Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeConcept-Guided Chain-of-Thought Prompting for Pairwise Comparison Scoring of Texts with Large Language Models
Existing text scoring methods require a large corpus, struggle with short texts, or require hand-labeled data. We develop a text scoring framework that leverages generative large language models (LLMs) to (1) set texts against the backdrop of information from the near-totality of the web and digitized media, and (2) effectively transform pairwise text comparisons from a reasoning problem to a pattern recognition task. Our approach, concept-guided chain-of-thought (CGCoT), utilizes a chain of researcher-designed prompts with an LLM to generate a concept-specific breakdown for each text, akin to guidance provided to human coders. We then pairwise compare breakdowns using an LLM and aggregate answers into a score using a probability model. We apply this approach to better understand speech reflecting aversion to specific political parties on Twitter, a topic that has commanded increasing interest because of its potential contributions to democratic backsliding. We achieve stronger correlations with human judgments than widely used unsupervised text scoring methods like Wordfish. In a supervised setting, besides a small pilot dataset to develop CGCoT prompts, our measures require no additional hand-labeled data and produce predictions on par with RoBERTa-Large fine-tuned on thousands of hand-labeled tweets. This project showcases the potential of combining human expertise and LLMs for scoring tasks.
Improving Autoencoder-based Outlier Detection with Adjustable Probabilistic Reconstruction Error and Mean-shift Outlier Scoring
Autoencoders were widely used in many machine learning tasks thanks to their strong learning ability which has drawn great interest among researchers in the field of outlier detection. However, conventional autoencoder-based methods lacked considerations in two aspects. This limited their performance in outlier detection. First, the mean squared error used in conventional autoencoders ignored the judgment uncertainty of the autoencoder, which limited their representation ability. Second, autoencoders suffered from the abnormal reconstruction problem: some outliers can be unexpectedly reconstructed well, making them difficult to identify from the inliers. To mitigate the aforementioned issues, two novel methods were proposed in this paper. First, a novel loss function named Probabilistic Reconstruction Error (PRE) was constructed to factor in both reconstruction bias and judgment uncertainty. To further control the trade-off of these two factors, two weights were introduced in PRE producing Adjustable Probabilistic Reconstruction Error (APRE), which benefited the outlier detection in different applications. Second, a conceptually new outlier scoring method based on mean-shift (MSS) was proposed to reduce the false inliers caused by the autoencoder. Experiments on 32 real-world outlier detection datasets proved the effectiveness of the proposed methods. The combination of the proposed methods achieved 41% of the relative performance improvement compared to the best baseline. The MSS improved the performance of multiple autoencoder-based outlier detectors by an average of 20%. The proposed two methods have the potential to advance autoencoder's development in outlier detection. The code is available on www.OutlierNet.com for reproducibility.
From Captions to Keyframes: KeyScore for Multimodal Frame Scoring and Video-Language Understanding
Selecting informative keyframes is critical for efficient video understanding, yet existing approaches often rely on heuristics, ignore semantics, or produce redundant frames. We propose KeyScore, a caption-aware frame scoring method that combines three complementary signals: semantic similarity to captions, temporal representativeness, and contextual drop impact. Applied to large-scale video-caption datasets, KeyScore generates frame-level importance scores that enable training keyframe extractors or guiding video-language models. To support this, we also propose STACFP, a Spatio-Temporal Adaptive Clustering method that generates diverse and compact frame proposals across long videos. Together, KeyScore and STACFP reduce uninformative frames while preserving critical content, resulting in faster and more accurate inference. Our experiments on three standard video-language benchmarks (MSRVTT, MSVD, DiDeMo) show that combining STACFP and KeyScore enables up to 99% frame reduction compared to full-frame processing, while outperforming uniform 8-frame encoders in video-text retrieval, keyframe extraction, and action recognition tasks. By focusing on semantically relevant frames, our method enhances both efficiency and performance, enabling scalable and caption-grounded video understanding.
