal Large Language Models (MLLMs) have significantly enhanced performance on 2D visual tasks. However, improving their spatial intelligence remains a challenge. Existing 3D MLLMs always rely on additional 3D or 2.5D data to incorporate spatial awareness, restricting their utility in scenarios with only 2D inputs, such as images or videos. In this paper, we present Spatial-MLLM, a novel framework for visual-based spatial reasoning from purely 2D observations. Unlike conventional video MLLMs which rely on CLIP-based visual encoders optimized for semantic understanding, our key insight is to unleash the strong structure prior from the feed-forward visual geometry foundation model. Specifically, we propose a dual-encoder architecture: a pretrained 2D visual encoder to extract semantic features, and a spatial encoder-initialized from the backbone of the visual geometry model-to extract 3D structure features. A connector then integrates both features into unified visual tokens for enhanced spatial understanding. Furthermore, we propose a space-aware frame sampling strategy at inference time, which selects the spatially informative frames of a video sequence, ensuring that even under limited token length, the model focuses on frames critical for spatial reasoning. Beyond architecture improvements, we construct the Spatial-MLLM-120k dataset and train the model on it using supervised fine-tuning and GRPO. Extensive experiments on various real-world datasets demonstrate that our spatial-MLLM achieves state-of-the-art performance in a wide range of visual-based spatial understanding and reasoning tasks. Project page: https://diankun-wu.github.io/Spatial-MLLM/.

  • 4 authors
·
May 29, 2025 3

Continual Vision-Language Representation Learning with Off-Diagonal Information

Large-scale multi-modal contrastive learning frameworks like CLIP typically require a large amount of image-text samples for training. However, these samples are always collected continuously in real scenarios. This paper discusses the feasibility of continual CLIP training using streaming data. Unlike continual learning based on self-supervised learning methods for pure images, which is empirically robust against catastrophic forgetting, CLIP's performance degeneration in the continual setting is significant and non-neglectable. By analyzing the changes in the model's representation space during continual CLIP training from a spatial geometry perspective, we explore and summarize these spatial variations as Spatial Disorder (SD), which can be divided into Intra-modal Rotation and Inter-modal Deviation. Moreover, we empirically and theoretically demonstrate how SD leads to a performance decline for CLIP on cross-modal retrieval tasks. To alleviate SD, we propose a new continual vision-language representation learning framework Mod-X: Maintain off-diagonal information-matriX. By selectively aligning the off-diagonal information distribution of contrastive matrices, the Mod-X improves the capability of the multi-modal model by maintaining the multi-modal representation space alignment on the old data domain during continuously fitting the new training data domain. Experiments on commonly used datasets with different scales and scopes have demonstrated the effectiveness of our method.

  • 5 authors
·
May 11, 2023

Why Do MLLMs Struggle with Spatial Understanding? A Systematic Analysis from Data to Architecture

Spatial understanding is essential for Multimodal Large Language Models (MLLMs) to support perception, reasoning, and planning in embodied environments. Despite recent progress, existing studies reveal that MLLMs still struggle with spatial understanding. However, existing research lacks a comprehensive and systematic evaluation of these limitations, often restricted to isolated scenarios, such as single-view or video. In this work, we present a systematic analysis of spatial understanding from both data and architectural perspectives across three representative scenarios: single-view, multi-view, and video. We propose a benchmark named MulSeT (Multi-view Spatial Understanding Tasks), and design a series of experiments to analyze the spatial reasoning capabilities of MLLMs. From the data perspective, the performance of spatial understanding converges quickly as the training data increases, and the upper bound is relatively low, especially for tasks that require spatial imagination. This indicates that merely expanding training data is insufficient to achieve satisfactory performance. From the architectural perspective, we find that spatial understanding relies more heavily on the positional encoding within the visual encoder than within the language model, in both cascaded and native MLLMs. Moreover, we explore reasoning injection and envision future improvements through architectural design to optimize spatial understanding. These insights shed light on the limitations of current MLLMs and suggest new directions for improving spatial reasoning capabilities through data scaling and architectural tuning.

