Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeA Tale of Two Graphs: Freezing and Denoising Graph Structures for Multimodal Recommendation
Multimodal recommender systems utilizing multimodal features (e.g., images and textual descriptions) typically show better recommendation accuracy than general recommendation models based solely on user-item interactions. Generally, prior work fuses multimodal features into item ID embeddings to enrich item representations, thus failing to capture the latent semantic item-item structures. In this context, LATTICE proposes to learn the latent structure between items explicitly and achieves state-of-the-art performance for multimodal recommendations. However, we argue the latent graph structure learning of LATTICE is both inefficient and unnecessary. Experimentally, we demonstrate that freezing its item-item structure before training can also achieve competitive performance. Based on this finding, we propose a simple yet effective model, dubbed as FREEDOM, that FREEzes the item-item graph and DenOises the user-item interaction graph simultaneously for Multimodal recommendation. Theoretically, we examine the design of FREEDOM through a graph spectral perspective and demonstrate that it possesses a tighter upper bound on the graph spectrum. In denoising the user-item interaction graph, we devise a degree-sensitive edge pruning method, which rejects possibly noisy edges with a high probability when sampling the graph. We evaluate the proposed model on three real-world datasets and show that FREEDOM can significantly outperform current strongest baselines. Compared with LATTICE, FREEDOM achieves an average improvement of 19.07% in recommendation accuracy while reducing its memory cost up to 6times on large graphs. The source code is available at: https://github.com/enoche/FREEDOM.
M2TRec: Metadata-aware Multi-task Transformer for Large-scale and Cold-start free Session-based Recommendations
Session-based recommender systems (SBRSs) have shown superior performance over conventional methods. However, they show limited scalability on large-scale industrial datasets since most models learn one embedding per item. This leads to a large memory requirement (of storing one vector per item) and poor performance on sparse sessions with cold-start or unpopular items. Using one public and one large industrial dataset, we experimentally show that state-of-the-art SBRSs have low performance on sparse sessions with sparse items. We propose M2TRec, a Metadata-aware Multi-task Transformer model for session-based recommendations. Our proposed method learns a transformation function from item metadata to embeddings, and is thus, item-ID free (i.e., does not need to learn one embedding per item). It integrates item metadata to learn shared representations of diverse item attributes. During inference, new or unpopular items will be assigned identical representations for the attributes they share with items previously observed during training, and thus will have similar representations with those items, enabling recommendations of even cold-start and sparse items. Additionally, M2TRec is trained in a multi-task setting to predict the next item in the session along with its primary category and subcategories. Our multi-task strategy makes the model converge faster and significantly improves the overall performance. Experimental results show significant performance gains using our proposed approach on sparse items on the two datasets.
Bootstrap Latent Representations for Multi-modal Recommendation
This paper studies the multi-modal recommendation problem, where the item multi-modality information (e.g., images and textual descriptions) is exploited to improve the recommendation accuracy. Besides the user-item interaction graph, existing state-of-the-art methods usually use auxiliary graphs (e.g., user-user or item-item relation graph) to augment the learned representations of users and/or items. These representations are often propagated and aggregated on auxiliary graphs using graph convolutional networks, which can be prohibitively expensive in computation and memory, especially for large graphs. Moreover, existing multi-modal recommendation methods usually leverage randomly sampled negative examples in Bayesian Personalized Ranking (BPR) loss to guide the learning of user/item representations, which increases the computational cost on large graphs and may also bring noisy supervision signals into the training process. To tackle the above issues, we propose a novel self-supervised multi-modal recommendation model, dubbed BM3, which requires neither augmentations from auxiliary graphs nor negative samples. Specifically, BM3 first bootstraps latent contrastive views from the representations of users and items with a simple dropout augmentation. It then jointly optimizes three multi-modal objectives to learn the representations of users and items by reconstructing the user-item interaction graph and aligning modality features under both inter- and intra-modality perspectives. BM3 alleviates both the need for contrasting with negative examples and the complex graph augmentation from an additional target network for contrastive view generation. We show BM3 outperforms prior recommendation models on three datasets with number of nodes ranging from 20K to 200K, while achieving a 2-9X reduction in training time. Our code is available at https://github.com/enoche/BM3.
PG-Agent: An Agent Powered by Page Graph
Graphical User Interface (GUI) agents possess significant commercial and social value, and GUI agents powered by advanced multimodal large language models (MLLMs) have demonstrated remarkable potential. Currently, existing GUI agents usually utilize sequential episodes of multi-step operations across pages as the prior GUI knowledge, which fails to capture the complex transition relationship between pages, making it challenging for the agents to deeply perceive the GUI environment and generalize to new scenarios. Therefore, we design an automated pipeline to transform the sequential episodes into page graphs, which explicitly model the graph structure of the pages that are naturally connected by actions. To fully utilize the page graphs, we further introduce Retrieval-Augmented Generation (RAG) technology to effectively retrieve reliable perception guidelines of GUI from them, and a tailored multi-agent framework PG-Agent with task decomposition strategy is proposed to be injected with the guidelines so that it can generalize to unseen scenarios. Extensive experiments on various benchmarks demonstrate the effectiveness of PG-Agent, even with limited episodes for page graph construction.
Disentangled Structural and Featural Representation for Task-Agnostic Graph Valuation
With the emergence of data marketplaces, the demand for methods to assess the value of data has increased significantly. While numerous techniques have been proposed for this purpose, none have specifically addressed graphs as the main data modality. Graphs are widely used across various fields, ranging from chemical molecules to social networks. In this study, we break down graphs into two main components: structural and featural, and we focus on evaluating data without relying on specific task-related metrics, making it applicable in practical scenarios where validation requirements may be lacking. We introduce a novel framework called blind message passing, which aligns the seller's and buyer's graphs using a shared node permutation based on graph matching. This allows us to utilize the graph Wasserstein distance to quantify the differences in the structural distribution of graph datasets, called the structural disparities. We then consider featural aspects of buyers' and sellers' graphs for data valuation and capture their statistical similarities and differences, referred to as relevance and diversity, respectively. Our approach ensures that buyers and sellers remain unaware of each other's datasets. Our experiments on real datasets demonstrate the effectiveness of our approach in capturing the relevance, diversity, and structural disparities of seller data for buyers, particularly in graph-based data valuation scenarios.
SessionRec: Next Session Prediction Paradigm For Generative Sequential Recommendation
We introduce SessionRec, a novel next-session prediction paradigm (NSPP) for generative sequential recommendation, addressing the fundamental misalignment between conventional next-item prediction paradigm (NIPP) and real-world recommendation scenarios. Unlike NIPP's item-level autoregressive generation that contradicts actual session-based user interactions, our framework introduces a session-aware representation learning through hierarchical sequence aggregation (intra/inter-session), reducing attention computation complexity while enabling implicit modeling of massive negative interactions, and a session-based prediction objective that better captures users' diverse interests through multi-item recommendation in next sessions. Moreover, we found that incorporating a rank loss for items within the session under the next session prediction paradigm can significantly improve the ranking effectiveness of generative sequence recommendation models. We also verified that SessionRec exhibits clear power-law scaling laws similar to those observed in LLMs. Extensive experiments conducted on public datasets and online A/B test in Meituan App demonstrate the effectiveness of SessionRec. The proposed paradigm establishes new foundations for developing industrial-scale generative recommendation systems through its model-agnostic architecture and computational efficiency.
MMHCL: Multi-Modal Hypergraph Contrastive Learning for Recommendation
The burgeoning presence of multimodal content-sharing platforms propels the development of personalized recommender systems. Previous works usually suffer from data sparsity and cold-start problems, and may fail to adequately explore semantic user-product associations from multimodal data. To address these issues, we propose a novel Multi-Modal Hypergraph Contrastive Learning (MMHCL) framework for user recommendation. For a comprehensive information exploration from user-product relations, we construct two hypergraphs, i.e. a user-to-user (u2u) hypergraph and an item-to-item (i2i) hypergraph, to mine shared preferences among users and intricate multimodal semantic resemblance among items, respectively. This process yields denser second-order semantics that are fused with first-order user-item interaction as complementary to alleviate the data sparsity issue. Then, we design a contrastive feature enhancement paradigm by applying synergistic contrastive learning. By maximizing/minimizing the mutual information between second-order (e.g. shared preference pattern for users) and first-order (information of selected items for users) embeddings of the same/different users and items, the feature distinguishability can be effectively enhanced. Compared with using sparse primary user-item interaction only, our MMHCL obtains denser second-order hypergraphs and excavates more abundant shared attributes to explore the user-product associations, which to a certain extent alleviates the problems of data sparsity and cold-start. Extensive experiments have comprehensively demonstrated the effectiveness of our method. Our code is publicly available at: https://github.com/Xu107/MMHCL.
G-Retriever: Retrieval-Augmented Generation for Textual Graph Understanding and Question Answering
Given a graph with textual attributes, we enable users to `chat with their graph': that is, to ask questions about the graph using a conversational interface. In response to a user's questions, our method provides textual replies and highlights the relevant parts of the graph. While existing works integrate large language models (LLMs) and graph neural networks (GNNs) in various ways, they mostly focus on either conventional graph tasks (such as node, edge, and graph classification), or on answering simple graph queries on small or synthetic graphs. In contrast, we develop a flexible question-answering framework targeting real-world textual graphs, applicable to multiple applications including scene graph understanding, common sense reasoning, and knowledge graph reasoning. Toward this goal, we first develop a Graph Question Answering (GraphQA) benchmark with data collected from different tasks. Then, we propose our G-Retriever method, introducing the first retrieval-augmented generation (RAG) approach for general textual graphs, which can be fine-tuned to enhance graph understanding via soft prompting. To resist hallucination and to allow for textual graphs that greatly exceed the LLM's context window size, G-Retriever performs RAG over a graph by formulating this task as a Prize-Collecting Steiner Tree optimization problem. Empirical evaluations show that our method outperforms baselines on textual graph tasks from multiple domains, scales well with larger graph sizes, and mitigates hallucination.~Our codes and datasets are available at: \url{https://github.com/XiaoxinHe/G-Retriever}
Understanding Graph Databases: A Comprehensive Tutorial and Survey
This tutorial serves as a comprehensive guide for understanding graph databases, focusing on the fundamentals of graph theory while showcasing practical applications across various fields. It starts by introducing foundational concepts and delves into the structure of graphs through nodes and edges, covering different types such as undirected, directed, weighted, and unweighted graphs. Key graph properties, terminologies, and essential algorithms for network analysis are outlined, including Dijkstras shortest path algorithm and methods for calculating node centrality and graph connectivity. The tutorial highlights the advantages of graph databases over traditional relational databases, particularly in efficiently managing complex, interconnected data. It examines leading graph database systems such as Neo4j, Amazon Neptune, and ArangoDB, emphasizing their unique features for handling large datasets. Practical instructions on graph operations using NetworkX and Neo4j are provided, covering node and edge creation, attribute assignment, and advanced queries with Cypher. Additionally, the tutorial explores common graph visualization techniques using tools like Plotly and Neo4j Bloom, which enhance the interpretation and usability of graph data. It also delves into community detection algorithms, including the Louvain method, which facilitates clustering in large networks. Finally, the paper concludes with recommendations for researchers interested in exploring the vast potential of graph technologies.
Refining Contrastive Learning and Homography Relations for Multi-Modal Recommendation
Multi-modal recommender system focuses on utilizing rich modal information ( i.e., images and textual descriptions) of items to improve recommendation performance. The current methods have achieved remarkable success with the powerful structure modeling capability of graph neural networks. However, these methods are often hindered by sparse data in real-world scenarios. Although contrastive learning and homography ( i.e., homogeneous graphs) are employed to address the data sparsity challenge, existing methods still suffer two main limitations: 1) Simple multi-modal feature contrasts fail to produce effective representations, causing noisy modal-shared features and loss of valuable information in modal-unique features; 2) The lack of exploration of the homograph relations between user interests and item co-occurrence results in incomplete mining of user-item interplay. To address the above limitations, we propose a novel framework for REfining multi-modAl contRastive learning and hoMography relations (REARM). Specifically, we complement multi-modal contrastive learning by employing meta-network and orthogonal constraint strategies, which filter out noise in modal-shared features and retain recommendation-relevant information in modal-unique features. To mine homogeneous relationships effectively, we integrate a newly constructed user interest graph and an item co-occurrence graph with the existing user co-occurrence and item semantic graphs for graph learning. The extensive experiments on three real-world datasets demonstrate the superiority of REARM to various state-of-the-art baselines. Our visualization further shows an improvement made by REARM in distinguishing between modal-shared and modal-unique features. Code is available https://github.com/MrShouxingMa/REARM{here}.
Neural Graph Collaborative Filtering
Learning vector representations (aka. embeddings) of users and items lies at the core of modern recommender systems. Ranging from early matrix factorization to recently emerged deep learning based methods, existing efforts typically obtain a user's (or an item's) embedding by mapping from pre-existing features that describe the user (or the item), such as ID and attributes. We argue that an inherent drawback of such methods is that, the collaborative signal, which is latent in user-item interactions, is not encoded in the embedding process. As such, the resultant embeddings may not be sufficient to capture the collaborative filtering effect. In this work, we propose to integrate the user-item interactions -- more specifically the bipartite graph structure -- into the embedding process. We develop a new recommendation framework Neural Graph Collaborative Filtering (NGCF), which exploits the user-item graph structure by propagating embeddings on it. This leads to the expressive modeling of high-order connectivity in user-item graph, effectively injecting the collaborative signal into the embedding process in an explicit manner. We conduct extensive experiments on three public benchmarks, demonstrating significant improvements over several state-of-the-art models like HOP-Rec and Collaborative Memory Network. Further analysis verifies the importance of embedding propagation for learning better user and item representations, justifying the rationality and effectiveness of NGCF. Codes are available at https://github.com/xiangwang1223/neural_graph_collaborative_filtering.
Amazon-M2: A Multilingual Multi-locale Shopping Session Dataset for Recommendation and Text Generation
Modeling customer shopping intentions is a crucial task for e-commerce, as it directly impacts user experience and engagement. Thus, accurately understanding customer preferences is essential for providing personalized recommendations. Session-based recommendation, which utilizes customer session data to predict their next interaction, has become increasingly popular. However, existing session datasets have limitations in terms of item attributes, user diversity, and dataset scale. As a result, they cannot comprehensively capture the spectrum of user behaviors and preferences. To bridge this gap, we present the Amazon Multilingual Multi-locale Shopping Session Dataset, namely Amazon-M2. It is the first multilingual dataset consisting of millions of user sessions from six different locales, where the major languages of products are English, German, Japanese, French, Italian, and Spanish. Remarkably, the dataset can help us enhance personalization and understanding of user preferences, which can benefit various existing tasks as well as enable new tasks. To test the potential of the dataset, we introduce three tasks in this work: (1) next-product recommendation, (2) next-product recommendation with domain shifts, and (3) next-product title generation. With the above tasks, we benchmark a range of algorithms on our proposed dataset, drawing new insights for further research and practice. In addition, based on the proposed dataset and tasks, we hosted a competition in the KDD CUP 2023 and have attracted thousands of users and submissions. The winning solutions and the associated workshop can be accessed at our website https://kddcup23.github.io/.
Retrieval-Augmented Generation with Graphs (GraphRAG)
Retrieval-augmented generation (RAG) is a powerful technique that enhances downstream task execution by retrieving additional information, such as knowledge, skills, and tools from external sources. Graph, by its intrinsic "nodes connected by edges" nature, encodes massive heterogeneous and relational information, making it a golden resource for RAG in tremendous real-world applications. As a result, we have recently witnessed increasing attention on equipping RAG with Graph, i.e., GraphRAG. However, unlike conventional RAG, where the retriever, generator, and external data sources can be uniformly designed in the neural-embedding space, the uniqueness of graph-structured data, such as diverse-formatted and domain-specific relational knowledge, poses unique and significant challenges when designing GraphRAG for different domains. Given the broad applicability, the associated design challenges, and the recent surge in GraphRAG, a systematic and up-to-date survey of its key concepts and techniques is urgently desired. Following this motivation, we present a comprehensive and up-to-date survey on GraphRAG. Our survey first proposes a holistic GraphRAG framework by defining its key components, including query processor, retriever, organizer, generator, and data source. Furthermore, recognizing that graphs in different domains exhibit distinct relational patterns and require dedicated designs, we review GraphRAG techniques uniquely tailored to each domain. Finally, we discuss research challenges and brainstorm directions to inspire cross-disciplinary opportunities. Our survey repository is publicly maintained at https://github.com/Graph-RAG/GraphRAG/.