CLIPRerank: An Extremely Simple Method for Improving Ad-hoc Video Search
Ad-hoc Video Search (AVS) enables users to search for unlabeled video content using on-the-fly textual queries. Current deep learning-based models for AVS are trained to optimize holistic similarity between short videos and their associated descriptions. However, due to the diversity of ad-hoc queries, even for a short video, its truly relevant part w.r.t. a given query can be of shorter duration. In such a scenario, the holistic similarity becomes suboptimal. To remedy the issue, we propose in this paper CLIPRerank, a fine-grained re-scoring method. We compute cross-modal similarities between query and video frames using a pre-trained CLIP model, with multi-frame scores aggregated by max pooling. The fine-grained score is weightedly added to the initial score for search result reranking. As such, CLIPRerank is agnostic to the underlying video retrieval models and extremely simple, making it a handy plug-in for boosting AVS. Experiments on the challenging TRECVID AVS benchmarks (from 2016 to 2021) justify the effectiveness of the proposed strategy. CLIPRerank consistently improves the TRECVID top performers and multiple existing models including SEA, W2VV++, Dual Encoding, Dual Task, LAFF, CLIP2Video, TS2-Net and X-CLIP. Our method also works when substituting BLIP-2 for CLIP.
CoTAL: Human-in-the-Loop Prompt Engineering, Chain-of-Thought Reasoning, and Active Learning for Generalizable Formative Assessment Scoring
Large language models (LLMs) have created new opportunities to assist teachers and support student learning. Methods such as chain-of-thought (CoT) prompting enable LLMs to grade formative assessments in science, providing scores and relevant feedback to students. However, the extent to which these methods generalize across curricula in multiple domains (such as science, computing, and engineering) remains largely untested. In this paper, we introduce Chain-of-Thought Prompting + Active Learning (CoTAL), an LLM-based approach to formative assessment scoring that (1) leverages Evidence-Centered Design (ECD) principles to develop curriculum-aligned formative assessments and rubrics, (2) applies human-in-the-loop prompt engineering to automate response scoring, and (3) incorporates teacher and student feedback to iteratively refine assessment questions, grading rubrics, and LLM prompts for automated grading. Our findings demonstrate that CoTAL improves GPT-4's scoring performance, achieving gains of up to 24.5% over a non-prompt-engineered baseline. Both teachers and students view CoTAL as effective in scoring and explaining student responses, each providing valuable refinements to enhance grading accuracy and explanation quality.
AGIBench: A Multi-granularity, Multimodal, Human-referenced, Auto-scoring Benchmark for Large Language Models
Large language models (LLMs) like ChatGPT have revealed amazing intelligence. How to evaluate the question-solving abilities of LLMs and their degrees of intelligence is a hot-spot but challenging issue. First, the question-solving abilities are interlaced with different ability branches like understanding and massive knowledge categories like mathematics. Second, the inputs of questions are multimodal that may involve text and images. Third, the response format of LLMs is diverse and thus poses great challenges for result extraction and evaluation. In this paper, we propose AGIBench -- a multi-granularity, multimodal, human-referenced, and auto-scoring benchmarking methodology for LLMs. Instead of a collection of blended questions, AGIBench focuses on three typical ability branches and adopts a four-tuple <ability branch, knowledge, difficulty, modal> to label the attributes of each question. First, it supports multi-granularity benchmarking, e.g., per-question, per-ability branch, per-knowledge, per-modal, per-dataset, and per-difficulty level granularities. Second, it contains multimodal input, including text and images. Third, it classifies all the questions into five degrees of difficulty according to the average accuracy rate of abundant educated humans (human-referenced). Fourth, it adopts zero-shot learning to avoid introducing additional unpredictability and provides an auto-scoring method to extract and judge the result. Finally, it defines multi-dimensional metrics, including accuracy under the average, worst, best, and majority voting cases, and repeatability. AGIBench is publically available from https://www.benchcouncil.org/agibench.