  • 8 authors
·
Sep 2, 2025

BaRISTA: Brain Scale Informed Spatiotemporal Representation of Human Intracranial Neural Activity

Intracranial recordings have opened a unique opportunity to simultaneously measure activity across multiregional networks in the human brain. Recent works have focused on developing transformer-based neurofoundation models of such recordings that can generalize across subjects and datasets. However, these recordings exhibit highly complex spatiotemporal interactions across diverse spatial scales, from the single-channel scale to the scale of brain regions. As such, there remain critical open questions regarding how best to encode spatial information and how to design self-supervision tasks that enable the learning of brain network patterns and enhance downstream decoding performance using such high-dimensional, multiregional recordings. To allow for exploring these questions, we propose a new spatiotemporal transformer model of multiregional neural activity and a corresponding self-supervised masked latent reconstruction task, designed to enable flexibility in the spatial scale used for token encoding and masking. Applying this model on publicly available multiregional intracranial electrophysiology (iEEG) data, we demonstrate that adjusting the spatial scale for both token encoding and masked reconstruction significantly impacts downstream decoding. Further, we find that spatial encoding at larger scales than channel-level encoding, which is commonly used in existing iEEG transformer models, improves downstream decoding performance. Finally, we demonstrate that our method allows for region-level token encoding while also maintaining accurate channel-level neural reconstruction. Taken together, our modeling framework enables exploration of the spatial scales used for token encoding and masking, reveals their importance towards self-supervised pretraining of neurofoundation models of multiregional human brain activity, and enhances downstream decoding performance.

  • 3 authors
·
Dec 12, 2025

SpatialBench: Benchmarking Multimodal Large Language Models for Spatial Cognition

Spatial cognition is fundamental to real-world multimodal intelligence, allowing models to effectively interact with the physical environment. While multimodal large language models (MLLMs) have made significant strides, existing benchmarks often oversimplify spatial cognition, reducing it to a single-dimensional metric, which fails to capture the hierarchical structure and interdependence of spatial abilities. To address this gap, we propose a hierarchical spatial cognition framework that decomposes spatial intelligence into five progressively complex levels from basic observation to high-level planning. Building upon this taxonomy, we construct SpatialBench, a large-scale, fine-grained benchmark covering 15 tasks aligned with these cognitive levels. To provide a unified evaluation across heterogeneous tasks, we further introduce a high-level capability-oriented metric that reliably assesses a model's overall spatial reasoning ability. Extensive experiments over massive MLLMs reveal distinct performance stratification across cognitive levels: models exhibit strong perceptual grounding yet remain limited in symbolic reasoning, causal inference, and planning. Additional human tests demonstrate that humans perform selective, goal-directed abstraction, while MLLMs tend to over-attend to surface details without coherent spatial intent. Our work establishes the first systematic framework for measuring hierarchical spatial cognition in MLLMs, laying the foundation for future spatially intelligent systems.

  • 5 authors
·
Nov 26, 2025

SeaBird: Segmentation in Bird's View with Dice Loss Improves Monocular 3D Detection of Large Objects

Monocular 3D detectors achieve remarkable performance on cars and smaller objects. However, their performance drops on larger objects, leading to fatal accidents. Some attribute the failures to training data scarcity or their receptive field requirements of large objects. In this paper, we highlight this understudied problem of generalization to large objects. We find that modern frontal detectors struggle to generalize to large objects even on nearly balanced datasets. We argue that the cause of failure is the sensitivity of depth regression losses to noise of larger objects. To bridge this gap, we comprehensively investigate regression and dice losses, examining their robustness under varying error levels and object sizes. We mathematically prove that the dice loss leads to superior noise-robustness and model convergence for large objects compared to regression losses for a simplified case. Leveraging our theoretical insights, we propose SeaBird (Segmentation in Bird's View) as the first step towards generalizing to large objects. SeaBird effectively integrates BEV segmentation on foreground objects for 3D detection, with the segmentation head trained with the dice loss. SeaBird achieves SoTA results on the KITTI-360 leaderboard and improves existing detectors on the nuScenes leaderboard, particularly for large objects. Code and models at https://github.com/abhi1kumar/SeaBird

  • 5 authors
·
Mar 29, 2024

Visual Funnel: Resolving Contextual Blindness in Multimodal Large Language Models

Multimodal Large Language Models (MLLMs) demonstrate impressive reasoning capabilities, but often fail to perceive fine-grained visual details, limiting their applicability in precision-demanding tasks. While methods that crop salient regions of an image offer a partial solution, we identify a critical limitation they introduce: "Contextual Blindness". This failure occurs due to structural disconnect between high-fidelity details (from the crop) and the broader global context (from the original image), even when all necessary visual information is present. We argue that this limitation stems not from a lack of information 'Quantity', but from a lack of 'Structural Diversity' in the model's input. To resolve this, we propose Visual Funnel, a training-free, two-step approach. Visual Funnel first performs Contextual Anchoring to identify the region of interest in a single forward pass. It then constructs an Entropy-Scaled Portfolio that preserves the hierarchical context - ranging from focal detail to broader surroundings - by dynamically determining crop sizes based on attention entropy and refining crop centers. Through extensive experiments, we demonstrate that Visual Funnel significantly outperforms naive single-crop and unstructured multi-crop baselines. Our results further validate that simply adding more unstructured crops provides limited or even detrimental benefits, confirming that the hierarchical structure of our portfolio is key to resolving Contextual Blindness.