Non-Sequential Graph Script Induction via Multimedia Grounding
Online resources such as WikiHow compile a wide range of scripts for performing everyday tasks, which can assist models in learning to reason about procedures. However, the scripts are always presented in a linear manner, which does not reflect the flexibility displayed by people executing tasks in real life. For example, in the CrossTask Dataset, 64.5% of consecutive step pairs are also observed in the reverse order, suggesting their ordering is not fixed. In addition, each step has an average of 2.56 frequent next steps, demonstrating "branching". In this paper, we propose the new challenging task of non-sequential graph script induction, aiming to capture optional and interchangeable steps in procedural planning. To automate the induction of such graph scripts for given tasks, we propose to take advantage of loosely aligned videos of people performing the tasks. In particular, we design a multimodal framework to ground procedural videos to WikiHow textual steps and thus transform each video into an observed step path on the latent ground truth graph script. This key transformation enables us to train a script knowledge model capable of both generating explicit graph scripts for learnt tasks and predicting future steps given a partial step sequence. Our best model outperforms the strongest pure text/vision baselines by 17.52% absolute gains on F1@3 for next step prediction and 13.8% absolute gains on Acc@1 for partial sequence completion. Human evaluation shows our model outperforming the WikiHow linear baseline by 48.76% absolute gains in capturing sequential and non-sequential step relationships.
Large Generative Graph Models
Large Generative Models (LGMs) such as GPT, Stable Diffusion, Sora, and Suno are trained on a huge amount of language corpus, images, videos, and audio that are extremely diverse from numerous domains. This training paradigm over diverse well-curated data lies at the heart of generating creative and sensible content. However, all previous graph generative models (e.g., GraphRNN, MDVAE, MoFlow, GDSS, and DiGress) have been trained only on one dataset each time, which cannot replicate the revolutionary success achieved by LGMs in other fields. To remedy this crucial gap, we propose a new class of graph generative model called Large Graph Generative Model (LGGM) that is trained on a large corpus of graphs (over 5000 graphs) from 13 different domains. We empirically demonstrate that the pre-trained LGGM has superior zero-shot generative capability to existing graph generative models. Furthermore, our pre-trained LGGM can be easily fine-tuned with graphs from target domains and demonstrate even better performance than those directly trained from scratch, behaving as a solid starting point for real-world customization. Inspired by Stable Diffusion, we further equip LGGM with the capability to generate graphs given text prompts (Text-to-Graph), such as the description of the network name and domain (i.e., "The power-1138-bus graph represents a network of buses in a power distribution system."), and network statistics (i.e., "The graph has a low average degree, suitable for modeling social media interactions."). This Text-to-Graph capability integrates the extensive world knowledge in the underlying language model, offering users fine-grained control of the generated graphs. We release the code, the model checkpoint, and the datasets at https://lggm-lg.github.io/.
SIT-Graph: State Integrated Tool Graph for Multi-Turn Agents
Despite impressive advances in agent systems, multi-turn tool-use scenarios remain challenging. It is mainly because intent is clarified progressively and the environment evolves with each tool call. While reusing past experience is natural, current LLM agents either treat entire trajectories or pre-defined subtasks as indivisible units, or solely exploit tool-to-tool dependencies, hindering adaptation as states and information evolve across turns. In this paper, we propose a State Integrated Tool Graph (SIT-Graph), which enhances multi-turn tool use by exploiting partially overlapping experience. Inspired by human decision-making that integrates episodic and procedural memory, SIT-Graph captures both compact state representations (episodic-like fragments) and tool-to-tool dependencies (procedural-like routines) from historical trajectories. Specifically, we first build a tool graph from accumulated tool-use sequences, and then augment each edge with a compact state summary of the dialog and tool history that may shape the next action. At inference time, SIT-Graph enables a human-like balance between episodic recall and procedural execution: when the next decision requires recalling prior context, the agent retrieves the state summaries stored on relevant edges and uses them to guide its next action; when the step is routine, it follows high-confidence tool dependencies without explicit recall. Experiments across multiple stateful multi-turn tool-use benchmarks show that SIT-Graph consistently outperforms strong memory- and graph-based baselines, delivering more robust tool selection and more effective experience transfer.
Medical Graph RAG: Towards Safe Medical Large Language Model via Graph Retrieval-Augmented Generation
We introduce a novel graph-based Retrieval-Augmented Generation (RAG) framework specifically designed for the medical domain, called MedGraphRAG, aimed at enhancing Large Language Model (LLM) capabilities and generating evidence-based results, thereby improving safety and reliability when handling private medical data. Our comprehensive pipeline begins with a hybrid static-semantic approach to document chunking, significantly improving context capture over traditional methods. Extracted entities are used to create a three-tier hierarchical graph structure, linking entities to foundational medical knowledge sourced from medical papers and dictionaries. These entities are then interconnected to form meta-graphs, which are merged based on semantic similarities to develop a comprehensive global graph. This structure supports precise information retrieval and response generation. The retrieval process employs a U-retrieve method to balance global awareness and indexing efficiency of the LLM. Our approach is validated through a comprehensive ablation study comparing various methods for document chunking, graph construction, and information retrieval. The results not only demonstrate that our hierarchical graph construction method consistently outperforms state-of-the-art models on multiple medical Q\&A benchmarks, but also confirms that the responses generated include source documentation, significantly enhancing the reliability of medical LLMs in practical applications. Code will be at: https://github.com/MedicineToken/Medical-Graph-RAG/tree/main
WikiDBGraph: Large-Scale Database Graph of Wikidata for Collaborative Learning
Tabular data, ubiquitous and rich in informational value, is an increasing focus for deep representation learning, yet progress is hindered by studies centered on single tables or isolated databases, which limits model capabilities due to data scale. While collaborative learning approaches such as federated learning, transfer learning, split learning, and tabular foundation models aim to learn from multiple correlated databases, they are challenged by a scarcity of real-world interconnected tabular resources. Current data lakes and corpora largely consist of isolated databases lacking defined inter-database correlations. To overcome this, we introduce WikiDBGraph, a large-scale graph of 100,000 real-world tabular databases from WikiData, interconnected by 17 million edges and characterized by 13 node and 12 edge properties derived from its database schema and data distribution. WikiDBGraph's weighted edges identify both instance- and feature-overlapped databases. Experiments on these newly identified databases confirm that collaborative learning yields superior performance, thereby offering considerable promise for structured foundation model training while also exposing key challenges and future directions for learning from interconnected tabular data.
Unsupervised Task Graph Generation from Instructional Video Transcripts
This work explores the problem of generating task graphs of real-world activities. Different from prior formulations, we consider a setting where text transcripts of instructional videos performing a real-world activity (e.g., making coffee) are provided and the goal is to identify the key steps relevant to the task as well as the dependency relationship between these key steps. We propose a novel task graph generation approach that combines the reasoning capabilities of instruction-tuned language models along with clustering and ranking components to generate accurate task graphs in a completely unsupervised manner. We show that the proposed approach generates more accurate task graphs compared to a supervised learning approach on tasks from the ProceL and CrossTask datasets.
Preference and Concurrence Aware Bayesian Graph Neural Networks for Recommender Systems
Graph-based collaborative filtering methods have prevailing performance for recommender systems since they can capture high-order information between users and items, in which the graphs are constructed from the observed user-item interactions that might miss links or contain spurious positive interactions in industrial scenarios. The Bayesian Graph Neural Network framework approaches this issue with generative models for the interaction graphs. The critical problem is to devise a proper family of graph generative models tailored to recommender systems. We propose an efficient generative model that jointly considers the preferences of users, the concurrence of items and some important graph structure information. Experiments on four popular benchmark datasets demonstrate the effectiveness of our proposed graph generative methods for recommender systems.
Dissecting graph measure performance for node clustering in LFR parameter space
Graph measures that express closeness or distance between nodes can be employed for graph nodes clustering using metric clustering algorithms. There are numerous measures applicable to this task, and which one performs better is an open question. We study the performance of 25 graph measures on generated graphs with different parameters. While usually measure comparisons are limited to general measure ranking on a particular dataset, we aim to explore the performance of various measures depending on graph features. Using an LFR graph generator, we create a dataset of 11780 graphs covering the whole LFR parameter space. For each graph, we assess the quality of clustering with k-means algorithm for each considered measure. Based on this, we determine the best measure for each area of the parameter space. We find that the parameter space consists of distinct zones where one particular measure is the best. We analyze the geometry of the resulting zones and describe it with simple criteria. Given particular graph parameters, this allows us to recommend a particular measure to use for clustering.
Graph Parsing Networks
Graph pooling compresses graph information into a compact representation. State-of-the-art graph pooling methods follow a hierarchical approach, which reduces the graph size step-by-step. These methods must balance memory efficiency with preserving node information, depending on whether they use node dropping or node clustering. Additionally, fixed pooling ratios or numbers of pooling layers are predefined for all graphs, which prevents personalized pooling structures from being captured for each individual graph. In this work, inspired by bottom-up grammar induction, we propose an efficient graph parsing algorithm to infer the pooling structure, which then drives graph pooling. The resulting Graph Parsing Network (GPN) adaptively learns personalized pooling structure for each individual graph. GPN benefits from the discrete assignments generated by the graph parsing algorithm, allowing good memory efficiency while preserving node information intact. Experimental results on standard benchmarks demonstrate that GPN outperforms state-of-the-art graph pooling methods in graph classification tasks while being able to achieve competitive performance in node classification tasks. We also conduct a graph reconstruction task to show GPN's ability to preserve node information and measure both memory and time efficiency through relevant tests.
Graph Chain-of-Thought: Augmenting Large Language Models by Reasoning on Graphs
Large language models (LLMs), while exhibiting exceptional performance, suffer from hallucinations, especially on knowledge-intensive tasks. Existing works propose to augment LLMs with individual text units retrieved from external knowledge corpora to alleviate the issue. However, in many domains, texts are interconnected (e.g., academic papers in a bibliographic graph are linked by citations and co-authorships) which form a (text-attributed) graph. The knowledge in such graphs is encoded not only in single texts/nodes but also in their associated connections. To facilitate the research of augmenting LLMs with graphs, we manually construct a Graph Reasoning Benchmark dataset called GRBench, containing 1,740 questions that can be answered with the knowledge from 10 domain graphs. Then, we propose a simple and effective framework called Graph Chain-of-thought (Graph-CoT) to augment LLMs with graphs by encouraging LLMs to reason on the graph iteratively. Each Graph-CoT iteration consists of three sub-steps: LLM reasoning, LLM-graph interaction, and graph execution. We conduct systematic experiments with three LLM backbones on GRBench, where Graph-CoT outperforms the baselines consistently. The code is available at https://github.com/PeterGriffinJin/Graph-CoT.
GraphInsight: Unlocking Insights in Large Language Models for Graph Structure Understanding
Although Large Language Models (LLMs) have demonstrated potential in processing graphs, they struggle with comprehending graphical structure information through prompts of graph description sequences, especially as the graph size increases. We attribute this challenge to the uneven memory performance of LLMs across different positions in graph description sequences, known as ''positional biases''. To address this, we propose GraphInsight, a novel framework aimed at improving LLMs' comprehension of both macro- and micro-level graphical information. GraphInsight is grounded in two key strategies: 1) placing critical graphical information in positions where LLMs exhibit stronger memory performance, and 2) investigating a lightweight external knowledge base for regions with weaker memory performance, inspired by retrieval-augmented generation (RAG). Moreover, GraphInsight explores integrating these two strategies into LLM agent processes for composite graph tasks that require multi-step reasoning. Extensive empirical studies on benchmarks with a wide range of evaluation tasks show that GraphInsight significantly outperforms all other graph description methods (e.g., prompting techniques and reordering strategies) in understanding graph structures of varying sizes.
Similarity-Based Self-Construct Graph Model for Predicting Patient Criticalness Using Graph Neural Networks and EHR Data
Accurately predicting the criticalness of ICU patients (such as in-ICU mortality risk) is vital for early intervention in critical care. However, conventional models often treat each patient in isolation and struggle to exploit the relational structure in Electronic Health Records (EHR). We propose a Similarity-Based Self-Construct Graph Model (SBSCGM) that dynamically builds a patient similarity graph from multi-modal EHR data, and a HybridGraphMedGNN architecture that operates on this graph to predict patient mortality and a continuous criticalness score. SBSCGM uses a hybrid similarity measure (combining feature-based and structural similarities) to connect patients with analogous clinical profiles in real-time. The HybridGraphMedGNN integrates Graph Convolutional Network (GCN), GraphSAGE, and Graph Attention Network (GAT) layers to learn robust patient representations, leveraging both local and global graph patterns. In experiments on 6,000 ICU stays from the MIMIC-III dataset, our model achieves state-of-the-art performance (AUC-ROC 0.94) outperforming baseline classifiers and single-type GNN models. We also demonstrate improved precision/recall and show that the attention mechanism provides interpretable insights into model predictions. Our framework offers a scalable and interpretable solution for critical care risk prediction, with potential to support clinicians in real-world ICU deployment.
Semantic Item Graph Enhancement for Multimodal Recommendation
Multimodal recommendation systems have attracted increasing attention for their improved performance by leveraging items' multimodal information. Prior methods often build modality-specific item-item semantic graphs from raw modality features and use them as supplementary structures alongside the user-item interaction graph to enhance user preference learning. However, these semantic graphs suffer from semantic deficiencies, including (1) insufficient modeling of collaborative signals among items and (2) structural distortions introduced by noise in raw modality features, ultimately compromising performance. To address these issues, we first extract collaborative signals from the interaction graph and infuse them into each modality-specific item semantic graph to enhance semantic modeling. Then, we design a modulus-based personalized embedding perturbation mechanism that injects perturbations with modulus-guided personalized intensity into embeddings to generate contrastive views. This enables the model to learn noise-robust representations through contrastive learning, thereby reducing the effect of structural noise in semantic graphs. Besides, we propose a dual representation alignment mechanism that first aligns multiple semantic representations via a designed Anchor-based InfoNCE loss using behavior representations as anchors, and then aligns behavior representations with the fused semantics by standard InfoNCE, to ensure representation consistency. Extensive experiments on four benchmark datasets validate the effectiveness of our framework.
Reasoning with Graphs: Structuring Implicit Knowledge to Enhance LLMs Reasoning
Large language models (LLMs) have demonstrated remarkable success across a wide range of tasks; however, they still encounter challenges in reasoning tasks that require understanding and inferring relationships between distinct pieces of information within text sequences. This challenge is particularly pronounced in tasks involving multi-step processes, such as logical reasoning and multi-hop question answering, where understanding implicit relationships between entities and leveraging multi-hop connections in the given context are crucial. Graphs, as fundamental data structures, explicitly represent pairwise relationships between entities, thereby offering the potential to enhance LLMs' reasoning capabilities. External graphs have proven effective in supporting LLMs across multiple tasks. However, in many reasoning tasks, no pre-existing graph structure is provided. Can we structure implicit knowledge derived from context into graphs to assist LLMs in reasoning? In this paper, we propose Reasoning with Graphs (RwG) by first constructing explicit graphs from the context and then leveraging these graphs to enhance LLM reasoning performance on reasoning tasks. Extensive experiments demonstrate the effectiveness of the proposed method in improving both logical reasoning and multi-hop question answering tasks.
Graph Retrieval-Augmented Generation: A Survey
Recently, Retrieval-Augmented Generation (RAG) has achieved remarkable success in addressing the challenges of Large Language Models (LLMs) without necessitating retraining. By referencing an external knowledge base, RAG refines LLM outputs, effectively mitigating issues such as ``hallucination'', lack of domain-specific knowledge, and outdated information. However, the complex structure of relationships among different entities in databases presents challenges for RAG systems. In response, GraphRAG leverages structural information across entities to enable more precise and comprehensive retrieval, capturing relational knowledge and facilitating more accurate, context-aware responses. Given the novelty and potential of GraphRAG, a systematic review of current technologies is imperative. This paper provides the first comprehensive overview of GraphRAG methodologies. We formalize the GraphRAG workflow, encompassing Graph-Based Indexing, Graph-Guided Retrieval, and Graph-Enhanced Generation. We then outline the core technologies and training methods at each stage. Additionally, we examine downstream tasks, application domains, evaluation methodologies, and industrial use cases of GraphRAG. Finally, we explore future research directions to inspire further inquiries and advance progress in the field.
Multi-Grained Patch Training for Efficient LLM-based Recommendation
Large Language Models (LLMs) have emerged as a new paradigm for recommendation by converting interacted item history into language modeling. However, constrained by the limited context length of LLMs, existing approaches have to truncate item history in the prompt, focusing only on recent interactions and sacrificing the ability to model long-term history. To enable LLMs to model long histories, we pursue a concise embedding representation for items and sessions. In the LLM embedding space, we construct an item's embedding by aggregating its textual token embeddings; similarly, we construct a session's embedding by aggregating its item embeddings. While efficient, this way poses two challenges since it ignores the temporal significance of user interactions and LLMs do not natively interpret our custom embeddings. To overcome these, we propose PatchRec, a multi-grained patch training method consisting of two stages: (1) Patch Pre-training, which familiarizes LLMs with aggregated embeddings -- patches, and (2) Patch Fine-tuning, which enables LLMs to capture time-aware significance in interaction history. Extensive experiments show that PatchRec effectively models longer behavior histories with improved efficiency. This work facilitates the practical use of LLMs for modeling long behavior histories. Codes are available at https://github.com/ljy0ustc/PatchRec.