Generalization is not a universal guarantee: Estimating similarity to training data with an ensemble out-of-distribution metric
Failure of machine learning models to generalize to new data is a core problem limiting the reliability of AI systems, partly due to the lack of simple and robust methods for comparing new data to the original training dataset. We propose a standardized approach for assessing data similarity in a model-agnostic manner by constructing a supervised autoencoder for generalizability estimation (SAGE). We compare points in a low-dimensional embedded latent space, defining empirical probability measures for k-Nearest Neighbors (kNN) distance, reconstruction of inputs and task-based performance. As proof of concept for classification tasks, we use MNIST and CIFAR-10 to demonstrate how an ensemble output probability score can separate deformed images from a mixture of typical test examples, and how this SAGE score is robust to transformations of increasing severity. As further proof of concept, we extend this approach to a regression task using non-imaging data (UCI Abalone). In all cases, we show that out-of-the-box model performance increases after SAGE score filtering, even when applied to data from the model's own training and test datasets. Our out-of-distribution scoring method can be introduced during several steps of model construction and assessment, leading to future improvements in responsible deep learning implementation.
A Simple Zero-shot Prompt Weighting Technique to Improve Prompt Ensembling in Text-Image Models
Contrastively trained text-image models have the remarkable ability to perform zero-shot classification, that is, classifying previously unseen images into categories that the model has never been explicitly trained to identify. However, these zero-shot classifiers need prompt engineering to achieve high accuracy. Prompt engineering typically requires hand-crafting a set of prompts for individual downstream tasks. In this work, we aim to automate this prompt engineering and improve zero-shot accuracy through prompt ensembling. In particular, we ask "Given a large pool of prompts, can we automatically score the prompts and ensemble those that are most suitable for a particular downstream dataset, without needing access to labeled validation data?". We demonstrate that this is possible. In doing so, we identify several pathologies in a naive prompt scoring method where the score can be easily overconfident due to biases in pre-training and test data, and we propose a novel prompt scoring method that corrects for the biases. Using our proposed scoring method to create a weighted average prompt ensemble, our method outperforms equal average ensemble, as well as hand-crafted prompts, on ImageNet, 4 of its variants, and 11 fine-grained classification benchmarks, all while being fully automatic, optimization-free, and not requiring access to labeled validation data.
Pre-training Is (Almost) All You Need: An Application to Commonsense Reasoning
Fine-tuning of pre-trained transformer models has become the standard approach for solving common NLP tasks. Most of the existing approaches rely on a randomly initialized classifier on top of such networks. We argue that this fine-tuning procedure is sub-optimal as the pre-trained model has no prior on the specific classifier labels, while it might have already learned an intrinsic textual representation of the task. In this paper, we introduce a new scoring method that casts a plausibility ranking task in a full-text format and leverages the masked language modeling head tuned during the pre-training phase. We study commonsense reasoning tasks where the model must rank a set of hypotheses given a premise, focusing on the COPA, Swag, HellaSwag and CommonsenseQA datasets. By exploiting our scoring method without fine-tuning, we are able to produce strong baselines (e.g. 80% test accuracy on COPA) that are comparable to supervised approaches. Moreover, when fine-tuning directly on the proposed scoring function, we show that our method provides a much more stable training phase across random restarts (e.g times 10 standard deviation reduction on COPA test accuracy) and requires less annotated data than the standard classifier approach to reach equivalent performances.
Learning Multi-dimensional Human Preference for Text-to-Image Generation
Current metrics for text-to-image models typically rely on statistical metrics which inadequately represent the real preference of humans. Although recent work attempts to learn these preferences via human annotated images, they reduce the rich tapestry of human preference to a single overall score. However, the preference results vary when humans evaluate images with different aspects. Therefore, to learn the multi-dimensional human preferences, we propose the Multi-dimensional Preference Score (MPS), the first multi-dimensional preference scoring model for the evaluation of text-to-image models. The MPS introduces the preference condition module upon CLIP model to learn these diverse preferences. It is trained based on our Multi-dimensional Human Preference (MHP) Dataset, which comprises 918,315 human preference choices across four dimensions (i.e., aesthetics, semantic alignment, detail quality and overall assessment) on 607,541 images. The images are generated by a wide range of latest text-to-image models. The MPS outperforms existing scoring methods across 3 datasets in 4 dimensions, enabling it a promising metric for evaluating and improving text-to-image generation.