  • 5 authors
·
Dec 11, 2025

Video2Layout: Recall and Reconstruct Metric-Grounded Cognitive Map for Spatial Reasoning

Spatial intelligence is a critical frontier for Multimodal Large Language Models (MLLMs), empowering them to comprehend the physical world. Drawing inspiration from human perception mechanisms, existing studies attempt to construct a coherent spatial understanding via grid-based cognitive maps from multi-frame visual inputs. However, current grid-based map methods rely on discretized raster representations, which limit the model's ability in fine-grained spatial reasoning. To overcome this limitation, we propose Video2Layout, a framework for reconstructing metric-grounded spatial layouts from video. The framework employs continuous object boundary coordinates to quantify inter-object physical distances and object size. This empowers the model with quantitative spatial computation capabilities, effectively alleviating the inherent ambiguity when describing spatial relationships in natural language. Specifically, our method comprises two core stages. First, in supervised fine-tuning stage, we construct a high-quality dataset from the AI2THOR simulator, which enables the model to learn the mapping from visual inputs to precise boundary coordinates. Subsequently, a reinforcement fine-tuning stage further enhances the model's real-world generalization capabilities. To systematically evaluate the correlation between cognitive map accuracy and image quantity, as well as how the quantity of image inputs affects spatial reasoning accuracy, we introduce QVS-Bench, a diagnostic benchmark designed to analyze the relevant mechanisms. Evaluated on QVS-Bench and mainstream spatial reasoning benchmarks, our model, V2LO-7B achieves an average improvement of 4.92% over the model trained on grid maps, validating the superiority of our method. Our code is available at https://github.com/ybrrraway/Video2Layout.

  • 9 authors
·
Nov 20, 2025

Sparkle: Mastering Basic Spatial Capabilities in Vision Language Models Elicits Generalization to Composite Spatial Reasoning

Vision language models (VLMs) have demonstrated impressive performance across a wide range of downstream tasks. However, their proficiency in spatial reasoning remains limited, despite its crucial role in tasks involving navigation and interaction with physical environments. Specifically, most of these tasks rely on the core spatial reasoning capabilities in two-dimensional (2D) environments, and our evaluation reveals that state-of-the-art VLMs frequently generate implausible and incorrect responses to composite spatial reasoning problems, including simple pathfinding tasks that humans can solve effortlessly at a glance. To address this, we explore an effective approach to enhance 2D spatial reasoning within VLMs by training the model solely on basic spatial capabilities. We begin by disentangling the key components of 2D spatial reasoning: direction comprehension, distance estimation, and localization. Our central hypothesis is that mastering these basic spatial capabilities can significantly enhance a model's performance on composite spatial tasks requiring advanced spatial understanding and combinatorial problem-solving, with generalized improvements in visual-spatial tasks. To investigate this hypothesis, we introduce Sparkle, a framework that fine-tunes VLMs on these three basic spatial capabilities by synthetic data generation and targeted supervision to form an instruction dataset for each capability. Our experiments demonstrate that VLMs fine-tuned with Sparkle achieve significant performance gains, not only in the basic tasks themselves but also in generalizing to composite and out-of-distribution spatial reasoning tasks. These findings underscore the effectiveness of mastering basic spatial capabilities in enhancing composite spatial problem-solving, offering insights into systematic strategies for improving VLMs' spatial reasoning capabilities.

  • 10 authors
·
Oct 21, 2024

Restoring Images in Adverse Weather Conditions via Histogram Transformer

Transformer-based image restoration methods in adverse weather have achieved significant progress. Most of them use self-attention along the channel dimension or within spatially fixed-range blocks to reduce computational load. However, such a compromise results in limitations in capturing long-range spatial features. Inspired by the observation that the weather-induced degradation factors mainly cause similar occlusion and brightness, in this work, we propose an efficient Histogram Transformer (Histoformer) for restoring images affected by adverse weather. It is powered by a mechanism dubbed histogram self-attention, which sorts and segments spatial features into intensity-based bins. Self-attention is then applied across bins or within each bin to selectively focus on spatial features of dynamic range and process similar degraded pixels of the long range together. To boost histogram self-attention, we present a dynamic-range convolution enabling conventional convolution to conduct operation over similar pixels rather than neighbor pixels. We also observe that the common pixel-wise losses neglect linear association and correlation between output and ground-truth. Thus, we propose to leverage the Pearson correlation coefficient as a loss function to enforce the recovered pixels following the identical order as ground-truth. Extensive experiments demonstrate the efficacy and superiority of our proposed method. We have released the codes in Github.