Relation-aware Heterogeneous Graph for User Profiling
User profiling has long been an important problem that investigates user interests in many real applications. Some recent works regard users and their interacted objects as entities of a graph and turn the problem into a node classification task. However, they neglect the difference of distinct interaction types, e.g. user clicks an item v.s.user purchases an item, and thus cannot incorporate such information well. To solve these issues, we propose to leverage the relation-aware heterogeneous graph method for user profiling, which also allows capturing significant meta relations. We adopt the query, key, and value mechanism in a transformer fashion for heterogeneous message passing so that entities can effectively interact with each other. Via such interactions on different relation types, our model can generate representations with rich information for the user profile prediction. We conduct experiments on two real-world e-commerce datasets and observe a significant performance boost of our approach.
SuperRAG: Beyond RAG with Layout-Aware Graph Modeling
This paper introduces layout-aware graph modeling for multimodal RAG. Different from traditional RAG methods that mostly deal with flat text chunks, the proposed method takes into account the relationship of multimodalities by using a graph structure. To do that, a graph modeling structure is defined based on document layout parsing. The structure of an input document is retained with the connection of text chunks, tables, and figures. This representation allows the method to handle complex questions that require information from multimodalities. To confirm the efficiency of the graph modeling, a flexible RAG pipeline is developed using robust components. Experimental results on four benchmark test sets confirm the contribution of the layout-aware modeling for performance improvement of the RAG pipeline.
Disentangled Graph Variational Auto-Encoder for Multimodal Recommendation with Interpretability
Multimodal recommender systems amalgamate multimodal information (e.g., textual descriptions, images) into a collaborative filtering framework to provide more accurate recommendations. While the incorporation of multimodal information could enhance the interpretability of these systems, current multimodal models represent users and items utilizing entangled numerical vectors, rendering them arduous to interpret. To address this, we propose a Disentangled Graph Variational Auto-Encoder (DGVAE) that aims to enhance both model and recommendation interpretability. DGVAE initially projects multimodal information into textual contents, such as converting images to text, by harnessing state-of-the-art multimodal pre-training technologies. It then constructs a frozen item-item graph and encodes the contents and interactions into two sets of disentangled representations utilizing a simplified residual graph convolutional network. DGVAE further regularizes these disentangled representations through mutual information maximization, aligning the representations derived from the interactions between users and items with those learned from textual content. This alignment facilitates the interpretation of user binary interactions via text. Our empirical analysis conducted on three real-world datasets demonstrates that DGVAE significantly surpasses the performance of state-of-the-art baselines by a margin of 10.02%. We also furnish a case study from a real-world dataset to illustrate the interpretability of DGVAE. Code is available at: https://github.com/enoche/DGVAE.
The Music Streaming Sessions Dataset
At the core of many important machine learning problems faced by online streaming services is a need to model how users interact with the content they are served. Unfortunately, there are no public datasets currently available that enable researchers to explore this topic. In order to spur that research, we release the Music Streaming Sessions Dataset (MSSD), which consists of 160 million listening sessions and associated user actions. Furthermore, we provide audio features and metadata for the approximately 3.7 million unique tracks referred to in the logs. This is the largest collection of such track metadata currently available to the public. This dataset enables research on important problems including how to model user listening and interaction behaviour in streaming, as well as Music Information Retrieval (MIR), and session-based sequential recommendations. Additionally, a subset of sessions were collected using a uniformly random recommendation setting, enabling their use for counterfactual evaluation of such sequential recommendations. Finally, we provide an analysis of user behavior and suggest further research problems which can be addressed using the dataset.
Can Large Language Models Analyze Graphs like Professionals? A Benchmark, Datasets and Models
The need to analyze graphs is ubiquitous across various fields, from social networks to biological research and recommendation systems. Therefore, enabling the ability of large language models (LLMs) to process graphs is an important step toward more advanced general intelligence. However, current LLM benchmarks on graph analysis require models to directly reason over the prompts describing graph topology, and are thus limited to small graphs with only a few dozens of nodes. In contrast, human experts typically write programs based on popular libraries for task solving, and can thus handle graphs with different scales. To this end, a question naturally arises: can LLMs analyze graphs like professionals? In this paper, we introduce ProGraph, a manually crafted benchmark containing 3 categories of graph tasks. The benchmark expects solutions based on programming instead of directly reasoning over raw inputs. Our findings reveal that the performance of current LLMs is unsatisfactory, with the best model achieving only 36% accuracy. To bridge this gap, we propose LLM4Graph datasets, which include crawled documents and auto-generated codes based on 6 widely used graph libraries. By augmenting closed-source LLMs with document retrieval and fine-tuning open-source ones on the codes, we show 11-32% absolute improvements in their accuracies. Our results underscore that the capabilities of LLMs in handling structured data are still under-explored, and show the effectiveness of LLM4Graph in enhancing LLMs' proficiency of graph analysis. The benchmark, datasets and enhanced open-source models are available at https://github.com/BUPT-GAMMA/ProGraph.
Multi-Label Zero-Shot Product Attribute-Value Extraction
E-commerce platforms should provide detailed product descriptions (attribute values) for effective product search and recommendation. However, attribute value information is typically not available for new products. To predict unseen attribute values, large quantities of labeled training data are needed to train a traditional supervised learning model. Typically, it is difficult, time-consuming, and costly to manually label large quantities of new product profiles. In this paper, we propose a novel method to efficiently and effectively extract unseen attribute values from new products in the absence of labeled data (zero-shot setting). We propose HyperPAVE, a multi-label zero-shot attribute value extraction model that leverages inductive inference in heterogeneous hypergraphs. In particular, our proposed technique constructs heterogeneous hypergraphs to capture complex higher-order relations (i.e. user behavior information) to learn more accurate feature representations for graph nodes. Furthermore, our proposed HyperPAVE model uses an inductive link prediction mechanism to infer future connections between unseen nodes. This enables HyperPAVE to identify new attribute values without the need for labeled training data. We conduct extensive experiments with ablation studies on different categories of the MAVE dataset. The results demonstrate that our proposed HyperPAVE model significantly outperforms existing classification-based, generation-based large language models for attribute value extraction in the zero-shot setting.
Multimodal Graph Benchmark
Associating unstructured data with structured information is crucial for real-world tasks that require relevance search. However, existing graph learning benchmarks often overlook the rich semantic information associate with each node. To bridge such gap, we introduce the Multimodal Graph Benchmark (MM-GRAPH), the first comprehensive multi-modal graph benchmark that incorporates both textual and visual information. MM-GRAPH surpasses previous efforts, which have primarily focused on text-attributed graphs with various connectivity patterns. MM-GRAPH consists of five graph learning datasets of various scales that are appropriate for different learning tasks. Their multimodal node features, enabling a more comprehensive evaluation of graph learning algorithms in real-world scenarios. To facilitate research on multimodal graph learning, we further provide an extensive study on the performance of various graph neural networks in the presence of features from various modalities. MM-GRAPH aims to foster research on multimodal graph learning and drive the development of more advanced and robust graph learning algorithms. By providing a diverse set of datasets and benchmarks, MM-GRAPH enables researchers to evaluate and compare their models in realistic settings, ultimately leading to improved performance on real-world applications that rely on multimodal graph data.
Talk like a Graph: Encoding Graphs for Large Language Models
Graphs are a powerful tool for representing and analyzing complex relationships in real-world applications such as social networks, recommender systems, and computational finance. Reasoning on graphs is essential for drawing inferences about the relationships between entities in a complex system, and to identify hidden patterns and trends. Despite the remarkable progress in automated reasoning with natural text, reasoning on graphs with large language models (LLMs) remains an understudied problem. In this work, we perform the first comprehensive study of encoding graph-structured data as text for consumption by LLMs. We show that LLM performance on graph reasoning tasks varies on three fundamental levels: (1) the graph encoding method, (2) the nature of the graph task itself, and (3) interestingly, the very structure of the graph considered. These novel results provide valuable insight on strategies for encoding graphs as text. Using these insights we illustrate how the correct choice of encoders can boost performance on graph reasoning tasks inside LLMs by 4.8% to 61.8%, depending on the task.
Real-Time Community Detection in Large Social Networks on a Laptop
For a broad range of research, governmental and commercial applications it is important to understand the allegiances, communities and structure of key players in society. One promising direction towards extracting this information is to exploit the rich relational data in digital social networks (the social graph). As social media data sets are very large, most approaches make use of distributed computing systems for this purpose. Distributing graph processing requires solving many difficult engineering problems, which has lead some researchers to look at single-machine solutions that are faster and easier to maintain. In this article, we present a single-machine real-time system for large-scale graph processing that allows analysts to interactively explore graph structures. The key idea is that the aggregate actions of large numbers of users can be compressed into a data structure that encapsulates user similarities while being robust to noise and queryable in real-time. We achieve single machine real-time performance by compressing the neighbourhood of each vertex using minhash signatures and facilitate rapid queries through Locality Sensitive Hashing. These techniques reduce query times from hours using industrial desktop machines operating on the full graph to milliseconds on standard laptops. Our method allows exploration of strongly associated regions (i.e. communities) of large graphs in real-time on a laptop. It has been deployed in software that is actively used by social network analysts and offers another channel for media owners to monetise their data, helping them to continue to provide free services that are valued by billions of people globally.
Large Language Models on Graphs: A Comprehensive Survey
Large language models (LLMs), such as ChatGPT and LLaMA, are creating significant advancements in natural language processing, due to their strong text encoding/decoding ability and newly found emergent capability (e.g., reasoning). While LLMs are mainly designed to process pure texts, there are many real-world scenarios where text data are associated with rich structure information in the form of graphs (e.g., academic networks, and e-commerce networks) or scenarios where graph data are paired with rich textual information (e.g., molecules with descriptions). Besides, although LLMs have shown their pure text-based reasoning ability, it is underexplored whether such ability can be generalized to graph scenarios (i.e., graph-based reasoning). In this paper, we provide a systematic review of scenarios and techniques related to large language models on graphs. We first summarize potential scenarios of adopting LLMs on graphs into three categories, namely pure graphs, text-rich graphs, and text-paired graphs. We then discuss detailed techniques for utilizing LLMs on graphs, including LLM as Predictor, LLM as Encoder, and LLM as Aligner, and compare the advantages and disadvantages of different schools of models. Furthermore, we mention the real-world applications of such methods and summarize open-source codes and benchmark datasets. Finally, we conclude with potential future research directions in this fast-growing field. The related source can be found at https://github.com/PeterGriffinJin/Awesome-Language-Model-on-Graphs.
Towards Versatile Graph Learning Approach: from the Perspective of Large Language Models
Graph-structured data are the commonly used and have wide application scenarios in the real world. For these diverse applications, the vast variety of learning tasks, graph domains, and complex graph learning procedures present challenges for human experts when designing versatile graph learning approaches. Facing these challenges, large language models (LLMs) offer a potential solution due to the extensive knowledge and the human-like intelligence. This paper proposes a novel conceptual prototype for designing versatile graph learning methods with LLMs, with a particular focus on the "where" and "how" perspectives. From the "where" perspective, we summarize four key graph learning procedures, including task definition, graph data feature engineering, model selection and optimization, deployment and serving. We then explore the application scenarios of LLMs in these procedures across a wider spectrum. In the "how" perspective, we align the abilities of LLMs with the requirements of each procedure. Finally, we point out the promising directions that could better leverage the strength of LLMs towards versatile graph learning methods.
Model, Analyze, and Comprehend User Interactions within a Social Media Platform
In this study, we propose a novel graph-based approach to model, analyze and comprehend user interactions within a social media platform based on post-comment relationship. We construct a user interaction graph from social media data and analyze it to gain insights into community dynamics, user behavior, and content preferences. Our investigation reveals that while 56.05% of the active users are strongly connected within the community, only 0.8% of them significantly contribute to its dynamics. Moreover, we observe temporal variations in community activity, with certain periods experiencing heightened engagement. Additionally, our findings highlight a correlation between user activity and popularity showing that more active users are generally more popular. Alongside these, a preference for positive and informative content is also observed where 82.41% users preferred positive and informative content. Overall, our study provides a comprehensive framework for understanding and managing online communities, leveraging graph-based techniques to gain valuable insights into user behavior and community dynamics.
GraphextQA: A Benchmark for Evaluating Graph-Enhanced Large Language Models
While multi-modal models have successfully integrated information from image, video, and audio modalities, integrating graph modality into large language models (LLMs) remains unexplored. This discrepancy largely stems from the inherent divergence between structured graph data and unstructured text data. Incorporating graph knowledge provides a reliable source of information, enabling potential solutions to address issues in text generation, e.g., hallucination, and lack of domain knowledge. To evaluate the integration of graph knowledge into language models, a dedicated dataset is needed. However, there is currently no benchmark dataset specifically designed for multimodal graph-language models. To address this gap, we propose GraphextQA, a question answering dataset with paired subgraphs, retrieved from Wikidata, to facilitate the evaluation and future development of graph-language models. Additionally, we introduce a baseline model called CrossGNN, which conditions answer generation on the paired graphs by cross-attending question-aware graph features at decoding. The proposed dataset is designed to evaluate graph-language models' ability to understand graphs and make use of it for answer generation. We perform experiments with language-only models and the proposed graph-language model to validate the usefulness of the paired graphs and to demonstrate the difficulty of the task.
Classification of hierarchical text using geometric deep learning: the case of clinical trials corpus
We consider the hierarchical representation of documents as graphs and use geometric deep learning to classify them into different categories. While graph neural networks can efficiently handle the variable structure of hierarchical documents using the permutation invariant message passing operations, we show that we can gain extra performance improvements using our proposed selective graph pooling operation that arises from the fact that some parts of the hierarchy are invariable across different documents. We applied our model to classify clinical trial (CT) protocols into completed and terminated categories. We use bag-of-words based, as well as pre-trained transformer-based embeddings to featurize the graph nodes, achieving f1-scores around 0.85 on a publicly available large scale CT registry of around 360K protocols. We further demonstrate how the selective pooling can add insights into the CT termination status prediction. We make the source code and dataset splits accessible.
GraphRouter: A Graph-based Router for LLM Selections
The rapidly growing number and variety of Large Language Models (LLMs) present significant challenges in efficiently selecting the appropriate LLM for a given query, especially considering the trade-offs between performance and computational cost. Current LLM selection methods often struggle to generalize across new LLMs and different tasks because of their limited ability to leverage contextual interactions among tasks, queries, and LLMs, as well as their dependence on a transductive learning framework. To address these shortcomings, we introduce a novel inductive graph framework, named as GraphRouter, which fully utilizes the contextual information among tasks, queries, and LLMs to enhance the LLM selection process. GraphRouter constructs a heterogeneous graph comprising task, query, and LLM nodes, with interactions represented as edges, which efficiently captures the contextual information between the query's requirements and the LLM's capabilities. Through an innovative edge prediction mechanism, GraphRouter is able to predict attributes (the effect and cost of LLM response) of potential edges, allowing for optimized recommendations that adapt to both existing and newly introduced LLMs without requiring retraining. Comprehensive experiments across three distinct effect-cost weight scenarios have shown that GraphRouter substantially surpasses existing routers, delivering a minimum performance improvement of 12.3%. In addition, it achieves enhanced generalization across new LLMs settings and supports diverse tasks with at least a 9.5% boost in effect and a significant reduction in computational demands. This work endeavors to apply a graph-based approach for the contextual and adaptive selection of LLMs, offering insights for real-world applications. Our codes for GraphRouter is released at https://github.com/ulab-uiuc/GraphRouter.
Efficient and Scalable Graph Generation through Iterative Local Expansion
In the realm of generative models for graphs, extensive research has been conducted. However, most existing methods struggle with large graphs due to the complexity of representing the entire joint distribution across all node pairs and capturing both global and local graph structures simultaneously. To overcome these issues, we introduce a method that generates a graph by progressively expanding a single node to a target graph. In each step, nodes and edges are added in a localized manner through denoising diffusion, building first the global structure, and then refining the local details. The local generation avoids modeling the entire joint distribution over all node pairs, achieving substantial computational savings with subquadratic runtime relative to node count while maintaining high expressivity through multiscale generation. Our experiments show that our model achieves state-of-the-art performance on well-established benchmark datasets while successfully scaling to graphs with at least 5000 nodes. Our method is also the first to successfully extrapolate to graphs outside of the training distribution, showcasing a much better generalization capability over existing methods.