Self-Evaluation Improves Selective Generation in Large Language Models
Safe deployment of large language models (LLMs) may benefit from a reliable method for assessing their generated content to determine when to abstain or to selectively generate. While likelihood-based metrics such as perplexity are widely employed, recent research has demonstrated the limitations of using sequence-level probability estimates given by LLMs as reliable indicators of generation quality. Conversely, LLMs have demonstrated strong calibration at the token level, particularly when it comes to choosing correct answers in multiple-choice questions or evaluating true/false statements. In this work, we reformulate open-ended generation tasks into token-level prediction tasks, and leverage LLMs' superior calibration at the token level. We instruct an LLM to self-evaluate its answers, employing either a multi-way comparison or a point-wise evaluation approach, with the option to include a ``None of the above'' option to express the model's uncertainty explicitly. We benchmark a range of scoring methods based on self-evaluation and evaluate their performance in selective generation using TruthfulQA and TL;DR. Through experiments with PaLM-2 and GPT-3, we demonstrate that self-evaluation based scores not only improve accuracy, but also correlate better with the overall quality of generated content.
InFoBench: Evaluating Instruction Following Ability in Large Language Models
This paper introduces the Decomposed Requirements Following Ratio (DRFR), a new metric for evaluating Large Language Models' (LLMs) ability to follow instructions. Addressing a gap in current methodologies, DRFR breaks down complex instructions into simpler criteria, facilitating a detailed analysis of LLMs' compliance with various aspects of tasks. Alongside this metric, we present InFoBench, a benchmark comprising 500 diverse instructions and 2,250 decomposed questions across multiple constraint categories. Our experiments compare DRFR with traditional scoring methods and explore annotation sources, including human experts, crowd-sourced workers, and GPT-4. The findings demonstrate DRFR's higher reliability and the effectiveness of using GPT-4 as a cost-efficient annotator. The evaluation of several advanced LLMs using this framework reveals their strengths and areas needing improvement, particularly in complex instruction-following. This study contributes a novel metric and benchmark, offering insights for future LLM development and evaluation.
Beyond No: Quantifying AI Over-Refusal and Emotional Attachment Boundaries
We present an open-source benchmark and evaluation framework for assessing emotional boundary handling in Large Language Models (LLMs). Using a dataset of 1156 prompts across six languages, we evaluated three leading LLMs (GPT-4o, Claude-3.5 Sonnet, and Mistral-large) on their ability to maintain appropriate emotional boundaries through pattern-matched response analysis. Our framework quantifies responses across seven key patterns: direct refusal, apology, explanation, deflection, acknowledgment, boundary setting, and emotional awareness. Results demonstrate significant variation in boundary-handling approaches, with Claude-3.5 achieving the highest overall score (8.69/10) and producing longer, more nuanced responses (86.51 words on average). We identified a substantial performance gap between English (average score 25.62) and non-English interactions (< 0.22), with English responses showing markedly higher refusal rates (43.20% vs. < 1% for non-English). Pattern analysis revealed model-specific strategies, such as Mistral's preference for deflection (4.2%) and consistently low empathy scores across all models (< 0.06). Limitations include potential oversimplification through pattern matching, lack of contextual understanding in response analysis, and binary classification of complex emotional responses. Future work should explore more nuanced scoring methods, expand language coverage, and investigate cultural variations in emotional boundary expectations. Our benchmark and methodology provide a foundation for systematic evaluation of LLM emotional intelligence and boundary-setting capabilities.
Mitigating Catastrophic Forgetting in Target Language Adaptation of LLMs via Source-Shielded Updates
Expanding the linguistic diversity of instruct large language models (LLMs) is crucial for global accessibility but is often hindered by the reliance on costly specialized target language labeled data and catastrophic forgetting during adaptation. We tackle this challenge under a realistic, low-resource constraint: adapting instruct LLMs using only unlabeled target language data. We introduce Source-Shielded Updates (SSU), a selective parameter update strategy that proactively preserves source knowledge. Using a small set of source data and a parameter importance scoring method, SSU identifies parameters critical to maintaining source abilities. It then applies a column-wise freezing strategy to protect these parameters before adaptation. Experiments across five typologically diverse languages and 7B and 13B models demonstrate that SSU successfully mitigates catastrophic forgetting. It reduces performance degradation on monolingual source tasks to just 3.4% (7B) and 2.8% (13B) on average, a stark contrast to the 20.3% and 22.3% from full fine-tuning. SSU also achieves target-language performance highly competitive with full fine-tuning, outperforming it on all benchmarks for 7B models and the majority for 13B models.