  • 5 authors
·
Jul 14, 2024

Enhancing Worldwide Image Geolocation by Ensembling Satellite-Based Ground-Level Attribute Predictors

Geolocating images of a ground-level scene entails estimating the location on Earth where the picture was taken, in absence of GPS or other location metadata. Typically, methods are evaluated by measuring the Great Circle Distance (GCD) between a predicted location and ground truth. However, this measurement is limited because it only evaluates a single point, not estimates of regions or score heatmaps. This is especially important in applications to rural, wilderness and under-sampled areas, where finding the exact location may not be possible, and when used in aggregate systems that progressively narrow down locations. In this paper, we introduce a novel metric, Recall vs Area (RvA), which measures the accuracy of estimated distributions of locations. RvA treats image geolocation results similarly to document retrieval, measuring recall as a function of area: For a ranked list of (possibly non-contiguous) predicted regions, we measure the accumulated area required for the region to contain the ground truth coordinate. This produces a curve similar to a precision-recall curve, where "precision" is replaced by square kilometers area, allowing evaluation of performance for different downstream search area budgets. Following directly from this view of the problem, we then examine a simple ensembling approach to global-scale image geolocation, which incorporates information from multiple sources to help address domain shift, and can readily incorporate multiple models, attribute predictors, and data sources. We study its effectiveness by combining the geolocation models GeoEstimation and the current SOTA GeoCLIP, with attribute predictors based on ORNL LandScan and ESA-CCI Land Cover. We find significant improvements in image geolocation for areas that are under-represented in the training set, particularly non-urban areas, on both Im2GPS3k and Street View images.

  • 3 authors
·
Jul 18, 2024

Training-free Diffusion Model Adaptation for Variable-Sized Text-to-Image Synthesis

Diffusion models (DMs) have recently gained attention with state-of-the-art performance in text-to-image synthesis. Abiding by the tradition in deep learning, DMs are trained and evaluated on the images with fixed sizes. However, users are demanding for various images with specific sizes and various aspect ratio. This paper focuses on adapting text-to-image diffusion models to handle such variety while maintaining visual fidelity. First we observe that, during the synthesis, lower resolution images suffer from incomplete object portrayal, while higher resolution images exhibit repetitively disordered presentation. Next, we establish a statistical relationship indicating that attention entropy changes with token quantity, suggesting that models aggregate spatial information in proportion to image resolution. The subsequent interpretation on our observations is that objects are incompletely depicted due to limited spatial information for low resolutions, while repetitively disorganized presentation arises from redundant spatial information for high resolutions. From this perspective, we propose a scaling factor to alleviate the change of attention entropy and mitigate the defective pattern observed. Extensive experimental results validate the efficacy of the proposed scaling factor, enabling models to achieve better visual effects, image quality, and text alignment. Notably, these improvements are achieved without additional training or fine-tuning techniques.

  • 4 authors
·
Jun 14, 2023

SpatiaLab: Can Vision-Language Models Perform Spatial Reasoning in the Wild?

Spatial reasoning is a fundamental aspect of human cognition, yet it remains a major challenge for contemporary vision-language models (VLMs). Prior work largely relied on synthetic or LLM-generated environments with limited task designs and puzzle-like setups, failing to capture the real-world complexity, visual noise, and diverse spatial relationships that VLMs encounter. To address this, we introduce SpatiaLab, a comprehensive benchmark for evaluating VLMs' spatial reasoning in realistic, unconstrained contexts. SpatiaLab comprises 1,400 visual question-answer pairs across six major categories: Relative Positioning, Depth & Occlusion, Orientation, Size & Scale, Spatial Navigation, and 3D Geometry, each with five subcategories, yielding 30 distinct task types. Each subcategory contains at least 25 questions, and each main category includes at least 200 questions, supporting both multiple-choice and open-ended evaluation. Experiments across diverse state-of-the-art VLMs, including open- and closed-source models, reasoning-focused, and specialized spatial reasoning models, reveal a substantial gap in spatial reasoning capabilities compared with humans. In the multiple-choice setup, InternVL3.5-72B achieves 54.93% accuracy versus 87.57% for humans. In the open-ended setting, all models show a performance drop of around 10-25%, with GPT-5-mini scoring highest at 40.93% versus 64.93% for humans. These results highlight key limitations in handling complex spatial relationships, depth perception, navigation, and 3D geometry. By providing a diverse, real-world evaluation framework, SpatiaLab exposes critical challenges and opportunities for advancing VLMs' spatial reasoning, offering a benchmark to guide future research toward robust, human-aligned spatial understanding. SpatiaLab is available at: https://spatialab-reasoning.github.io/.