Graph-ToolFormer: To Empower LLMs with Graph Reasoning Ability via Prompt Augmented by ChatGPT
In this paper, we aim to develop a large language model (LLM) with the reasoning ability on complex graph data. Currently, LLMs have achieved very impressive performance on various natural language learning tasks, extensions of which have also been applied to study the vision tasks with multi-modal data. However, when it comes to the graph learning tasks, existing LLMs present very serious flaws due to their several inherited weaknesses in performing {multi-step logic reasoning}, {precise mathematical calculation} and {perception about the spatial and temporal factors}. To address such challenges, in this paper, we will investigate the principles, methodologies and algorithms to empower existing LLMs with graph reasoning ability, which will have tremendous impacts on the current research of both LLMs and graph learning. Inspired by the latest ChatGPT and Toolformer models, we propose the Graph-ToolFormer (Graph Reasoning oriented Toolformer) framework to teach LLMs themselves with prompts augmented by ChatGPT to use external graph reasoning API tools. Specifically, we will investigate to teach Graph-ToolFormer to handle various graph data reasoning tasks in this paper, including both (1) very basic graph data loading and graph property reasoning tasks, ranging from simple graph order and size to the graph diameter and periphery, and (2) more advanced reasoning tasks on real-world graph data, such as bibliographic networks, protein molecules, sequential recommender systems, social networks and knowledge graphs.
Can LLMs Convert Graphs to Text-Attributed Graphs?
Graphs are ubiquitous structures found in numerous real-world applications, such as drug discovery, recommender systems, and social network analysis. To model graph-structured data, graph neural networks (GNNs) have become a popular tool. However, existing GNN architectures encounter challenges in cross-graph learning where multiple graphs have different feature spaces. To address this, recent approaches introduce text-attributed graphs (TAGs), where each node is associated with a textual description, which can be projected into a unified feature space using textual encoders. While promising, this method relies heavily on the availability of text-attributed graph data, which is difficult to obtain in practice. To bridge this gap, we propose a novel method named Topology-Aware Node description Synthesis (TANS), leveraging large language models (LLMs) to convert existing graphs into text-attributed graphs. The key idea is to integrate topological information into LLMs to explain how graph topology influences node semantics. We evaluate our TANS on text-rich, text-limited, and text-free graphs, demonstrating its applicability. Notably, on text-free graphs, our method significantly outperforms existing approaches that manually design node features, showcasing the potential of LLMs for preprocessing graph-structured data in the absence of textual information. The code and data are available at https://github.com/Zehong-Wang/TANS.
DrugChat: Towards Enabling ChatGPT-Like Capabilities on Drug Molecule Graphs
A ChatGPT-like system for drug compounds could be a game-changer in pharmaceutical research, accelerating drug discovery, enhancing our understanding of structure-activity relationships, guiding lead optimization, aiding drug repurposing, reducing the failure rate, and streamlining clinical trials. In this work, we make an initial attempt towards enabling ChatGPT-like capabilities on drug molecule graphs, by developing a prototype system DrugChat. DrugChat works in a similar way as ChatGPT. Users upload a compound molecule graph and ask various questions about this compound. DrugChat will answer these questions in a multi-turn, interactive manner. The DrugChat system consists of a graph neural network (GNN), a large language model (LLM), and an adaptor. The GNN takes a compound molecule graph as input and learns a representation for this graph. The adaptor transforms the graph representation produced by the GNN into another representation that is acceptable to the LLM. The LLM takes the compound representation transformed by the adaptor and users' questions about this compound as inputs and generates answers. All these components are trained end-to-end. To train DrugChat, we collected instruction tuning datasets which contain 10,834 drug compounds and 143,517 question-answer pairs. The code and data is available at https://github.com/UCSD-AI4H/drugchat
BYOKG-RAG: Multi-Strategy Graph Retrieval for Knowledge Graph Question Answering
Knowledge graph question answering (KGQA) presents significant challenges due to the structural and semantic variations across input graphs. Existing works rely on Large Language Model (LLM) agents for graph traversal and retrieval; an approach that is sensitive to traversal initialization, as it is prone to entity linking errors and may not generalize well to custom ("bring-your-own") KGs. We introduce BYOKG-RAG, a framework that enhances KGQA by synergistically combining LLMs with specialized graph retrieval tools. In BYOKG-RAG, LLMs generate critical graph artifacts (question entities, candidate answers, reasoning paths, and OpenCypher queries), and graph tools link these artifacts to the KG and retrieve relevant graph context. The retrieved context enables the LLM to iteratively refine its graph linking and retrieval, before final answer generation. By retrieving context from different graph tools, BYOKG-RAG offers a more general and robust solution for QA over custom KGs. Through experiments on five benchmarks spanning diverse KG types, we demonstrate that BYOKG-RAG outperforms the second-best graph retrieval method by 4.5% points while showing better generalization to custom KGs. BYOKG-RAG framework is open-sourced at https://github.com/awslabs/graphrag-toolkit.
Interactive Path Reasoning on Graph for Conversational Recommendation
Traditional recommendation systems estimate user preference on items from past interaction history, thus suffering from the limitations of obtaining fine-grained and dynamic user preference. Conversational recommendation system (CRS) brings revolutions to those limitations by enabling the system to directly ask users about their preferred attributes on items. However, existing CRS methods do not make full use of such advantage -- they only use the attribute feedback in rather implicit ways such as updating the latent user representation. In this paper, we propose Conversational Path Reasoning (CPR), a generic framework that models conversational recommendation as an interactive path reasoning problem on a graph. It walks through the attribute vertices by following user feedback, utilizing the user preferred attributes in an explicit way. By leveraging on the graph structure, CPR is able to prune off many irrelevant candidate attributes, leading to better chance of hitting user preferred attributes. To demonstrate how CPR works, we propose a simple yet effective instantiation named SCPR (Simple CPR). We perform empirical studies on the multi-round conversational recommendation scenario, the most realistic CRS setting so far that considers multiple rounds of asking attributes and recommending items. Through extensive experiments on two datasets Yelp and LastFM, we validate the effectiveness of our SCPR, which significantly outperforms the state-of-the-art CRS methods EAR (arXiv:2002.09102) and CRM (arXiv:1806.03277). In particular, we find that the more attributes there are, the more advantages our method can achieve.
RDB2G-Bench: A Comprehensive Benchmark for Automatic Graph Modeling of Relational Databases
Relational databases (RDBs) are composed of interconnected tables, where relationships between them are defined through foreign keys. Recent research on applying machine learning to RDBs has explored graph-based representations of RDBs, where rows of tables are modeled as nodes, and foreign key relationships are modeled as edges. RDB-to-graph modeling helps capture cross-table dependencies, ultimately leading to enhanced performance across diverse tasks. However, there are numerous ways to model RDBs as graphs, and performance varies significantly depending on the chosen graph model. In our analysis, applying a common heuristic rule for graph modeling leads to up to a 10% drop in performance compared to the best-performing graph model, which remains non-trivial to identify. To foster research on intelligent RDB-to-graph modeling, we introduce RDB2G-Bench, the first benchmark framework for evaluating such methods. We construct extensive datasets covering 5 real-world RDBs and 12 predictive tasks, resulting in around 50k graph-performance pairs for efficient and reproducible evaluations. Thanks to our precomputed datasets, we were able to benchmark 9 automatic RDB-to-graph modeling methods on the 12 tasks over 600x faster than on-the-fly evaluation, which requires repeated model training. Our analysis of the datasets and benchmark results reveals key structural patterns affecting graph model effectiveness, along with practical implications for effective graph modeling.
ProG: A Graph Prompt Learning Benchmark
Artificial general intelligence on graphs has shown significant advancements across various applications, yet the traditional 'Pre-train & Fine-tune' paradigm faces inefficiencies and negative transfer issues, particularly in complex and few-shot settings. Graph prompt learning emerges as a promising alternative, leveraging lightweight prompts to manipulate data and fill the task gap by reformulating downstream tasks to the pretext. However, several critical challenges still remain: how to unify diverse graph prompt models, how to evaluate the quality of graph prompts, and to improve their usability for practical comparisons and selection. In response to these challenges, we introduce the first comprehensive benchmark for graph prompt learning. Our benchmark integrates SIX pre-training methods and FIVE state-of-the-art graph prompt techniques, evaluated across FIFTEEN diverse datasets to assess performance, flexibility, and efficiency. We also present 'ProG', an easy-to-use open-source library that streamlines the execution of various graph prompt models, facilitating objective evaluations. Additionally, we propose a unified framework that categorizes existing graph prompt methods into two main approaches: prompts as graphs and prompts as tokens. This framework enhances the applicability and comparison of graph prompt techniques. The code is available at: https://github.com/sheldonresearch/ProG.
Temporal Graph Analysis with TGX
Real-world networks, with their evolving relations, are best captured as temporal graphs. However, existing software libraries are largely designed for static graphs where the dynamic nature of temporal graphs is ignored. Bridging this gap, we introduce TGX, a Python package specially designed for analysis of temporal networks that encompasses an automated pipeline for data loading, data processing, and analysis of evolving graphs. TGX provides access to eleven built-in datasets and eight external Temporal Graph Benchmark (TGB) datasets as well as any novel datasets in the .csv format. Beyond data loading, TGX facilitates data processing functionalities such as discretization of temporal graphs and node subsampling to accelerate working with larger datasets. For comprehensive investigation, TGX offers network analysis by providing a diverse set of measures, including average node degree and the evolving number of nodes and edges per timestamp. Additionally, the package consolidates meaningful visualization plots indicating the evolution of temporal patterns, such as Temporal Edge Appearance (TEA) and Temporal Edge Trafficc (TET) plots. The TGX package is a robust tool for examining the features of temporal graphs and can be used in various areas like studying social networks, citation networks, and tracking user interactions. We plan to continuously support and update TGX based on community feedback. TGX is publicly available on: https://github.com/ComplexData-MILA/TGX.
FAIR Jupyter: a knowledge graph approach to semantic sharing and granular exploration of a computational notebook reproducibility dataset
The way in which data are shared can affect their utility and reusability. Here, we demonstrate how data that we had previously shared in bulk can be mobilized further through a knowledge graph that allows for much more granular exploration and interrogation. The original dataset is about the computational reproducibility of GitHub-hosted Jupyter notebooks associated with biomedical publications. It contains rich metadata about the publications, associated GitHub repositories and Jupyter notebooks, and the notebooks' reproducibility. We took this dataset, converted it into semantic triples and loaded these into a triple store to create a knowledge graph, FAIR Jupyter, that we made accessible via a web service. This enables granular data exploration and analysis through queries that can be tailored to specific use cases. Such queries may provide details about any of the variables from the original dataset, highlight relationships between them or combine some of the graph's content with materials from corresponding external resources. We provide a collection of example queries addressing a range of use cases in research and education. We also outline how sets of such queries can be used to profile specific content types, either individually or by class. We conclude by discussing how such a semantically enhanced sharing of complex datasets can both enhance their FAIRness, i.e., their findability, accessibility, interoperability, and reusability, and help identify and communicate best practices, particularly with regards to data quality, standardization, automation and reproducibility.
Edge-based sequential graph generation with recurrent neural networks
Graph generation with Machine Learning is an open problem with applications in various research fields. In this work, we propose to cast the generative process of a graph into a sequential one, relying on a node ordering procedure. We use this sequential process to design a novel generative model composed of two recurrent neural networks that learn to predict the edges of graphs: the first network generates one endpoint of each edge, while the second network generates the other endpoint conditioned on the state of the first. We test our approach extensively on five different datasets, comparing with two well-known baselines coming from graph literature, and two recurrent approaches, one of which holds state of the art performances. Evaluation is conducted considering quantitative and qualitative characteristics of the generated samples. Results show that our approach is able to yield novel, and unique graphs originating from very different distributions, while retaining structural properties very similar to those in the training sample. Under the proposed evaluation framework, our approach is able to reach performances comparable to the current state of the art on the graph generation task.
Peregrine: A Pattern-Aware Graph Mining System
Graph mining workloads aim to extract structural properties of a graph by exploring its subgraph structures. General purpose graph mining systems provide a generic runtime to explore subgraph structures of interest with the help of user-defined functions that guide the overall exploration process. However, the state-of-the-art graph mining systems remain largely oblivious to the shape (or pattern) of the subgraphs that they mine. This causes them to: (a) explore unnecessary subgraphs; (b) perform expensive computations on the explored subgraphs; and, (c) hold intermediate partial subgraphs in memory; all of which affect their overall performance. Furthermore, their programming models are often tied to their underlying exploration strategies, which makes it difficult for domain users to express complex mining tasks. In this paper, we develop Peregrine, a pattern-aware graph mining system that directly explores the subgraphs of interest while avoiding exploration of unnecessary subgraphs, and simultaneously bypassing expensive computations throughout the mining process. We design a pattern-based programming model that treats "graph patterns" as first class constructs and enables Peregrine to extract the semantics of patterns, which it uses to guide its exploration. Our evaluation shows that Peregrine outperforms state-of-the-art distributed and single machine graph mining systems, and scales to complex mining tasks on larger graphs, while retaining simplicity and expressivity with its "pattern-first" programming approach.
GraphTeam: Facilitating Large Language Model-based Graph Analysis via Multi-Agent Collaboration
Graphs are widely used for modeling relational data in real-world scenarios, such as social networks and urban computing. Existing LLM-based graph analysis approaches either integrate graph neural networks (GNNs) for specific machine learning tasks, limiting their transferability, or rely solely on LLMs' internal reasoning ability, resulting in suboptimal performance. To address these limitations, we take advantage of recent advances in LLM-based agents, which have shown capabilities of utilizing external knowledge or tools for problem solving. By simulating human problem-solving strategies such as analogy and collaboration, we propose a multi-agent system based on LLMs named GraphTeam, for graph analysis. GraphTeam consists of five LLM-based agents from three modules, and the agents with different specialities can collaborate with each other to address complex problems. Specifically, (1) input-output normalization module: the question agent extracts and refines four key arguments from the original question, facilitating the problem understanding, and the answer agent organizes the results to meet the output requirement; (2) external knowledge retrieval module: we first build a knowledge base consisting of relevant documentation and experience information, and then the search agent retrieves the most relevant entries for each question. (3) problem-solving module: given the retrieved information from search agent, the coding agent uses established algorithms via programming to generate solutions, and in case the coding agent does not work, the reasoning agent will directly compute the results without programming. Extensive experiments on six graph analysis benchmarks demonstrate that GraphTeam achieves state-of-the-art performance with an average 25.85% improvement over the best baseline in terms of accuracy. The code and data are available at https://github.com/BUPT-GAMMA/GraphTeam.
Enhancing Structured-Data Retrieval with GraphRAG: Soccer Data Case Study
Extracting meaningful insights from large and complex datasets poses significant challenges, particularly in ensuring the accuracy and relevance of retrieved information. Traditional data retrieval methods such as sequential search and index-based retrieval often fail when handling intricate and interconnected data structures, resulting in incomplete or misleading outputs. To overcome these limitations, we introduce Structured-GraphRAG, a versatile framework designed to enhance information retrieval across structured datasets in natural language queries. Structured-GraphRAG utilizes multiple knowledge graphs, which represent data in a structured format and capture complex relationships between entities, enabling a more nuanced and comprehensive retrieval of information. This graph-based approach reduces the risk of errors in language model outputs by grounding responses in a structured format, thereby enhancing the reliability of results. We demonstrate the effectiveness of Structured-GraphRAG by comparing its performance with that of a recently published method using traditional retrieval-augmented generation. Our findings show that Structured-GraphRAG significantly improves query processing efficiency and reduces response times. While our case study focuses on soccer data, the framework's design is broadly applicable, offering a powerful tool for data analysis and enhancing language model applications across various structured domains.
Graph Prompt Learning: A Comprehensive Survey and Beyond
Artificial General Intelligence (AGI) has revolutionized numerous fields, yet its integration with graph data, a cornerstone in our interconnected world, remains nascent. This paper presents a pioneering survey on the emerging domain of graph prompts in AGI, addressing key challenges and opportunities in harnessing graph data for AGI applications. Despite substantial advancements in AGI across natural language processing and computer vision, the application to graph data is relatively underexplored. This survey critically evaluates the current landscape of AGI in handling graph data, highlighting the distinct challenges in cross-modality, cross-domain, and cross-task applications specific to graphs. Our work is the first to propose a unified framework for understanding graph prompt learning, offering clarity on prompt tokens, token structures, and insertion patterns in the graph domain. We delve into the intrinsic properties of graph prompts, exploring their flexibility, expressiveness, and interplay with existing graph models. A comprehensive taxonomy categorizes over 100 works in this field, aligning them with pre-training tasks across node-level, edge-level, and graph-level objectives. Additionally, we present, ProG, a Python library, and an accompanying website, to support and advance research in graph prompting. The survey culminates in a discussion of current challenges and future directions, offering a roadmap for research in graph prompting within AGI. Through this comprehensive analysis, we aim to catalyze further exploration and practical applications of AGI in graph data, underlining its potential to reshape AGI fields and beyond. ProG and the website can be accessed by https://github.com/WxxShirley/Awesome-Graph-Prompt, and https://github.com/sheldonresearch/ProG, respectively.