Evaluating the Factual Consistency of Large Language Models Through News Summarization
While large language models (LLMs) have proven to be effective on a large variety of tasks, they are also known to hallucinate information. To measure whether an LLM prefers factually consistent continuations of its input, we propose a new benchmark called FIB(Factual Inconsistency Benchmark) that focuses on the task of summarization. Specifically, our benchmark involves comparing the scores an LLM assigns to a factually consistent versus a factually inconsistent summary for an input news article. For factually consistent summaries, we use human-written reference summaries that we manually verify as factually consistent. To generate summaries that are factually inconsistent, we generate summaries from a suite of summarization models that we have manually annotated as factually inconsistent. A model's factual consistency is then measured according to its accuracy, i.e.\ the proportion of documents where it assigns a higher score to the factually consistent summary. To validate the usefulness of FIB, we evaluate 23 large language models ranging from 1B to 176B parameters from six different model families including BLOOM and OPT. We find that existing LLMs generally assign a higher score to factually consistent summaries than to factually inconsistent summaries. However, if the factually inconsistent summaries occur verbatim in the document, then LLMs assign a higher score to these factually inconsistent summaries than factually consistent summaries. We validate design choices in our benchmark including the scoring method and source of distractor summaries. Our code and benchmark data can be found at https://github.com/r-three/fib.
VisionReward: Fine-Grained Multi-Dimensional Human Preference Learning for Image and Video Generation
We present a general strategy to aligning visual generation models -- both image and video generation -- with human preference. To start with, we build VisionReward -- a fine-grained and multi-dimensional reward model. We decompose human preferences in images and videos into multiple dimensions, each represented by a series of judgment questions, linearly weighted and summed to an interpretable and accurate score. To address the challenges of video quality assessment, we systematically analyze various dynamic features of videos, which helps VisionReward surpass VideoScore by 17.2% and achieve top performance for video preference prediction. Based on VisionReward, we develop a multi-objective preference learning algorithm that effectively addresses the issue of confounding factors within preference data. Our approach significantly outperforms existing image and video scoring methods on both machine metrics and human evaluation. All code and datasets are provided at https://github.com/THUDM/VisionReward.
GenAI-Bench: Evaluating and Improving Compositional Text-to-Visual Generation
While text-to-visual models now produce photo-realistic images and videos, they struggle with compositional text prompts involving attributes, relationships, and higher-order reasoning such as logic and comparison. In this work, we conduct an extensive human study on GenAI-Bench to evaluate the performance of leading image and video generation models in various aspects of compositional text-to-visual generation. We also compare automated evaluation metrics against our collected human ratings and find that VQAScore -- a metric measuring the likelihood that a VQA model views an image as accurately depicting the prompt -- significantly outperforms previous metrics such as CLIPScore. In addition, VQAScore can improve generation in a black-box manner (without finetuning) via simply ranking a few (3 to 9) candidate images. Ranking by VQAScore is 2x to 3x more effective than other scoring methods like PickScore, HPSv2, and ImageReward at improving human alignment ratings for DALL-E 3 and Stable Diffusion, especially on compositional prompts that require advanced visio-linguistic reasoning. We will release a new GenAI-Rank benchmark with over 40,000 human ratings to evaluate scoring metrics on ranking images generated from the same prompt. Lastly, we discuss promising areas for improvement in VQAScore, such as addressing fine-grained visual details. We will release all human ratings (over 80,000) to facilitate scientific benchmarking of both generative models and automated metrics.
Towards Automation of Human Stage of Decay Identification: An Artificial Intelligence Approach
Determining the stage of decomposition (SOD) is crucial for estimating the postmortem interval and identifying human remains. Currently, labor-intensive manual scoring methods are used for this purpose, but they are subjective and do not scale for the emerging large-scale archival collections of human decomposition photos. This study explores the feasibility of automating two common human decomposition scoring methods proposed by Megyesi and Gelderman using artificial intelligence (AI). We evaluated two popular deep learning models, Inception V3 and Xception, by training them on a large dataset of human decomposition images to classify the SOD for different anatomical regions, including the head, torso, and limbs. Additionally, an interrater study was conducted to assess the reliability of the AI models compared to human forensic examiners for SOD identification. The Xception model achieved the best classification performance, with macro-averaged F1 scores of .878, .881, and .702 for the head, torso, and limbs when predicting Megyesi's SODs, and .872, .875, and .76 for the head, torso, and limbs when predicting Gelderman's SODs. The interrater study results supported AI's ability to determine the SOD at a reliability level comparable to a human expert. This work demonstrates the potential of AI models trained on a large dataset of human decomposition images to automate SOD identification.