Cambrian-S: Towards Spatial Supersensing in Video

We argue that progress in true multimodal intelligence calls for a shift from reactive, task-driven systems and brute-force long context towards a broader paradigm of supersensing. We frame spatial supersensing as four stages beyond linguistic-only understanding: semantic perception (naming what is seen), streaming event cognition (maintaining memory across continuous experiences), implicit 3D spatial cognition (inferring the world behind pixels), and predictive world modeling (creating internal models that filter and organize information). Current benchmarks largely test only the early stages, offering narrow coverage of spatial cognition and rarely challenging models in ways that require true world modeling. To drive progress in spatial supersensing, we present VSI-SUPER, a two-part benchmark: VSR (long-horizon visual spatial recall) and VSC (continual visual spatial counting). These tasks require arbitrarily long video inputs yet are resistant to brute-force context expansion. We then test data scaling limits by curating VSI-590K and training Cambrian-S, achieving +30% absolute improvement on VSI-Bench without sacrificing general capabilities. Yet performance on VSI-SUPER remains limited, indicating that scale alone is insufficient for spatial supersensing. We propose predictive sensing as a path forward, presenting a proof-of-concept in which a self-supervised next-latent-frame predictor leverages surprise (prediction error) to drive memory and event segmentation. On VSI-SUPER, this approach substantially outperforms leading proprietary baselines, showing that spatial supersensing requires models that not only see but also anticipate, select, and organize experience.

  • 15 authors
·
Nov 6, 2025 5

StarCraftImage: A Dataset For Prototyping Spatial Reasoning Methods For Multi-Agent Environments

Spatial reasoning tasks in multi-agent environments such as event prediction, agent type identification, or missing data imputation are important for multiple applications (e.g., autonomous surveillance over sensor networks and subtasks for reinforcement learning (RL)). StarCraft II game replays encode intelligent (and adversarial) multi-agent behavior and could provide a testbed for these tasks; however, extracting simple and standardized representations for prototyping these tasks is laborious and hinders reproducibility. In contrast, MNIST and CIFAR10, despite their extreme simplicity, have enabled rapid prototyping and reproducibility of ML methods. Following the simplicity of these datasets, we construct a benchmark spatial reasoning dataset based on StarCraft II replays that exhibit complex multi-agent behaviors, while still being as easy to use as MNIST and CIFAR10. Specifically, we carefully summarize a window of 255 consecutive game states to create 3.6 million summary images from 60,000 replays, including all relevant metadata such as game outcome and player races. We develop three formats of decreasing complexity: Hyperspectral images that include one channel for every unit type (similar to multispectral geospatial images), RGB images that mimic CIFAR10, and grayscale images that mimic MNIST. We show how this dataset can be used for prototyping spatial reasoning methods. All datasets, code for extraction, and code for dataset loading can be found at https://starcraftdata.davidinouye.com

  • 4 authors
·
Jan 8, 2024

3D CoCa v2: Contrastive Learners with Test-Time Search for Generalizable Spatial Intelligence

Spatial intelligence refers to the ability to perceive, reason about, and describe objects and their relationships within three-dimensional environments, forming a foundation for embodied perception and scene understanding. 3D captioning aims to describe 3D scenes in natural language; however, it remains challenging due to the sparsity and irregularity of point clouds and, more critically, the weak grounding and limited out-of-distribution (OOD) generalization of existing captioners across drastically different environments, including indoor and outdoor 3D scenes. To address this challenge, we propose 3D CoCa v2, a generalizable 3D captioning framework that unifies contrastive vision-language learning with 3D caption generation and further improves robustness via test-time search (TTS) without updating the captioner parameters. 3D CoCa v2 builds on a frozen CLIP-based semantic prior, a spatially-aware 3D scene encoder for geometry, and a multimodal decoder jointly optimized with contrastive and captioning objectives, avoiding external detectors or handcrafted proposals. At inference, TTS produces diverse caption candidates and performs reward-guided selection using a compact scene summary. Experiments show improvements over 3D CoCa of +1.50 CIDEr@0.5IoU on ScanRefer and +1.61 CIDEr@0.5IoU on Nr3D, and +3.8 CIDEr@0.25 in zero-shot OOD evaluation on TOD3Cap. Code will be released at https://github.com/AIGeeksGroup/3DCoCav2.