TUDataset: A collection of benchmark datasets for learning with graphs
Recently, there has been an increasing interest in (supervised) learning with graph data, especially using graph neural networks. However, the development of meaningful benchmark datasets and standardized evaluation procedures is lagging, consequently hindering advancements in this area. To address this, we introduce the TUDataset for graph classification and regression. The collection consists of over 120 datasets of varying sizes from a wide range of applications. We provide Python-based data loaders, kernel and graph neural network baseline implementations, and evaluation tools. Here, we give an overview of the datasets, standardized evaluation procedures, and provide baseline experiments. All datasets are available at www.graphlearning.io. The experiments are fully reproducible from the code available at www.github.com/chrsmrrs/tudataset.
Graph of Thoughts: Solving Elaborate Problems with Large Language Models
We introduce Graph of Thoughts (GoT): a framework that advances prompting capabilities in large language models (LLMs) beyond those offered by paradigms such as Chain-of-Thought or Tree of Thoughts (ToT). The key idea and primary advantage of GoT is the ability to model the information generated by an LLM as an arbitrary graph, where units of information ("LLM thoughts") are vertices, and edges correspond to dependencies between these vertices. This approach enables combining arbitrary LLM thoughts into synergistic outcomes, distilling the essence of whole networks of thoughts, or enhancing thoughts using feedback loops. We illustrate that GoT offers advantages over state of the art on different tasks, for example increasing the quality of sorting by 62% over ToT, while simultaneously reducing costs by >31%. We ensure that GoT is extensible with new thought transformations and thus can be used to spearhead new prompting schemes. This work brings the LLM reasoning closer to human thinking or brain mechanisms such as recurrence, both of which form complex networks.
Language Agents as Optimizable Graphs
Various human-designed prompt engineering techniques have been proposed to improve problem solvers based on Large Language Models (LLMs), yielding many disparate code bases. We unify these approaches by describing LLM-based agents as computational graphs. The nodes implement functions to process multimodal data or query LLMs, and the edges describe the information flow between operations. Graphs can be recursively combined into larger composite graphs representing hierarchies of inter-agent collaboration (where edges connect operations of different agents). Our novel automatic graph optimizers (1) refine node-level LLM prompts (node optimization) and (2) improve agent orchestration by changing graph connectivity (edge optimization). Experiments demonstrate that our framework can be used to efficiently develop, integrate, and automatically improve various LLM agents. The code can be found at https://github.com/metauto-ai/gptswarm.
A Simple and Scalable Representation for Graph Generation
Recently, there has been a surge of interest in employing neural networks for graph generation, a fundamental statistical learning problem with critical applications like molecule design and community analysis. However, most approaches encounter significant limitations when generating large-scale graphs. This is due to their requirement to output the full adjacency matrices whose size grows quadratically with the number of nodes. In response to this challenge, we introduce a new, simple, and scalable graph representation named gap encoded edge list (GEEL) that has a small representation size that aligns with the number of edges. In addition, GEEL significantly reduces the vocabulary size by incorporating the gap encoding and bandwidth restriction schemes. GEEL can be autoregressively generated with the incorporation of node positional encoding, and we further extend GEEL to deal with attributed graphs by designing a new grammar. Our findings reveal that the adoption of this compact representation not only enhances scalability but also bolsters performance by simplifying the graph generation process. We conduct a comprehensive evaluation across ten non-attributed and two molecular graph generation tasks, demonstrating the effectiveness of GEEL.
HyperGraphRAG: Retrieval-Augmented Generation via Hypergraph-Structured Knowledge Representation
Standard Retrieval-Augmented Generation (RAG) relies on chunk-based retrieval, whereas GraphRAG advances this approach by graph-based knowledge representation. However, existing graph-based RAG approaches are constrained by binary relations, as each edge in an ordinary graph connects only two entities, limiting their ability to represent the n-ary relations (n >= 2) in real-world knowledge. In this work, we propose HyperGraphRAG, a novel hypergraph-based RAG method that represents n-ary relational facts via hyperedges, and consists of knowledge hypergraph construction, retrieval, and generation. Experiments across medicine, agriculture, computer science, and law demonstrate that HyperGraphRAG outperforms both standard RAG and previous graph-based RAG methods in answer accuracy, retrieval efficiency, and generation quality.
About Graph Degeneracy, Representation Learning and Scalability
Graphs or networks are a very convenient way to represent data with lots of interaction. Recently, Machine Learning on Graph data has gained a lot of traction. In particular, vertex classification and missing edge detection have very interesting applications, ranging from drug discovery to recommender systems. To achieve such tasks, tremendous work has been accomplished to learn embedding of nodes and edges into finite-dimension vector spaces. This task is called Graph Representation Learning. However, Graph Representation Learning techniques often display prohibitive time and memory complexities, preventing their use in real-time with business size graphs. In this paper, we address this issue by leveraging a degeneracy property of Graphs - the K-Core Decomposition. We present two techniques taking advantage of this decomposition to reduce the time and memory consumption of walk-based Graph Representation Learning algorithms. We evaluate the performances, expressed in terms of quality of embedding and computational resources, of the proposed techniques on several academic datasets. Our code is available at https://github.com/SBrandeis/kcore-embedding
C3KG: A Chinese Commonsense Conversation Knowledge Graph
Existing commonsense knowledge bases often organize tuples in an isolated manner, which is deficient for commonsense conversational models to plan the next steps. To fill the gap, we curate a large-scale multi-turn human-written conversation corpus, and create the first Chinese commonsense conversation knowledge graph which incorporates both social commonsense knowledge and dialog flow information. To show the potential of our graph, we develop a graph-conversation matching approach, and benchmark two graph-grounded conversational tasks.
Towards Data-centric Machine Learning on Directed Graphs: a Survey
In recent years, Graph Neural Networks (GNNs) have made significant advances in processing structured data. However, most of them primarily adopted a model-centric approach, which simplifies graphs by converting them into undirected formats and emphasizes model designs. This approach is inherently limited in real-world applications due to the unavoidable information loss in simple undirected graphs and the model optimization challenges that arise when exceeding the upper bounds of this sub-optimal data representational capacity. As a result, there has been a shift toward data-centric methods that prioritize improving graph quality and representation. Specifically, various types of graphs can be derived from naturally structured data, including heterogeneous graphs, hypergraphs, and directed graphs. Among these, directed graphs offer distinct advantages in topological systems by modeling causal relationships, and directed GNNs have been extensively studied in recent years. However, a comprehensive survey of this emerging topic is still lacking. Therefore, we aim to provide a comprehensive review of directed graph learning, with a particular focus on a data-centric perspective. Specifically, we first introduce a novel taxonomy for existing studies. Subsequently, we re-examine these methods from the data-centric perspective, with an emphasis on understanding and improving data representation. It demonstrates that a deep understanding of directed graphs and their quality plays a crucial role in model performance. Additionally, we explore the diverse applications of directed GNNs across 10+ domains, highlighting their broad applicability. Finally, we identify key opportunities and challenges within the field, offering insights that can guide future research and development in directed graph learning.
NodeRAG: Structuring Graph-based RAG with Heterogeneous Nodes
Retrieval-augmented generation (RAG) empowers large language models to access external and private corpus, enabling factually consistent responses in specific domains. By exploiting the inherent structure of the corpus, graph-based RAG methods further enrich this process by building a knowledge graph index and leveraging the structural nature of graphs. However, current graph-based RAG approaches seldom prioritize the design of graph structures. Inadequately designed graph not only impede the seamless integration of diverse graph algorithms but also result in workflow inconsistencies and degraded performance. To further unleash the potential of graph for RAG, we propose NodeRAG, a graph-centric framework introducing heterogeneous graph structures that enable the seamless and holistic integration of graph-based methodologies into the RAG workflow. By aligning closely with the capabilities of LLMs, this framework ensures a fully cohesive and efficient end-to-end process. Through extensive experiments, we demonstrate that NodeRAG exhibits performance advantages over previous methods, including GraphRAG and LightRAG, not only in indexing time, query time, and storage efficiency but also in delivering superior question-answering performance on multi-hop benchmarks and open-ended head-to-head evaluations with minimal retrieval tokens. Our GitHub repository could be seen at https://github.com/Terry-Xu-666/NodeRAG.
Graph-Mamba: Towards Long-Range Graph Sequence Modeling with Selective State Spaces
Attention mechanisms have been widely used to capture long-range dependencies among nodes in Graph Transformers. Bottlenecked by the quadratic computational cost, attention mechanisms fail to scale in large graphs. Recent improvements in computational efficiency are mainly achieved by attention sparsification with random or heuristic-based graph subsampling, which falls short in data-dependent context reasoning. State space models (SSMs), such as Mamba, have gained prominence for their effectiveness and efficiency in modeling long-range dependencies in sequential data. However, adapting SSMs to non-sequential graph data presents a notable challenge. In this work, we introduce Graph-Mamba, the first attempt to enhance long-range context modeling in graph networks by integrating a Mamba block with the input-dependent node selection mechanism. Specifically, we formulate graph-centric node prioritization and permutation strategies to enhance context-aware reasoning, leading to a substantial improvement in predictive performance. Extensive experiments on ten benchmark datasets demonstrate that Graph-Mamba outperforms state-of-the-art methods in long-range graph prediction tasks, with a fraction of the computational cost in both FLOPs and GPU memory consumption. The code and models are publicly available at https://github.com/bowang-lab/Graph-Mamba.
Latent Tree Models for Hierarchical Topic Detection
We present a novel method for hierarchical topic detection where topics are obtained by clustering documents in multiple ways. Specifically, we model document collections using a class of graphical models called hierarchical latent tree models (HLTMs). The variables at the bottom level of an HLTM are observed binary variables that represent the presence/absence of words in a document. The variables at other levels are binary latent variables, with those at the lowest latent level representing word co-occurrence patterns and those at higher levels representing co-occurrence of patterns at the level below. Each latent variable gives a soft partition of the documents, and document clusters in the partitions are interpreted as topics. Latent variables at high levels of the hierarchy capture long-range word co-occurrence patterns and hence give thematically more general topics, while those at low levels of the hierarchy capture short-range word co-occurrence patterns and give thematically more specific topics. Unlike LDA-based topic models, HLTMs do not refer to a document generation process and use word variables instead of token variables. They use a tree structure to model the relationships between topics and words, which is conducive to the discovery of meaningful topics and topic hierarchies.
SSumM: Sparse Summarization of Massive Graphs
Given a graph G and the desired size k in bits, how can we summarize G within k bits, while minimizing the information loss? Large-scale graphs have become omnipresent, posing considerable computational challenges. Analyzing such large graphs can be fast and easy if they are compressed sufficiently to fit in main memory or even cache. Graph summarization, which yields a coarse-grained summary graph with merged nodes, stands out with several advantages among graph compression techniques. Thus, a number of algorithms have been developed for obtaining a concise summary graph with little information loss or equivalently small reconstruction error. However, the existing methods focus solely on reducing the number of nodes, and they often yield dense summary graphs, failing to achieve better compression rates. Moreover, due to their limited scalability, they can be applied only to moderate-size graphs. In this work, we propose SSumM, a scalable and effective graph-summarization algorithm that yields a sparse summary graph. SSumM not only merges nodes together but also sparsifies the summary graph, and the two strategies are carefully balanced based on the minimum description length principle. Compared with state-of-the-art competitors, SSumM is (a) Concise: yields up to 11.2X smaller summary graphs with similar reconstruction error, (b) Accurate: achieves up to 4.2X smaller reconstruction error with similarly concise outputs, and (c) Scalable: summarizes 26X larger graphs while exhibiting linear scalability. We validate these advantages through extensive experiments on 10 real-world graphs.
Conditional Attention Networks for Distilling Knowledge Graphs in Recommendation
Knowledge graph is generally incorporated into recommender systems to improve overall performance. Due to the generalization and scale of the knowledge graph, most knowledge relationships are not helpful for a target user-item prediction. To exploit the knowledge graph to capture target-specific knowledge relationships in recommender systems, we need to distill the knowledge graph to reserve the useful information and refine the knowledge to capture the users' preferences. To address the issues, we propose Knowledge-aware Conditional Attention Networks (KCAN), which is an end-to-end model to incorporate knowledge graph into a recommender system. Specifically, we use a knowledge-aware attention propagation manner to obtain the node representation first, which captures the global semantic similarity on the user-item network and the knowledge graph. Then given a target, i.e., a user-item pair, we automatically distill the knowledge graph into the target-specific subgraph based on the knowledge-aware attention. Afterward, by applying a conditional attention aggregation on the subgraph, we refine the knowledge graph to obtain target-specific node representations. Therefore, we can gain both representability and personalization to achieve overall performance. Experimental results on real-world datasets demonstrate the effectiveness of our framework over the state-of-the-art algorithms.
GraphDreamer: Compositional 3D Scene Synthesis from Scene Graphs
As pretrained text-to-image diffusion models become increasingly powerful, recent efforts have been made to distill knowledge from these text-to-image pretrained models for optimizing a text-guided 3D model. Most of the existing methods generate a holistic 3D model from a plain text input. This can be problematic when the text describes a complex scene with multiple objects, because the vectorized text embeddings are inherently unable to capture a complex description with multiple entities and relationships. Holistic 3D modeling of the entire scene further prevents accurate grounding of text entities and concepts. To address this limitation, we propose GraphDreamer, a novel framework to generate compositional 3D scenes from scene graphs, where objects are represented as nodes and their interactions as edges. By exploiting node and edge information in scene graphs, our method makes better use of the pretrained text-to-image diffusion model and is able to fully disentangle different objects without image-level supervision. To facilitate modeling of object-wise relationships, we use signed distance fields as representation and impose a constraint to avoid inter-penetration of objects. To avoid manual scene graph creation, we design a text prompt for ChatGPT to generate scene graphs based on text inputs. We conduct both qualitative and quantitative experiments to validate the effectiveness of GraphDreamer in generating high-fidelity compositional 3D scenes with disentangled object entities.
Graph2Eval: Automatic Multimodal Task Generation for Agents via Knowledge Graphs
As multimodal LLM-driven agents continue to advance in autonomy and generalization, evaluation based on static datasets can no longer adequately assess their true capabilities in dynamic environments and diverse tasks. Existing LLM-based synthetic data methods are largely designed for LLM training and evaluation, and thus cannot be directly applied to agent tasks that require tool use and interactive capabilities. While recent studies have explored automatic agent task generation with LLMs, most efforts remain limited to text or image analysis, without systematically modeling multi-step interactions in web environments. To address these challenges, we propose Graph2Eval, a knowledge graph-based framework that automatically generates both multimodal document comprehension tasks and web interaction tasks, enabling comprehensive evaluation of agents' reasoning, collaboration, and interactive capabilities. In our approach, knowledge graphs constructed from multi-source external data serve as the task space, where we translate semantic relations into structured multimodal tasks using subgraph sampling, task templates, and meta-paths. A multi-stage filtering pipeline based on node reachability, LLM scoring, and similarity analysis is applied to guarantee the quality and executability of the generated tasks. Furthermore, Graph2Eval supports end-to-end evaluation of multiple agent types (Single-Agent, Multi-Agent, Web Agent) and measures reasoning, collaboration, and interaction capabilities. We instantiate the framework with Graph2Eval-Bench, a curated dataset of 1,319 tasks spanning document comprehension and web interaction scenarios. Experiments show that Graph2Eval efficiently generates tasks that differentiate agent and model performance, revealing gaps in reasoning, collaboration, and web interaction across different settings and offering a new perspective for agent evaluation.
An Automated Pipeline for Character and Relationship Extraction from Readers' Literary Book Reviews on Goodreads.com
Reader reviews of literary fiction on social media, especially those in persistent, dedicated forums, create and are in turn driven by underlying narrative frameworks. In their comments about a novel, readers generally include only a subset of characters and their relationships, thus offering a limited perspective on that work. Yet in aggregate, these reviews capture an underlying narrative framework comprised of different actants (people, places, things), their roles, and interactions that we label the "consensus narrative framework". We represent this framework in the form of an actant-relationship story graph. Extracting this graph is a challenging computational problem, which we pose as a latent graphical model estimation problem. Posts and reviews are viewed as samples of sub graphs/networks of the hidden narrative framework. Inspired by the qualitative narrative theory of Greimas, we formulate a graphical generative Machine Learning (ML) model where nodes represent actants, and multi-edges and self-loops among nodes capture context-specific relationships. We develop a pipeline of interlocking automated methods to extract key actants and their relationships, and apply it to thousands of reviews and comments posted on Goodreads.com. We manually derive the ground truth narrative framework from SparkNotes, and then use word embedding tools to compare relationships in ground truth networks with our extracted networks. We find that our automated methodology generates highly accurate consensus narrative frameworks: for our four target novels, with approximately 2900 reviews per novel, we report average coverage/recall of important relationships of > 80% and an average edge detection rate of >89\%. These extracted narrative frameworks can generate insight into how people (or classes of people) read and how they recount what they have read to others.