Filter Like You Test: Data-Driven Data Filtering for CLIP Pretraining
We introduce Filter Like You Test (FLYT), a method for curating large-scale vision-language datasets that learns the usefulness of each data point as a pretraining example. FLYT trains a scoring model that learns to weigh each example using gradient signals from downstream tasks training sets. Using the same training methodology, we develop Mixing-FLYT (M-FLYT), which takes the per-example scores generated by different scoring methods and learns to unify them into a single score. Our training methodology naturally produces a distribution over the training examples, which we leverage through Soft Cap Sampling (SCS), a strategy for obtaining a filtered pretraining dataset from per-example probabilities that samples examples while preventing over-representation through a repetition penalty. Using all three methods, we achieve 40.1% ImageNet zero-shot accuracy on the DataComp medium scale filtering benchmark, a 1.9% absolute accuracy increase over all previous results and a 5.5% increase over results that -- like us -- use only public resources.
T-SHIRT: Token-Selective Hierarchical Data Selection for Instruction Tuning
Instruction tuning is essential for Large Language Models (LLMs) to effectively follow user instructions. To improve training efficiency and reduce data redundancy, recent works use LLM-based scoring functions, e.g., Instruction-Following Difficulty (IFD), to select high-quality instruction-tuning data with scores above a threshold. While these data selection methods often lead to models that can match or even exceed the performance of models trained on the full datasets, we identify two key limitations: (i) they assess quality at the sample level, ignoring token-level informativeness; and (ii) they overlook the robustness of the scoring method, often selecting a sample due to superficial lexical features instead of its true quality. In this work, we propose Token-Selective HIeRarchical Data Selection for Instruction Tuning (T-SHIRT), a novel data selection framework that introduces a new scoring method to include only informative tokens in quality evaluation and also promotes robust and reliable samples whose neighbors also show high quality with less local inconsistencies. We demonstrate that models instruction-tuned on a curated dataset (only 5% of the original size) using T-SHIRT can outperform those trained on the entire large-scale dataset by up to 5.48 points on average across eight benchmarks. Across various LLMs and training set scales, our method consistently surpasses existing state-of-the-art data selection techniques, while also remaining both cost-effective and highly efficient. For instance, by using GPT-2 for score computation, we are able to process a dataset of 52k samples in 40 minutes on a single GPU. Our code is available at https://github.com/Dynamite321/T-SHIRT.
What If the Input is Expanded in OOD Detection?
Out-of-distribution (OOD) detection aims to identify OOD inputs from unknown classes, which is important for the reliable deployment of machine learning models in the open world. Various scoring functions are proposed to distinguish it from in-distribution (ID) data. However, existing methods generally focus on excavating the discriminative information from a single input, which implicitly limits its representation dimension. In this work, we introduce a novel perspective, i.e., employing different common corruptions on the input space, to expand that. We reveal an interesting phenomenon termed confidence mutation, where the confidence of OOD data can decrease significantly under the corruptions, while the ID data shows a higher confidence expectation considering the resistance of semantic features. Based on that, we formalize a new scoring method, namely, Confidence aVerage (CoVer), which can capture the dynamic differences by simply averaging the scores obtained from different corrupted inputs and the original ones, making the OOD and ID distributions more separable in detection tasks. Extensive experiments and analyses have been conducted to understand and verify the effectiveness of CoVer. The code is publicly available at: https://github.com/tmlr-group/CoVer.