SIMS-V: Simulated Instruction-Tuning for Spatial Video Understanding

Despite impressive high-level video comprehension, multimodal language models struggle with spatial reasoning across time and space. While current spatial training approaches rely on real-world video data, obtaining diverse footage with precise spatial annotations remains a bottleneck. To alleviate this bottleneck, we present SIMS-V -- a systematic data-generation framework that leverages the privileged information of 3D simulators to create spatially-rich video training data for multimodal language models. Using this framework, we investigate which properties of simulated data drive effective real-world transfer through systematic ablations of question types, mixes, and scales. We identify a minimal set of three question categories (metric measurement, perspective-dependent reasoning, and temporal tracking) that prove most effective for developing transferable spatial intelligence, outperforming comprehensive coverage despite using fewer question types. These insights enable highly efficient training: our 7B-parameter video LLM fine-tuned on just 25K simulated examples outperforms the larger 72B baseline and achieves competitive performance with proprietary models on rigorous real-world spatial reasoning benchmarks. Our approach demonstrates robust generalization, maintaining performance on general video understanding while showing substantial improvements on embodied and real-world spatial tasks.

nyu-visionx VISIONx @ NYU
·
Nov 6, 2025 2

Time Blindness: Why Video-Language Models Can't See What Humans Can?

Recent advances in vision-language models (VLMs) have made impressive strides in understanding spatio-temporal relationships in videos. However, when spatial information is obscured, these models struggle to capture purely temporal patterns. We introduce SpookyBench, a benchmark where information is encoded solely in temporal sequences of noise-like frames, mirroring natural phenomena from biological signaling to covert communication. Interestingly, while humans can recognize shapes, text, and patterns in these sequences with over 98% accuracy, state-of-the-art VLMs achieve 0% accuracy. This performance gap highlights a critical limitation: an over-reliance on frame-level spatial features and an inability to extract meaning from temporal cues. Furthermore, when trained in data sets with low spatial signal-to-noise ratios (SNR), temporal understanding of models degrades more rapidly than human perception, especially in tasks requiring fine-grained temporal reasoning. Overcoming this limitation will require novel architectures or training paradigms that decouple spatial dependencies from temporal processing. Our systematic analysis shows that this issue persists across model scales and architectures. We release SpookyBench to catalyze research in temporal pattern recognition and bridge the gap between human and machine video understanding. Dataset and code has been made available on our project website: https://timeblindness.github.io/.

  • 4 authors
·
May 30, 2025 3

Flying Triangulation - towards the 3D movie camera

Flying Triangulation sensors enable a free-hand and motion-robust 3D data acquisition of complex shaped objects. The measurement principle is based on a multi-line light-sectioning approach and uses sophisticated algorithms for real-time registration (S. Ettl et al., Appl. Opt. 51 (2012) 281-289). As "single-shot principle", light sectioning enables the option to get surface data from one single camera exposure. But there is a drawback: A pixel-dense measurement is not possible because of fundamental information-theoretical reasons. By "pixel-dense" we understand that each pixel displays individually measured distance information, neither interpolated from its neighbour pixels nor using lateral context information. Hence, for monomodal single-shot principles, the 3D data generated from one 2D raw image display a significantly lower space-bandwidth than the camera permits. This is the price one must pay for motion robustness. Currently, our sensors project about 10 lines (each with 1000 pixels), reaching an considerable lower data efficiency than theoretically possible for a single-shot sensor. Our aim is to push Flying Triangulation to its information-theoretical limits. Therefore, the line density as well as the measurement depth needs to be significantly increased. This causes serious indexing ambiguities. On the road to a single-shot 3D movie camera, we are working on solutions to overcome the problem of false line indexing by utilizing yet unexploited information. We will present several approaches and will discuss profound information-theoretical questions about the information efficiency of 3D sensors.