Graph RAG-Tool Fusion
Recent developments in retrieval-augmented generation (RAG) for selecting relevant tools from a tool knowledge base enable LLM agents to scale their complex tool calling capabilities to hundreds or thousands of external tools, APIs, or agents-as-tools. However, traditional RAG-based tool retrieval fails to capture structured dependencies between tools, limiting the retrieval accuracy of a retrieved tool's dependencies. For example, among a vector database of tools, a "get stock price" API requires a "stock ticker" parameter from a "get stock ticker" API, and both depend on OS-level internet connectivity tools. In this paper, we address this limitation by introducing Graph RAG-Tool Fusion, a novel plug-and-play approach that combines the strengths of vector-based retrieval with efficient graph traversal to capture all relevant tools (nodes) along with any nested dependencies (edges) within the predefined tool knowledge graph. We also present ToolLinkOS, a new tool selection benchmark of 573 fictional tools, spanning over 15 industries, each with an average of 6.3 tool dependencies. We demonstrate that Graph RAG-Tool Fusion achieves absolute improvements of 71.7% and 22.1% over na\"ive RAG on ToolLinkOS and ToolSandbox benchmarks, respectively (mAP@10). ToolLinkOS dataset is available at https://github.com/EliasLumer/Graph-RAG-Tool-Fusion-ToolLinkOS
Modeling Dynamic Environments with Scene Graph Memory
Embodied AI agents that search for objects in large environments such as households often need to make efficient decisions by predicting object locations based on partial information. We pose this as a new type of link prediction problem: link prediction on partially observable dynamic graphs. Our graph is a representation of a scene in which rooms and objects are nodes, and their relationships are encoded in the edges; only parts of the changing graph are known to the agent at each timestep. This partial observability poses a challenge to existing link prediction approaches, which we address. We propose a novel state representation -- Scene Graph Memory (SGM) -- with captures the agent's accumulated set of observations, as well as a neural net architecture called a Node Edge Predictor (NEP) that extracts information from the SGM to search efficiently. We evaluate our method in the Dynamic House Simulator, a new benchmark that creates diverse dynamic graphs following the semantic patterns typically seen at homes, and show that NEP can be trained to predict the locations of objects in a variety of environments with diverse object movement dynamics, outperforming baselines both in terms of new scene adaptability and overall accuracy. The codebase and more can be found at https://www.scenegraphmemory.com.
GRAG: Graph Retrieval-Augmented Generation
While Retrieval-Augmented Generation (RAG) enhances the accuracy and relevance of responses by generative language models, it falls short in graph-based contexts where both textual and topological information are important. Naive RAG approaches inherently neglect the structural intricacies of textual graphs, resulting in a critical gap in the generation process. To address this challenge, we introduce Graph Retrieval-Augmented Generation (GRAG), which significantly enhances both the retrieval and generation processes by emphasizing the importance of subgraph structures. Unlike RAG approaches that focus solely on text-based entity retrieval, GRAG maintains an acute awareness of graph topology, which is crucial for generating contextually and factually coherent responses. Our GRAG approach consists of four main stages: indexing of k-hop ego-graphs, graph retrieval, soft pruning to mitigate the impact of irrelevant entities, and generation with pruned textual subgraphs. GRAG's core workflow-retrieving textual subgraphs followed by soft pruning-efficiently identifies relevant subgraph structures while avoiding the computational infeasibility typical of exhaustive subgraph searches, which are NP-hard. Moreover, we propose a novel prompting strategy that achieves lossless conversion from textual subgraphs to hierarchical text descriptions. Extensive experiments on graph multi-hop reasoning benchmarks demonstrate that in scenarios requiring multi-hop reasoning on textual graphs, our GRAG approach significantly outperforms current state-of-the-art RAG methods while effectively mitigating hallucinations.
SceneHGN: Hierarchical Graph Networks for 3D Indoor Scene Generation with Fine-Grained Geometry
3D indoor scenes are widely used in computer graphics, with applications ranging from interior design to gaming to virtual and augmented reality. They also contain rich information, including room layout, as well as furniture type, geometry, and placement. High-quality 3D indoor scenes are highly demanded while it requires expertise and is time-consuming to design high-quality 3D indoor scenes manually. Existing research only addresses partial problems: some works learn to generate room layout, and other works focus on generating detailed structure and geometry of individual furniture objects. However, these partial steps are related and should be addressed together for optimal synthesis. We propose SCENEHGN, a hierarchical graph network for 3D indoor scenes that takes into account the full hierarchy from the room level to the object level, then finally to the object part level. Therefore for the first time, our method is able to directly generate plausible 3D room content, including furniture objects with fine-grained geometry, and their layout. To address the challenge, we introduce functional regions as intermediate proxies between the room and object levels to make learning more manageable. To ensure plausibility, our graph-based representation incorporates both vertical edges connecting child nodes with parent nodes from different levels, and horizontal edges encoding relationships between nodes at the same level. Extensive experiments demonstrate that our method produces superior generation results, even when comparing results of partial steps with alternative methods that can only achieve these. We also demonstrate that our method is effective for various applications such as part-level room editing, room interpolation, and room generation by arbitrary room boundaries.
LEGO-GraphRAG: Modularizing Graph-based Retrieval-Augmented Generation for Design Space Exploration
GraphRAG addresses significant challenges in Retrieval-Augmented Generation (RAG) by leveraging graphs with embedded knowledge to enhance the reasoning capabilities of Large Language Models (LLMs). Despite its promising potential, the GraphRAG community currently lacks a unified framework for fine-grained decomposition of the graph-based knowledge retrieval process. Furthermore, there is no systematic categorization or evaluation of existing solutions within the retrieval process. In this paper, we present LEGO-GraphRAG, a modular framework that decomposes the retrieval process of GraphRAG into three interconnected modules: subgraph-extraction, path-filtering, and path-refinement. We systematically summarize and classify the algorithms and neural network (NN) models relevant to each module, providing a clearer understanding of the design space for GraphRAG instances. Additionally, we identify key design factors, such as Graph Coupling and Computational Cost, that influence the effectiveness of GraphRAG implementations. Through extensive empirical studies, we construct high-quality GraphRAG instances using a representative selection of solutions and analyze their impact on retrieval and reasoning performance. Our findings offer critical insights into optimizing GraphRAG instance design, ultimately contributing to the advancement of more accurate and contextually relevant LLM applications.
Discrete Latent Graph Generative Modeling with Diffusion Bridges
Learning graph generative models over latent spaces has received less attention compared to models that operate on the original data space and has so far demonstrated lacklustre performance. We present GLAD a latent space graph generative model. Unlike most previous latent space graph generative models, GLAD operates on a discrete latent space that preserves to a significant extent the discrete nature of the graph structures making no unnatural assumptions such as latent space continuity. We learn the prior of our discrete latent space by adapting diffusion bridges to its structure. By operating over an appropriately constructed latent space we avoid relying on decompositions that are often used in models that operate in the original data space. We present experiments on a series of graph benchmark datasets which clearly show the superiority of the discrete latent space and obtain state of the art graph generative performance, making GLAD the first latent space graph generative model with competitive performance. Our source code is published at: https://github.com/v18nguye/GLAD.
LinearRAG: Linear Graph Retrieval Augmented Generation on Large-scale Corpora
Retrieval-Augmented Generation (RAG) is widely used to mitigate hallucinations of Large Language Models (LLMs) by leveraging external knowledge. While effective for simple queries, traditional RAG systems struggle with large-scale, unstructured corpora where information is fragmented. Recent advances incorporate knowledge graphs to capture relational structures, enabling more comprehensive retrieval for complex, multi-hop reasoning tasks. However, existing graph-based RAG (GraphRAG) methods rely on unstable and costly relation extraction for graph construction, often producing noisy graphs with incorrect or inconsistent relations that degrade retrieval quality. In this paper, we revisit the pipeline of existing GraphRAG systems and propose LinearRAG (Linear Graph-based Retrieval-Augmented Generation), an efficient framework that enables reliable graph construction and precise passage retrieval. Specifically, LinearRAG constructs a relation-free hierarchical graph, termed Tri-Graph, using only lightweight entity extraction and semantic linking, avoiding unstable relation modeling. This new paradigm of graph construction scales linearly with corpus size and incurs no extra token consumption, providing an economical and reliable indexing of the original passages. For retrieval, LinearRAG adopts a two-stage strategy: (i) relevant entity activation via local semantic bridging, followed by (ii) passage retrieval through global importance aggregation. Extensive experiments on four datasets demonstrate that LinearRAG significantly outperforms baseline models.
Augmenting Knowledge Graph Hierarchies Using Neural Transformers
Knowledge graphs are useful tools to organize, recommend and sort data. Hierarchies in knowledge graphs provide significant benefit in improving understanding and compartmentalization of the data within a knowledge graph. This work leverages large language models to generate and augment hierarchies in an existing knowledge graph. For small (<100,000 node) domain-specific KGs, we find that a combination of few-shot prompting with one-shot generation works well, while larger KG may require cyclical generation. We present techniques for augmenting hierarchies, which led to coverage increase by 98% for intents and 99% for colors in our knowledge graph.
Distributed Algorithms for Fully Personalized PageRank on Large Graphs
Personalized PageRank (PPR) has enormous applications, such as link prediction and recommendation systems for social networks, which often require the fully PPR to be known. Besides, most of real-life graphs are edge-weighted, e.g., the interaction between users on the Facebook network. However, it is computationally difficult to compute the fully PPR, especially on large graphs, not to mention that most existing approaches do not consider the weights of edges. In particular, the existing approach cannot handle graphs with billion edges on a moderate-size cluster. To address this problem, this paper presents a novel study on the computation of fully edge-weighted PPR on large graphs using the distributed computing framework. Specifically, we employ the Monte Carlo approximation that performs a large number of random walks from each node of the graph, and exploits the parallel pipeline framework to reduce the overall running time of the fully PPR. Based on that, we develop several optimization techniques which (i) alleviate the issue of large nodes that could explode the memory space, (ii) pre-compute short walks for small nodes that largely speedup the computation of random walks, and (iii) optimize the amount of random walks to compute in each pipeline that significantly reduces the overhead. With extensive experiments on a variety of real-life graph datasets, we demonstrate that our solution is several orders of magnitude faster than the state-of-the-arts, and meanwhile, largely outperforms the baseline algorithms in terms of accuracy.
Path Pooling: Training-Free Structure Enhancement for Efficient Knowledge Graph Retrieval-Augmented Generation
Although Large Language Models achieve strong success in many tasks, they still suffer from hallucinations and knowledge deficiencies in real-world applications. Many knowledge graph-based retrieval-augmented generation (KG-RAG) methods enhance the quality and credibility of LLMs by leveraging structure and semantic information in KGs as external knowledge bases. However, these methods struggle to effectively incorporate structure information, either incurring high computational costs or underutilizing available knowledge. Inspired by smoothing operations in graph representation learning, we propose path pooling, a simple, training-free strategy that introduces structure information through a novel path-centric pooling operation. It seamlessly integrates into existing KG-RAG methods in a plug-and-play manner, enabling richer structure information utilization. Extensive experiments demonstrate that incorporating the path pooling into the state-of-the-art KG-RAG method consistently improves performance across various settings while introducing negligible additional cost.
Generalizing Test-time Compute-optimal Scaling as an Optimizable Graph
Test-Time Scaling (TTS) improves large language models (LLMs) by allocating additional computation during inference, typically through parallel, sequential, or hybrid scaling. However, prior studies often assume fixed collaboration architectures (e.g., topologies) and single-model usage, overlooking that optimal architectures and model combinations can vary across tasks. Therefore, we study the novel problem of searching for compute-optimal model combinations and architectures in TTS under a fixed budget. We formalize it as a multi-LLM collaboration graph, where nodes encode roles and LLM model assignments, and edges capture information flow. This problem is challenging because (i) the combinatorial search space is prohibitively large, and (ii) task-specific requirements demand tailored designs. To address these, we reformulate the problem as probabilistic graph optimization and, through pilot experiments, derive three empirical insights into TTS collaboration graphs. Guided by these insights, we propose Agent-REINFORCE, an LLM-agent-augmented framework that mirrors the REINFORCE pipeline by mapping sampling-gradient-update to sampling-feedback-update, where feedback serves as a textual gradient to update the probabilistic graph and efficiently search for optimal multi-LLM collaboration graphs. Experiments show that Agent-REINFORCE outperforms both traditional and LLM-based baselines in sample efficiency and search performance, and effectively identifies optimal graphs under joint objectives of accuracy and inference latency.
Query-Aware Learnable Graph Pooling Tokens as Prompt for Large Language Models
Graph-structured data plays a vital role in numerous domains, such as social networks, citation networks, commonsense reasoning graphs and knowledge graphs. While graph neural networks have been employed for graph processing, recent advancements have explored integrating large language models for graph-based tasks. In this paper, we propose a novel approach named Learnable Graph Pooling Token (LGPT), which addresses the limitations of the scalability issues in node-level projection and information loss in graph-level projection. LGPT enables flexible and efficient graph representation by introducing learnable parameters that act as tokens in large language models, balancing fine-grained and global graph information. Additionally, we investigate an Early Query Fusion technique, which fuses query context before constructing the graph representation, leading to more effective graph embeddings. Our method achieves a 4.13\% performance improvement on the GraphQA benchmark without training the large language model, demonstrating significant gains in handling complex textual-attributed graph data.
Invariant Graph Transformer
Rationale discovery is defined as finding a subset of the input data that maximally supports the prediction of downstream tasks. In graph machine learning context, graph rationale is defined to locate the critical subgraph in the given graph topology, which fundamentally determines the prediction results. In contrast to the rationale subgraph, the remaining subgraph is named the environment subgraph. Graph rationalization can enhance the model performance as the mapping between the graph rationale and prediction label is viewed as invariant, by assumption. To ensure the discriminative power of the extracted rationale subgraphs, a key technique named "intervention" is applied. The core idea of intervention is that given any changing environment subgraphs, the semantics from the rationale subgraph is invariant, which guarantees the correct prediction result. However, most, if not all, of the existing rationalization works on graph data develop their intervention strategies on the graph level, which is coarse-grained. In this paper, we propose well-tailored intervention strategies on graph data. Our idea is driven by the development of Transformer models, whose self-attention module provides rich interactions between input nodes. Based on the self-attention module, our proposed invariant graph Transformer (IGT) can achieve fine-grained, more specifically, node-level and virtual node-level intervention. Our comprehensive experiments involve 7 real-world datasets, and the proposed IGT shows significant performance advantages compared to 13 baseline methods.
AGENTiGraph: An Interactive Knowledge Graph Platform for LLM-based Chatbots Utilizing Private Data
Large Language Models~(LLMs) have demonstrated capabilities across various applications but face challenges such as hallucination, limited reasoning abilities, and factual inconsistencies, especially when tackling complex, domain-specific tasks like question answering~(QA). While Knowledge Graphs~(KGs) have been shown to help mitigate these issues, research on the integration of LLMs with background KGs remains limited. In particular, user accessibility and the flexibility of the underlying KG have not been thoroughly explored. We introduce AGENTiGraph (Adaptive Generative ENgine for Task-based Interaction and Graphical Representation), a platform for knowledge management through natural language interaction. It integrates knowledge extraction, integration, and real-time visualization. AGENTiGraph employs a multi-agent architecture to dynamically interpret user intents, manage tasks, and integrate new knowledge, ensuring adaptability to evolving user requirements and data contexts. Our approach demonstrates superior performance in knowledge graph interactions, particularly for complex domain-specific tasks. Experimental results on a dataset of 3,500 test cases show AGENTiGraph significantly outperforms state-of-the-art zero-shot baselines, achieving 95.12\% accuracy in task classification and 90.45\% success rate in task execution. User studies corroborate its effectiveness in real-world scenarios. To showcase versatility, we extended AGENTiGraph to legislation and healthcare domains, constructing specialized KGs capable of answering complex queries in legal and medical contexts.
Temporal Graph Benchmark for Machine Learning on Temporal Graphs
We present the Temporal Graph Benchmark (TGB), a collection of challenging and diverse benchmark datasets for realistic, reproducible, and robust evaluation of machine learning models on temporal graphs. TGB datasets are of large scale, spanning years in duration, incorporate both node and edge-level prediction tasks and cover a diverse set of domains including social, trade, transaction, and transportation networks. For both tasks, we design evaluation protocols based on realistic use-cases. We extensively benchmark each dataset and find that the performance of common models can vary drastically across datasets. In addition, on dynamic node property prediction tasks, we show that simple methods often achieve superior performance compared to existing temporal graph models. We believe that these findings open up opportunities for future research on temporal graphs. Finally, TGB provides an automated machine learning pipeline for reproducible and accessible temporal graph research, including data loading, experiment setup and performance evaluation. TGB will be maintained and updated on a regular basis and welcomes community feedback. TGB datasets, data loaders, example codes, evaluation setup, and leaderboards are publicly available at https://tgb.complexdatalab.com/.