CARE to Compare: A real-world dataset for anomaly detection in wind turbine data
Anomaly detection plays a crucial role in the field of predictive maintenance for wind turbines, yet the comparison of different algorithms poses a difficult task because domain specific public datasets are scarce. Many comparisons of different approaches either use benchmarks composed of data from many different domains, inaccessible data or one of the few publicly available datasets which lack detailed information about the faults. Moreover, many publications highlight a couple of case studies where fault detection was successful. With this paper we publish a high quality dataset that contains data from 36 wind turbines across 3 different wind farms as well as the most detailed fault information of any public wind turbine dataset as far as we know. The new dataset contains 89 years worth of real-world operating data of wind turbines, distributed across 44 labeled time frames for anomalies that led up to faults, as well as 51 time series representing normal behavior. Additionally, the quality of training data is ensured by turbine-status-based labels for each data point. Furthermore, we propose a new scoring method, called CARE (Coverage, Accuracy, Reliability and Earliness), which takes advantage of the information depth that is present in the dataset to identify a good all-around anomaly detection model. This score considers the anomaly detection performance, the ability to recognize normal behavior properly and the capability to raise as few false alarms as possible while simultaneously detecting anomalies early.
Rethinking Data Selection at Scale: Random Selection is Almost All You Need
Supervised fine-tuning (SFT) is crucial for aligning Large Language Models (LLMs) with human instructions. The primary goal during SFT is to select a small yet representative subset of training data from the larger pool, such that fine-tuning with this subset achieves results comparable to or even exceeding those obtained using the entire dataset. However, most existing data selection techniques are designed for small-scale data pools, which fail to meet the demands of real-world SFT scenarios. In this paper, we replicated several self-scoring methods those that do not rely on external model assistance on two million scale datasets, and found that nearly all methods struggled to significantly outperform random selection when dealing with such large-scale data pools. Moreover, our comparisons suggest that, during SFT, diversity in data selection is more critical than simply focusing on high quality data. We also analyzed the limitations of several current approaches, explaining why they perform poorly on large-scale datasets and why they are unsuitable for such contexts. Finally, we found that filtering data by token length offers a stable and efficient method for improving results. This approach, particularly when training on long text data, proves highly beneficial for relatively weaker base models, such as Llama3.
ImageReward: Learning and Evaluating Human Preferences for Text-to-Image Generation
We present ImageReward -- the first general-purpose text-to-image human preference reward model -- to address various prevalent issues in generative models and align them with human values and preferences. Its training is based on our systematic annotation pipeline that covers both the rating and ranking components, collecting a dataset of 137k expert comparisons to date. In human evaluation, ImageReward outperforms existing scoring methods (e.g., CLIP by 38.6\%), making it a promising automatic metric for evaluating and improving text-to-image synthesis. The reward model is publicly available via the image-reward package at https://github.com/THUDM/ImageReward.
PlainQAFact: Automatic Factuality Evaluation Metric for Biomedical Plain Language Summaries Generation
Hallucinated outputs from language models pose risks in the medical domain, especially for lay audiences making health-related decisions. Existing factuality evaluation methods, such as entailment- and question-answering-based (QA), struggle with plain language summary (PLS) generation due to elaborative explanation phenomenon, which introduces external content (e.g., definitions, background, examples) absent from the source document to enhance comprehension. To address this, we introduce PlainQAFact, a framework trained on a fine-grained, human-annotated dataset PlainFact, to evaluate the factuality of both source-simplified and elaboratively explained sentences. PlainQAFact first classifies factuality type and then assesses factuality using a retrieval-augmented QA-based scoring method. Our approach is lightweight and computationally efficient. Empirical results show that existing factuality metrics fail to effectively evaluate factuality in PLS, especially for elaborative explanations, whereas PlainQAFact achieves state-of-the-art performance. We further analyze its effectiveness across external knowledge sources, answer extraction strategies, overlap measures, and document granularity levels, refining its overall factuality assessment.
When Benchmarks are Targets: Revealing the Sensitivity of Large Language Model Leaderboards
Large Language Model (LLM) leaderboards based on benchmark rankings are regularly used to guide practitioners in model selection. Often, the published leaderboard rankings are taken at face value - we show this is a (potentially costly) mistake. Under existing leaderboards, the relative performance of LLMs is highly sensitive to (often minute) details. We show that for popular multiple choice question benchmarks (e.g. MMLU) minor perturbations to the benchmark, such as changing the order of choices or the method of answer selection, result in changes in rankings up to 8 positions. We explain this phenomenon by conducting systematic experiments over three broad categories of benchmark perturbations and identifying the sources of this behavior. Our analysis results in several best-practice recommendations, including the advantage of a hybrid scoring method for answer selection. Our study highlights the dangers of relying on simple benchmark evaluations and charts the path for more robust evaluation schemes on the existing benchmarks.