  • 4 authors
·
May 17, 2013

Memory Forcing: Spatio-Temporal Memory for Consistent Scene Generation on Minecraft

Autoregressive video diffusion models have proved effective for world modeling and interactive scene generation, with Minecraft gameplay as a representative application. To faithfully simulate play, a model must generate natural content while exploring new scenes and preserve spatial consistency when revisiting explored areas. Under limited computation budgets, it must compress and exploit historical cues within a finite context window, which exposes a trade-off: Temporal-only memory lacks long-term spatial consistency, whereas adding spatial memory strengthens consistency but may degrade new scene generation quality when the model over-relies on insufficient spatial context. We present Memory Forcing, a learning framework that pairs training protocols with a geometry-indexed spatial memory. Hybrid Training exposes distinct gameplay regimes, guiding the model to rely on temporal memory during exploration and incorporate spatial memory for revisits. Chained Forward Training extends autoregressive training with model rollouts, where chained predictions create larger pose variations and encourage reliance on spatial memory for maintaining consistency. Point-to-Frame Retrieval efficiently retrieves history by mapping currently visible points to their source frames, while Incremental 3D Reconstruction maintains and updates an explicit 3D cache. Extensive experiments demonstrate that Memory Forcing achieves superior long-term spatial consistency and generative quality across diverse environments, while maintaining computational efficiency for extended sequences.

  • 7 authors
·
Oct 3, 2025

LLMs Can Get "Brain Rot"!

We propose and test the LLM Brain Rot Hypothesis: continual exposure to junk web text induces lasting cognitive decline in large language models (LLMs). To causally isolate data quality, we run controlled experiments on real Twitter/X corpora, constructing junk and reversely controlled datasets via two orthogonal operationalizations: M1 (engagement degree) and M2 (semantic quality), with matched token scale and training operations across conditions. Contrary to the control group, continual pre-training of 4 LLMs on the junk dataset causes non-trivial declines (Hedges' g>0.3) on reasoning, long-context understanding, safety, and inflating "dark traits" (e.g., psychopathy, narcissism). The gradual mixtures of junk and control datasets also yield dose-response cognition decay: for example, under M1, ARC-Challenge with Chain Of Thoughts drops 74.9 rightarrow 57.2 and RULER-CWE 84.4 rightarrow 52.3 as junk ratio rises from 0% to 100%. Error forensics reveal several key insights. First, we identify thought-skipping as the primary lesion: models increasingly truncate or skip reasoning chains, explaining most of the error growth. Second, partial but incomplete healing is observed: scaling instruction tuning and clean data pre-training improve the declined cognition yet cannot restore baseline capability, suggesting persistent representational drift rather than format mismatch. Finally, we discover that the popularity, a non-semantic metric, of a tweet is a better indicator of the Brain Rot effect than the length in M1. Together, the results provide significant, multi-perspective evidence that data quality is a causal driver of LLM capability decay, reframing curation for continual pretraining as a training-time safety problem and motivating routine "cognitive health checks" for deployed LLMs.

Glocal Information Bottleneck for Time Series Imputation

Time Series Imputation (TSI), which aims to recover missing values in temporal data, remains a fundamental challenge due to the complex and often high-rate missingness in real-world scenarios. Existing models typically optimize the point-wise reconstruction loss, focusing on recovering numerical values (local information). However, we observe that under high missing rates, these models still perform well in the training phase yet produce poor imputations and distorted latent representation distributions (global information) in the inference phase. This reveals a critical optimization dilemma: current objectives lack global guidance, leading models to overfit local noise and fail to capture global information of the data. To address this issue, we propose a new training paradigm, Glocal Information Bottleneck (Glocal-IB). Glocal-IB is model-agnostic and extends the standard IB framework by introducing a Global Alignment loss, derived from a tractable mutual information approximation. This loss aligns the latent representations of masked inputs with those of their originally observed counterparts. It helps the model retain global structure and local details while suppressing noise caused by missing values, giving rise to better generalization under high missingness. Extensive experiments on nine datasets confirm that Glocal-IB leads to consistently improved performance and aligned latent representations under missingness. Our code implementation is available in https://github.com/Muyiiiii/NeurIPS-25-Glocal-IB.

  • 5 authors
·
Oct 6, 2025 2

Spatially-Aware Transformer for Embodied Agents

Episodic memory plays a crucial role in various cognitive processes, such as the ability to mentally recall past events. While cognitive science emphasizes the significance of spatial context in the formation and retrieval of episodic memory, the current primary approach to implementing episodic memory in AI systems is through transformers that store temporally ordered experiences, which overlooks the spatial dimension. As a result, it is unclear how the underlying structure could be extended to incorporate the spatial axis beyond temporal order alone and thereby what benefits can be obtained. To address this, this paper explores the use of Spatially-Aware Transformer models that incorporate spatial information. These models enable the creation of place-centric episodic memory that considers both temporal and spatial dimensions. Adopting this approach, we demonstrate that memory utilization efficiency can be improved, leading to enhanced accuracy in various place-centric downstream tasks. Additionally, we propose the Adaptive Memory Allocator, a memory management method based on reinforcement learning that aims to optimize efficiency of memory utilization. Our experiments demonstrate the advantages of our proposed model in various environments and across multiple downstream tasks, including prediction, generation, reasoning, and reinforcement learning. The source code for our models and experiments will be available at https://github.com/junmokane/spatially-aware-transformer.