LLM-assisted Knowledge Graph Engineering: Experiments with ChatGPT
Knowledge Graphs (KG) provide us with a structured, flexible, transparent, cross-system, and collaborative way of organizing our knowledge and data across various domains in society and industrial as well as scientific disciplines. KGs surpass any other form of representation in terms of effectiveness. However, Knowledge Graph Engineering (KGE) requires in-depth experiences of graph structures, web technologies, existing models and vocabularies, rule sets, logic, as well as best practices. It also demands a significant amount of work. Considering the advancements in large language models (LLMs) and their interfaces and applications in recent years, we have conducted comprehensive experiments with ChatGPT to explore its potential in supporting KGE. In this paper, we present a selection of these experiments and their results to demonstrate how ChatGPT can assist us in the development and management of KGs.
GraphHash: Graph Clustering Enables Parameter Efficiency in Recommender Systems
Deep recommender systems rely heavily on large embedding tables to handle high-cardinality categorical features such as user/item identifiers, and face significant memory constraints at scale. To tackle this challenge, hashing techniques are often employed to map multiple entities to the same embedding and thus reduce the size of the embedding tables. Concurrently, graph-based collaborative signals have emerged as powerful tools in recommender systems, yet their potential for optimizing embedding table reduction remains unexplored. This paper introduces GraphHash, the first graph-based approach that leverages modularity-based bipartite graph clustering on user-item interaction graphs to reduce embedding table sizes. We demonstrate that the modularity objective has a theoretical connection to message-passing, which provides a foundation for our method. By employing fast clustering algorithms, GraphHash serves as a computationally efficient proxy for message-passing during preprocessing and a plug-and-play graph-based alternative to traditional ID hashing. Extensive experiments show that GraphHash substantially outperforms diverse hashing baselines on both retrieval and click-through-rate prediction tasks. In particular, GraphHash achieves on average a 101.52% improvement in recall when reducing the embedding table size by more than 75%, highlighting the value of graph-based collaborative information for model reduction. Our code is available at https://github.com/snap-research/GraphHash.
Click2Graph: Interactive Panoptic Video Scene Graphs from a Single Click
State-of-the-art Video Scene Graph Generation (VSGG) systems provide structured visual understanding but operate as closed, feed-forward pipelines with no ability to incorporate human guidance. In contrast, promptable segmentation models such as SAM2 enable precise user interaction but lack semantic or relational reasoning. We introduce Click2Graph, the first interactive framework for Panoptic Video Scene Graph Generation (PVSG) that unifies visual prompting with spatial, temporal, and semantic understanding. From a single user cue, such as a click or bounding box, Click2Graph segments and tracks the subject across time, autonomously discovers interacting objects, and predicts <subject, object, predicate> triplets to form a temporally consistent scene graph. Our framework introduces two key components: a Dynamic Interaction Discovery Module that generates subject-conditioned object prompts, and a Semantic Classification Head that performs joint entity and predicate reasoning. Experiments on the OpenPVSG benchmark demonstrate that Click2Graph establishes a strong foundation for user-guided PVSG, showing how human prompting can be combined with panoptic grounding and relational inference to enable controllable and interpretable video scene understanding.
GKG-LLM: A Unified Framework for Generalized Knowledge Graph Construction
The construction of Generalized Knowledge Graph (GKG), including knowledge graph, event knowledge graph and commonsense knowledge graph, is fundamental for various natural language processing tasks. Current studies typically construct these types of graph separately, overlooking holistic insights and potential unification that could be beneficial in computing resources and usage perspectives. However, a key challenge in developing a unified framework for GKG is obstacles arising from task-specific differences. In this study, we propose a unified framework for constructing generalized knowledge graphs to address this challenge. First, we collect data from 15 sub-tasks in 29 datasets across the three types of graphs, categorizing them into in-sample, counter-task, and out-of-distribution (OOD) data. Then, we propose a three-stage curriculum learning fine-tuning framework, by iteratively injecting knowledge from the three types of graphs into the Large Language Models. Extensive experiments show that our proposed model improves the construction of all three graph types across in-domain, OOD and counter-task data.
LGESQL: Line Graph Enhanced Text-to-SQL Model with Mixed Local and Non-Local Relations
This work aims to tackle the challenging heterogeneous graph encoding problem in the text-to-SQL task. Previous methods are typically node-centric and merely utilize different weight matrices to parameterize edge types, which 1) ignore the rich semantics embedded in the topological structure of edges, and 2) fail to distinguish local and non-local relations for each node. To this end, we propose a Line Graph Enhanced Text-to-SQL (LGESQL) model to mine the underlying relational features without constructing meta-paths. By virtue of the line graph, messages propagate more efficiently through not only connections between nodes, but also the topology of directed edges. Furthermore, both local and non-local relations are integrated distinctively during the graph iteration. We also design an auxiliary task called graph pruning to improve the discriminative capability of the encoder. Our framework achieves state-of-the-art results (62.8% with Glove, 72.0% with Electra) on the cross-domain text-to-SQL benchmark Spider at the time of writing.
UniGraph2: Learning a Unified Embedding Space to Bind Multimodal Graphs
Existing foundation models, such as CLIP, aim to learn a unified embedding space for multimodal data, enabling a wide range of downstream web-based applications like search, recommendation, and content classification. However, these models often overlook the inherent graph structures in multimodal datasets, where entities and their relationships are crucial. Multimodal graphs (MMGs) represent such graphs where each node is associated with features from different modalities, while the edges capture the relationships between these entities. On the other hand, existing graph foundation models primarily focus on text-attributed graphs (TAGs) and are not designed to handle the complexities of MMGs. To address these limitations, we propose UniGraph2, a novel cross-domain graph foundation model that enables general representation learning on MMGs, providing a unified embedding space. UniGraph2 employs modality-specific encoders alongside a graph neural network (GNN) to learn a unified low-dimensional embedding space that captures both the multimodal information and the underlying graph structure. We propose a new cross-domain multi-graph pre-training algorithm at scale to ensure effective transfer learning across diverse graph domains and modalities. Additionally, we adopt a Mixture of Experts (MoE) component to align features from different domains and modalities, ensuring coherent and robust embeddings that unify the information across modalities. Extensive experiments on a variety of multimodal graph tasks demonstrate that UniGraph2 significantly outperforms state-of-the-art models in tasks such as representation learning, transfer learning, and multimodal generative tasks, offering a scalable and flexible solution for learning on MMGs.
SciGraphQA: A Large-Scale Synthetic Multi-Turn Question-Answering Dataset for Scientific Graphs
In this work, we present SciGraphQA, a synthetic multi-turn question-answer dataset related to academic graphs. SciGraphQA is 13 times larger than ChartVQA, the previously largest chart-visual question-answering dataset. It is also the largest open-sourced chart VQA dataset with non-synthetic charts. To build our dataset, we selected 290,000 Computer Science or Machine Learning ArXiv papers published between 2010 and 2020, and then used Palm-2 to generate 295K samples of open-vocabulary multi-turn question-answering dialogues about the graphs. As context, we provided the text-only Palm-2 with paper title, abstract, paragraph mentioning the graph, and rich text contextual data from the graph itself, obtaining dialogues with an average 2.23 question-answer turns for each graph. We asked GPT-4 to assess the matching quality of our question-answer turns given the paper's context, obtaining an average rating of 8.7/10 on our 3K test set. We evaluated the 0-shot capability of the most popular MLLM models such as LLaVa, mPLUGowl, BLIP-2, and openFlamingo's on our dataset, finding LLaVA-13B being the most performant with a CIDEr score of 0.08. We further enriched the question prompts for LLAVA by including the serialized data tables extracted from the graphs using the DePlot model, boosting LLaVA's 0-shot CIDEr to 0.15. To verify the validity of our dataset, we also fine-tuned LLaVa using our dataset, reaching a substantially higher CIDEr score of 0.26. We anticipate further accuracy improvement by including segmentation mask tokens and leveraging larger LLM backbones coupled with emergent prompting techniques. Our code and data are open-sourced.
StuGPTViz: A Visual Analytics Approach to Understand Student-ChatGPT Interactions
The integration of Large Language Models (LLMs), especially ChatGPT, into education is poised to revolutionize students' learning experiences by introducing innovative conversational learning methodologies. To empower students to fully leverage the capabilities of ChatGPT in educational scenarios, understanding students' interaction patterns with ChatGPT is crucial for instructors. However, this endeavor is challenging due to the absence of datasets focused on student-ChatGPT conversations and the complexities in identifying and analyzing the evolutional interaction patterns within conversations. To address these challenges, we collected conversational data from 48 students interacting with ChatGPT in a master's level data visualization course over one semester. We then developed a coding scheme, grounded in the literature on cognitive levels and thematic analysis, to categorize students' interaction patterns with ChatGPT. Furthermore, we present a visual analytics system, StuGPTViz, that tracks and compares temporal patterns in student prompts and the quality of ChatGPT's responses at multiple scales, revealing significant pedagogical insights for instructors. We validated the system's effectiveness through expert interviews with six data visualization instructors and three case studies. The results confirmed StuGPTViz's capacity to enhance educators' insights into the pedagogical value of ChatGPT. We also discussed the potential research opportunities of applying visual analytics in education and developing AI-driven personalized learning solutions.
TEG-DB: A Comprehensive Dataset and Benchmark of Textual-Edge Graphs
Text-Attributed Graphs (TAGs) augment graph structures with natural language descriptions, facilitating detailed depictions of data and their interconnections across various real-world settings. However, existing TAG datasets predominantly feature textual information only at the nodes, with edges typically represented by mere binary or categorical attributes. This lack of rich textual edge annotations significantly limits the exploration of contextual relationships between entities, hindering deeper insights into graph-structured data. To address this gap, we introduce Textual-Edge Graphs Datasets and Benchmark (TEG-DB), a comprehensive and diverse collection of benchmark textual-edge datasets featuring rich textual descriptions on nodes and edges. The TEG-DB datasets are large-scale and encompass a wide range of domains, from citation networks to social networks. In addition, we conduct extensive benchmark experiments on TEG-DB to assess the extent to which current techniques, including pre-trained language models, graph neural networks, and their combinations, can utilize textual node and edge information. Our goal is to elicit advancements in textual-edge graph research, specifically in developing methodologies that exploit rich textual node and edge descriptions to enhance graph analysis and provide deeper insights into complex real-world networks. The entire TEG-DB project is publicly accessible as an open-source repository on Github, accessible at https://github.com/Zhuofeng-Li/TEG-Benchmark.
Improving Graph Generation by Restricting Graph Bandwidth
Deep graph generative modeling has proven capable of learning the distribution of complex, multi-scale structures characterizing real-world graphs. However, one of the main limitations of existing methods is their large output space, which limits generation scalability and hinders accurate modeling of the underlying distribution. To overcome these limitations, we propose a novel approach that significantly reduces the output space of existing graph generative models. Specifically, starting from the observation that many real-world graphs have low graph bandwidth, we restrict graph bandwidth during training and generation. Our strategy improves both generation scalability and quality without increasing architectural complexity or reducing expressiveness. Our approach is compatible with existing graph generative methods, and we describe its application to both autoregressive and one-shot models. We extensively validate our strategy on synthetic and real datasets, including molecular graphs. Our experiments show that, in addition to improving generation efficiency, our approach consistently improves generation quality and reconstruction accuracy. The implementation is made available.
LOGIN: A Large Language Model Consulted Graph Neural Network Training Framework
Recent prevailing works on graph machine learning typically follow a similar methodology that involves designing advanced variants of graph neural networks (GNNs) to maintain the superior performance of GNNs on different graphs. In this paper, we aim to streamline the GNN design process and leverage the advantages of Large Language Models (LLMs) to improve the performance of GNNs on downstream tasks. We formulate a new paradigm, coined "LLMs-as-Consultants," which integrates LLMs with GNNs in an interactive manner. A framework named LOGIN (LLM Consulted GNN training) is instantiated, empowering the interactive utilization of LLMs within the GNN training process. First, we attentively craft concise prompts for spotted nodes, carrying comprehensive semantic and topological information, and serving as input to LLMs. Second, we refine GNNs by devising a complementary coping mechanism that utilizes the responses from LLMs, depending on their correctness. We empirically evaluate the effectiveness of LOGIN on node classification tasks across both homophilic and heterophilic graphs. The results illustrate that even basic GNN architectures, when employed within the proposed LLMs-as-Consultants paradigm, can achieve comparable performance to advanced GNNs with intricate designs. Our codes are available at https://github.com/QiaoYRan/LOGIN.
Does your graph need a confidence boost? Convergent boosted smoothing on graphs with tabular node features
For supervised learning with tabular data, decision tree ensembles produced via boosting techniques generally dominate real-world applications involving iid training/test sets. However for graph data where the iid assumption is violated due to structured relations between samples, it remains unclear how to best incorporate this structure within existing boosting pipelines. To this end, we propose a generalized framework for iterating boosting with graph propagation steps that share node/sample information across edges connecting related samples. Unlike previous efforts to integrate graph-based models with boosting, our approach is anchored in a principled meta loss function such that provable convergence can be guaranteed under relatively mild assumptions. Across a variety of non-iid graph datasets with tabular node features, our method achieves comparable or superior performance than both tabular and graph neural network models, as well as existing hybrid strategies that combine the two. Beyond producing better predictive performance than recently proposed graph models, our proposed techniques are easy to implement, computationally more efficient, and enjoy stronger theoretical guarantees (which make our results more reproducible).
GraphTracer: Graph-Guided Failure Tracing in LLM Agents for Robust Multi-Turn Deep Search
Multi-agent systems powered by Large Language Models excel at complex tasks through coordinated collaboration, yet they face high failure rates in multi-turn deep search scenarios. Existing temporal attribution methods struggle to accurately diagnose root causes, particularly when errors propagate across multiple agents. Attempts to automate failure attribution by analyzing action sequences remain ineffective due to their inability to account for information dependencies that span agents. This paper identifies two core challenges: (i) distinguishing symptoms from root causes in multi-agent error propagation, and (ii) tracing information dependencies beyond temporal order. To address these issues, we introduce GraphTracer, a framework that redefines failure attribution through information flow analysis. GraphTracer constructs Information Dependency Graphs (IDGs) to explicitly capture how agents reference and build on prior outputs. It localizes root causes by tracing through these dependency structures instead of relying on temporal sequences. GraphTracer also uses graph-aware synthetic data generation to target critical nodes, creating realistic failure scenarios. Evaluations on the Who\&When benchmark and integration into production systems demonstrate that GraphTracer-8B achieves up to 18.18\% higher attribution accuracy compared to state-of-the-art models and enables 4.8\% to 14.2\% performance improvements in deployed multi-agent frameworks, establishing a robust solution for multi-agent system debugging.
CypherBench: Towards Precise Retrieval over Full-scale Modern Knowledge Graphs in the LLM Era
Retrieval from graph data is crucial for augmenting large language models (LLM) with both open-domain knowledge and private enterprise data, and it is also a key component in the recent GraphRAG system (edge et al., 2024). Despite decades of research on knowledge graphs and knowledge base question answering, leading LLM frameworks (e.g. Langchain and LlamaIndex) have only minimal support for retrieval from modern encyclopedic knowledge graphs like Wikidata. In this paper, we analyze the root cause and suggest that modern RDF knowledge graphs (e.g. Wikidata, Freebase) are less efficient for LLMs due to overly large schemas that far exceed the typical LLM context window, use of resource identifiers, overlapping relation types and lack of normalization. As a solution, we propose property graph views on top of the underlying RDF graph that can be efficiently queried by LLMs using Cypher. We instantiated this idea on Wikidata and introduced CypherBench, the first benchmark with 11 large-scale, multi-domain property graphs with 7.8 million entities and over 10,000 questions. To achieve this, we tackled several key challenges, including developing an RDF-to-property graph conversion engine, creating a systematic pipeline for text-to-Cypher task generation, and designing new evaluation metrics.