  • 3 authors
·
Feb 23, 2024

ST-LINK: Spatially-Aware Large Language Models for Spatio-Temporal Forecasting

Traffic forecasting represents a crucial problem within intelligent transportation systems. In recent research, Large Language Models (LLMs) have emerged as a promising method, but their intrinsic design, tailored primarily for sequential token processing, introduces notable challenges in effectively capturing spatial dependencies. Specifically, the inherent limitations of LLMs in modeling spatial relationships and their architectural incompatibility with graph-structured spatial data remain largely unaddressed. To overcome these limitations, we introduce ST-LINK, a novel framework that enhances the capability of Large Language Models to capture spatio-temporal dependencies. Its key components are Spatially-Enhanced Attention (SE-Attention) and the Memory Retrieval Feed-Forward Network (MRFFN). SE-Attention extends rotary position embeddings to integrate spatial correlations as direct rotational transformations within the attention mechanism. This approach maximizes spatial learning while preserving the LLM's inherent sequential processing structure. Meanwhile, MRFFN dynamically retrieves and utilizes key historical patterns to capture complex temporal dependencies and improve the stability of long-term forecasting. Comprehensive experiments on benchmark datasets demonstrate that ST-LINK surpasses conventional deep learning and LLM approaches, and effectively captures both regular traffic patterns and abrupt changes.

  • 4 authors
·
Sep 17, 2025 1

Geospatial Mechanistic Interpretability of Large Language Models

Large Language Models (LLMs) have demonstrated unprecedented capabilities across various natural language processing tasks. Their ability to process and generate viable text and code has made them ubiquitous in many fields, while their deployment as knowledge bases and "reasoning" tools remains an area of ongoing research. In geography, a growing body of literature has been focusing on evaluating LLMs' geographical knowledge and their ability to perform spatial reasoning. However, very little is still known about the internal functioning of these models, especially about how they process geographical information. In this chapter, we establish a novel framework for the study of geospatial mechanistic interpretability - using spatial analysis to reverse engineer how LLMs handle geographical information. Our aim is to advance our understanding of the internal representations that these complex models generate while processing geographical information - what one might call "how LLMs think about geographic information" if such phrasing was not an undue anthropomorphism. We first outline the use of probing in revealing internal structures within LLMs. We then introduce the field of mechanistic interpretability, discussing the superposition hypothesis and the role of sparse autoencoders in disentangling polysemantic internal representations of LLMs into more interpretable, monosemantic features. In our experiments, we use spatial autocorrelation to show how features obtained for placenames display spatial patterns related to their geographic location and can thus be interpreted geospatially, providing insights into how these models process geographical information. We conclude by discussing how our framework can help shape the study and use of foundation models in geography.

  • 3 authors
·
May 6, 2025 1

MOVE: A Simple Motion-Based Data Collection Paradigm for Spatial Generalization in Robotic Manipulation

Imitation learning method has shown immense promise for robotic manipulation, yet its practical deployment is fundamentally constrained by the data scarcity. Despite prior work on collecting large-scale datasets, there still remains a significant gap to robust spatial generalization. We identify a key limitation: individual trajectories, regardless of their length, are typically collected from a single, static spatial configuration of the environment. This includes fixed object and target spatial positions as well as unchanging camera viewpoints, which significantly restricts the diversity of spatial information available for learning. To address this critical bottleneck in data efficiency, we propose MOtion-Based Variability Enhancement (MOVE), a simple yet effective data collection paradigm that enables the acquisition of richer spatial information from dynamic demonstrations. Our core contribution is an augmentation strategy that injects motion into any movable objects within the environment for each demonstration. This process implicitly generates a dense and diverse set of spatial configurations within a single trajectory. We conduct extensive experiments in both simulation and real-world environments to validate our approach. For example, in simulation tasks requiring strong spatial generalization, MOVE achieves an average success rate of 39.1\%, a 76.1\% relative improvement over the static data collection paradigm (22.2\%), and yields up to 2--5times gains in data efficiency on certain tasks. Our code is available at https://github.com/lucywang720/MOVE.

  • 10 authors
·
Dec 4, 2025