MaPa: Text-driven Photorealistic Material Painting for 3D Shapes
This paper aims to generate materials for 3D meshes from text descriptions. Unlike existing methods that synthesize texture maps, we propose to generate segment-wise procedural material graphs as the appearance representation, which supports high-quality rendering and provides substantial flexibility in editing. Instead of relying on extensive paired data, i.e., 3D meshes with material graphs and corresponding text descriptions, to train a material graph generative model, we propose to leverage the pre-trained 2D diffusion model as a bridge to connect the text and material graphs. Specifically, our approach decomposes a shape into a set of segments and designs a segment-controlled diffusion model to synthesize 2D images that are aligned with mesh parts. Based on generated images, we initialize parameters of material graphs and fine-tune them through the differentiable rendering module to produce materials in accordance with the textual description. Extensive experiments demonstrate the superior performance of our framework in photorealism, resolution, and editability over existing methods. Project page: https://zhanghe3z.github.io/MaPa/
PROPEX-RAG: Enhanced GraphRAG using Prompt-Driven Prompt Execution
Retrieval-Augmented Generation (RAG) has become a robust framework for enhancing Large Language Models (LLMs) with external knowledge. Recent advances in RAG have investigated graph based retrieval for intricate reasoning; however, the influence of prompt design on enhancing the retrieval and reasoning process is still considerably under-examined. In this paper, we present a prompt-driven GraphRAG framework that underscores the significance of prompt formulation in facilitating entity extraction, fact selection, and passage reranking for multi-hop question answering. Our approach creates a symbolic knowledge graph from text data by encoding entities and factual relationships as structured facts triples. We use LLMs selectively during online retrieval to perform semantic filtering and answer generation. We also use entity-guided graph traversal through Personalized PageRank (PPR) to support efficient, scalable retrieval based on the knowledge graph we built. Our system gets state-of-the-art performance on HotpotQA and 2WikiMultiHopQA, with F1 scores of 80.7% and 78.9%, and Recall@5 scores of 97.1% and 98.1%, respectively. These results show that prompt design is an important part of improving retrieval accuracy and response quality. This research lays the groundwork for more efficient and comprehensible multi-hop question-answering systems, highlighting the importance of prompt-aware graph reasoning.
Multimodal Difference Learning for Sequential Recommendation
Sequential recommendations have drawn significant attention in modeling the user's historical behaviors to predict the next item. With the booming development of multimodal data (e.g., image, text) on internet platforms, sequential recommendation also benefits from the incorporation of multimodal data. Most methods introduce modal features of items as side information and simply concatenates them to learn unified user interests. Nevertheless, these methods encounter the limitation in modeling multimodal differences. We argue that user interests and item relationships vary across different modalities. To address this problem, we propose a novel Multimodal Difference Learning framework for Sequential Recommendation, MDSRec for brevity. Specifically, we first explore the differences in item relationships by constructing modal-aware item relation graphs with behavior signal to enhance item representations. Then, to capture the differences in user interests across modalities, we design a interest-centralized attention mechanism to independently model user sequence representations in different modalities. Finally, we fuse the user embeddings from multiple modalities to achieve accurate item recommendation. Experimental results on five real-world datasets demonstrate the superiority of MDSRec over state-of-the-art baselines and the efficacy of multimodal difference learning.
GraphMASAL: A Graph-based Multi-Agent System for Adaptive Learning
The advent of Intelligent Tutoring Systems (ITSs) has marked a paradigm shift in education, enabling highly personalized learning pathways. However, true personalization requires adapting to learners' complex knowledge states (multi-source) and diverse goals (multi-sink); existing ITSs often lack the necessary structural-reasoning capability and knowledge dynamism to generate genuinely effective learning paths, and they lack scientifically rigorous validation paradigms. In this paper we propose GraphMASAL (A Graph-based Multi-Agent System for Adaptive Learning), which integrates (i) a dynamic knowledge graph for persistent, stateful learner modeling; (ii) a LangGraph-orchestrated trio of agents (Diagnostician, Planner, Tutor); (iii) a knowledge-graph-grounded two-stage neural IR component (dual-encoder dense retrieval with cross-encoder listwise re-ranking and calibrated score fusion); and (iv) a multi-source multi-sink (MSMS) planning engine with a cognitively grounded cost and an approximation guarantee via greedy set cover. Under blinded automated evaluations with matched inputs and inference settings across diverse student profiles, GraphMASAL consistently outperforms LLM prompting and structured ablations in planning--achieving stronger structural/sequence alignment of learning paths, higher coverage of weak concepts, and lower learning cost--while also surpassing prompt-based baselines in cognitive diagnosis. Agreement with expert/LLM-proxy ratings further supports the validity of our evaluation protocol. These findings indicate that grounding LLM agents in a dynamic knowledge graph, coupled with optimization under educational constraints, yields reliable, interpretable, and pedagogically plausible learning plans, advancing personalized and goal-oriented education.
Predicting Information Pathways Across Online Communities
The problem of community-level information pathway prediction (CLIPP) aims at predicting the transmission trajectory of content across online communities. A successful solution to CLIPP holds significance as it facilitates the distribution of valuable information to a larger audience and prevents the proliferation of misinformation. Notably, solving CLIPP is non-trivial as inter-community relationships and influence are unknown, information spread is multi-modal, and new content and new communities appear over time. In this work, we address CLIPP by collecting large-scale, multi-modal datasets to examine the diffusion of online YouTube videos on Reddit. We analyze these datasets to construct community influence graphs (CIGs) and develop a novel dynamic graph framework, INPAC (Information Pathway Across Online Communities), which incorporates CIGs to capture the temporal variability and multi-modal nature of video propagation across communities. Experimental results in both warm-start and cold-start scenarios show that INPAC outperforms seven baselines in CLIPP.
HOT: Higher-Order Dynamic Graph Representation Learning with Efficient Transformers
Many graph representation learning (GRL) problems are dynamic, with millions of edges added or removed per second. A fundamental workload in this setting is dynamic link prediction: using a history of graph updates to predict whether a given pair of vertices will become connected. Recent schemes for link prediction in such dynamic settings employ Transformers, modeling individual graph updates as single tokens. In this work, we propose HOT: a model that enhances this line of works by harnessing higher-order (HO) graph structures; specifically, k-hop neighbors and more general subgraphs containing a given pair of vertices. Harnessing such HO structures by encoding them into the attention matrix of the underlying Transformer results in higher accuracy of link prediction outcomes, but at the expense of increased memory pressure. To alleviate this, we resort to a recent class of schemes that impose hierarchy on the attention matrix, significantly reducing memory footprint. The final design offers a sweetspot between high accuracy and low memory utilization. HOT outperforms other dynamic GRL schemes, for example achieving 9%, 7%, and 15% higher accuracy than - respectively - DyGFormer, TGN, and GraphMixer, for the MOOC dataset. Our design can be seamlessly extended towards other dynamic GRL workloads.
Parameter-Efficient Conversational Recommender System as a Language Processing Task
Conversational recommender systems (CRS) aim to recommend relevant items to users by eliciting user preference through natural language conversation. Prior work often utilizes external knowledge graphs for items' semantic information, a language model for dialogue generation, and a recommendation module for ranking relevant items. This combination of multiple components suffers from a cumbersome training process, and leads to semantic misalignment issues between dialogue generation and item recommendation. In this paper, we represent items in natural language and formulate CRS as a natural language processing task. Accordingly, we leverage the power of pre-trained language models to encode items, understand user intent via conversation, perform item recommendation through semantic matching, and generate dialogues. As a unified model, our PECRS (Parameter-Efficient CRS), can be optimized in a single stage, without relying on non-textual metadata such as a knowledge graph. Experiments on two benchmark CRS datasets, ReDial and INSPIRED, demonstrate the effectiveness of PECRS on recommendation and conversation. Our code is available at: https://github.com/Ravoxsg/efficient_unified_crs.
G-Refer: Graph Retrieval-Augmented Large Language Model for Explainable Recommendation
Explainable recommendation has demonstrated significant advantages in informing users about the logic behind recommendations, thereby increasing system transparency, effectiveness, and trustworthiness. To provide personalized and interpretable explanations, existing works often combine the generation capabilities of large language models (LLMs) with collaborative filtering (CF) information. CF information extracted from the user-item interaction graph captures the user behaviors and preferences, which is crucial for providing informative explanations. However, due to the complexity of graph structure, effectively extracting the CF information from graphs still remains a challenge. Moreover, existing methods often struggle with the integration of extracted CF information with LLMs due to its implicit representation and the modality gap between graph structures and natural language explanations. To address these challenges, we propose G-Refer, a framework using graph retrieval-augmented large language models (LLMs) for explainable recommendation. Specifically, we first employ a hybrid graph retrieval mechanism to retrieve explicit CF signals from both structural and semantic perspectives. The retrieved CF information is explicitly formulated as human-understandable text by the proposed graph translation and accounts for the explanations generated by LLMs. To bridge the modality gap, we introduce knowledge pruning and retrieval-augmented fine-tuning to enhance the ability of LLMs to process and utilize the retrieved CF information to generate explanations. Extensive experiments show that G-Refer achieves superior performance compared with existing methods in both explainability and stability. Codes and data are available at https://github.com/Yuhan1i/G-Refer.
Multi-Session Client-Centered Treatment Outcome Evaluation in Psychotherapy
In psychotherapy, therapeutic outcome assessment, or treatment outcome evaluation, is essential for enhancing mental health care by systematically evaluating therapeutic processes and outcomes. Existing large language model approaches often focus on therapist-centered, single-session evaluations, neglecting the client's subjective experience and longitudinal progress across multiple sessions. To address these limitations, we propose IPAEval, a client-Informed Psychological Assessment-based Evaluation framework that automates treatment outcome evaluations from the client's perspective using clinical interviews. IPAEval integrates cross-session client-contextual assessment and session-focused client-dynamics assessment to provide a comprehensive understanding of therapeutic progress. Experiments on our newly developed TheraPhase dataset demonstrate that IPAEval effectively tracks symptom severity and treatment outcomes over multiple sessions, outperforming previous single-session models and validating the benefits of items-aware reasoning mechanisms.
OneRec: Unifying Retrieve and Rank with Generative Recommender and Iterative Preference Alignment
Recently, generative retrieval-based recommendation systems have emerged as a promising paradigm. However, most modern recommender systems adopt a retrieve-and-rank strategy, where the generative model functions only as a selector during the retrieval stage. In this paper, we propose OneRec, which replaces the cascaded learning framework with a unified generative model. To the best of our knowledge, this is the first end-to-end generative model that significantly surpasses current complex and well-designed recommender systems in real-world scenarios. Specifically, OneRec includes: 1) an encoder-decoder structure, which encodes the user's historical behavior sequences and gradually decodes the videos that the user may be interested in. We adopt sparse Mixture-of-Experts (MoE) to scale model capacity without proportionally increasing computational FLOPs. 2) a session-wise generation approach. In contrast to traditional next-item prediction, we propose a session-wise generation, which is more elegant and contextually coherent than point-by-point generation that relies on hand-crafted rules to properly combine the generated results. 3) an Iterative Preference Alignment module combined with Direct Preference Optimization (DPO) to enhance the quality of the generated results. Unlike DPO in NLP, a recommendation system typically has only one opportunity to display results for each user's browsing request, making it impossible to obtain positive and negative samples simultaneously. To address this limitation, We design a reward model to simulate user generation and customize the sampling strategy. Extensive experiments have demonstrated that a limited number of DPO samples can align user interest preferences and significantly improve the quality of generated results. We deployed OneRec in the main scene of Kuaishou, achieving a 1.6\% increase in watch-time, which is a substantial improvement.
Graph Generative Pre-trained Transformer
Graph generation is a critical task in numerous domains, including molecular design and social network analysis, due to its ability to model complex relationships and structured data. While most modern graph generative models utilize adjacency matrix representations, this work revisits an alternative approach that represents graphs as sequences of node set and edge set. We advocate for this approach due to its efficient encoding of graphs and propose a novel representation. Based on this representation, we introduce the Graph Generative Pre-trained Transformer (G2PT), an auto-regressive model that learns graph structures via next-token prediction. To further exploit G2PT's capabilities as a general-purpose foundation model, we explore fine-tuning strategies for two downstream applications: goal-oriented generation and graph property prediction. We conduct extensive experiments across multiple datasets. Results indicate that G2PT achieves superior generative performance on both generic graph and molecule datasets. Furthermore, G2PT exhibits strong adaptability and versatility in downstream tasks from molecular design to property prediction.
A Survey on Knowledge Graphs: Representation, Acquisition and Applications
Human knowledge provides a formal understanding of the world. Knowledge graphs that represent structural relations between entities have become an increasingly popular research direction towards cognition and human-level intelligence. In this survey, we provide a comprehensive review of knowledge graph covering overall research topics about 1) knowledge graph representation learning, 2) knowledge acquisition and completion, 3) temporal knowledge graph, and 4) knowledge-aware applications, and summarize recent breakthroughs and perspective directions to facilitate future research. We propose a full-view categorization and new taxonomies on these topics. Knowledge graph embedding is organized from four aspects of representation space, scoring function, encoding models, and auxiliary information. For knowledge acquisition, especially knowledge graph completion, embedding methods, path inference, and logical rule reasoning, are reviewed. We further explore several emerging topics, including meta relational learning, commonsense reasoning, and temporal knowledge graphs. To facilitate future research on knowledge graphs, we also provide a curated collection of datasets and open-source libraries on different tasks. In the end, we have a thorough outlook on several promising research directions.
Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements
Graphs are essential data structures for modeling complex interactions in domains such as social networks, molecular structures, and biological systems. Graph-level tasks, which predict properties or classes for the entire graph, are critical for applications, such as molecular property prediction and subgraph counting. Graph Neural Networks (GNNs) have shown promise in these tasks, but their evaluations are often limited to narrow datasets, tasks, and inconsistent experimental setups, restricting their generalizability. To address these limitations, we propose a unified evaluation framework for graph-level GNNs. This framework provides a standardized setting to evaluate GNNs across diverse datasets, various graph tasks (e.g., graph classification and regression), and challenging scenarios, including noisy, imbalanced, and few-shot graphs. Additionally, we propose a novel GNN model with enhanced expressivity and generalization capabilities. Specifically, we enhance the expressivity of GNNs through a k-path rooted subgraph approach, enabling the model to effectively count subgraphs (e.g., paths and cycles). Moreover, we introduce a unified graph contrastive learning algorithm for graphs across diverse domains, which adaptively removes unimportant edges to augment graphs, thereby significantly improving generalization performance. Extensive experiments demonstrate that our model achieves superior performance against fourteen effective baselines across twenty-seven graph datasets, establishing it as a robust and generalizable model for graph-level tasks.
Youtu-GraphRAG: Vertically Unified Agents for Graph Retrieval-Augmented Complex Reasoning
Graph retrieval-augmented generation (GraphRAG) has effectively enhanced large language models in complex reasoning by organizing fragmented knowledge into explicitly structured graphs. Prior efforts have been made to improve either graph construction or graph retrieval in isolation, yielding suboptimal performance, especially when domain shifts occur. In this paper, we propose a vertically unified agentic paradigm, Youtu-GraphRAG, to jointly connect the entire framework as an intricate integration. Specifically, (i) a seed graph schema is introduced to bound the automatic extraction agent with targeted entity types, relations and attribute types, also continuously expanded for scalability over unseen domains; (ii) To obtain higher-level knowledge upon the schema, we develop novel dually-perceived community detection, fusing structural topology with subgraph semantics for comprehensive knowledge organization. This naturally yields a hierarchical knowledge tree that supports both top-down filtering and bottom-up reasoning with community summaries; (iii) An agentic retriever is designed to interpret the same graph schema to transform complex queries into tractable and parallel sub-queries. It iteratively performs reflection for more advanced reasoning; (iv) To alleviate the knowledge leaking problem in pre-trained LLM, we propose a tailored anonymous dataset and a novel 'Anonymity Reversion' task that deeply measures the real performance of the GraphRAG frameworks. Extensive experiments across six challenging benchmarks demonstrate the robustness of Youtu-GraphRAG, remarkably moving the Pareto frontier with up to 90.71% saving of token costs and 16.62% higher accuracy over state-of-the-art baselines. The results indicate our adaptability, allowing seamless domain transfer with minimal intervention on schema.
NT-LLM: A Novel Node Tokenizer for Integrating Graph Structure into Large Language Models
Graphs are a fundamental data structure for representing relationships in real-world scenarios. With the success of Large Language Models (LLMs) across various natural language processing (NLP) tasks, there has been growing interest in integrating LLMs for graph learning. However, applying LLMs to graph-related tasks poses significant challenges, as these models are not inherently designed to capture the complex structural information present in graphs. Existing approaches address this challenge through two strategies: the chain of tasks approach, which uses Graph Neural Networks (GNNs) to encode the graph structure so that LLMs are relieved from understanding spatial positions; and Graph-to-Text Conversion, which translates graph structures into semantic text representations that LLMs can process. Despite their progress, these methods often struggle to fully preserve the topological information of graphs or require extensive computational resources, limiting their practical applicability. In this work, we introduce Node Tokenizer for Large Language Models (NT-LLM), a novel framework that efficiently encodes graph structures by selecting key nodes as anchors and representing each node based on its relative distance to these anchors. This position-anchored encoding effectively captures the graph topology, enabling enhanced reasoning capabilities in LLMs over graph data. Additionally, we implement a task-specific tuning procedure to further improve structural understanding within LLMs. Through extensive empirical evaluations, NT-LLM demonstrates significant performance improvements across a variety of graph-related tasks.