Capturing Polysemanticity with PRISM: A Multi-Concept Feature Description Framework
Automated interpretability research aims to identify concepts encoded in neural network features to enhance human understanding of model behavior. Current feature description methods face two critical challenges: limited robustness and the flawed assumption that each neuron encodes only a single concept (monosemanticity), despite growing evidence that neurons are often polysemantic. This assumption restricts the expressiveness of feature descriptions and limits their ability to capture the full range of behaviors encoded in model internals. To address this, we introduce Polysemantic FeatuRe Identification and Scoring Method (PRISM), a novel framework that captures the inherent complexity of neural network features. Unlike prior approaches that assign a single description per feature, PRISM provides more nuanced descriptions for both polysemantic and monosemantic features. We apply PRISM to language models and, through extensive benchmarking against existing methods, demonstrate that our approach produces more accurate and faithful feature descriptions, improving both overall description quality (via a description score) and the ability to capture distinct concepts when polysemanticity is present (via a polysemanticity score).
Soft Self-Consistency Improves Language Model Agents
Generations from large language models (LLMs) can be improved by sampling and scoring multiple solutions to select a final answer. Current "sample and select" methods such as self-consistency (SC) rely on majority voting to score answers. However, when tasks have many distinct and valid answers, selection by voting requires a large number of samples. This makes SC prohibitively expensive for interactive tasks that involve generating multiple actions (answers) sequentially. After establishing that majority voting fails to provide consistent gains on such tasks, we demonstrate how to increase success rates by softening the scoring criterion. We introduce Soft Self-Consistency (SOFT-SC), which replaces SC's discontinuous scoring with a continuous score computed from model likelihoods, allowing for selection even when actions are sparsely distributed. SOFT-SC improves both performance and efficiency on long-horizon interactive tasks, requiring half as many samples as SC for comparable or better performance. For a fixed number of samples, SOFT-SC leads to a 1.3% increase over SC in absolute success rate on writing bash programs, a 6.6% increase on online shopping (WebShop), and a 4.7% increase for an interactive household game (ALFWorld). Finally, we show that SOFT-SC can be applied to both open-source and black-box models.
ViM: Out-Of-Distribution with Virtual-logit Matching
Most of the existing Out-Of-Distribution (OOD) detection algorithms depend on single input source: the feature, the logit, or the softmax probability. However, the immense diversity of the OOD examples makes such methods fragile. There are OOD samples that are easy to identify in the feature space while hard to distinguish in the logit space and vice versa. Motivated by this observation, we propose a novel OOD scoring method named Virtual-logit Matching (ViM), which combines the class-agnostic score from feature space and the In-Distribution (ID) class-dependent logits. Specifically, an additional logit representing the virtual OOD class is generated from the residual of the feature against the principal space, and then matched with the original logits by a constant scaling. The probability of this virtual logit after softmax is the indicator of OOD-ness. To facilitate the evaluation of large-scale OOD detection in academia, we create a new OOD dataset for ImageNet-1K, which is human-annotated and is 8.8x the size of existing datasets. We conducted extensive experiments, including CNNs and vision transformers, to demonstrate the effectiveness of the proposed ViM score. In particular, using the BiT-S model, our method gets an average AUROC 90.91% on four difficult OOD benchmarks, which is 4% ahead of the best baseline. Code and dataset are available at https://github.com/haoqiwang/vim.
When Less is More: Investigating Data Pruning for Pretraining LLMs at Scale
Large volumes of text data have contributed significantly to the development of large language models (LLMs) in recent years. This data is typically acquired by scraping the internet, leading to pretraining datasets comprised of noisy web text. To date, efforts to prune these datasets down to a higher quality subset have relied on hand-crafted heuristics encoded as rule-based filters. In this work, we take a wider view and explore scalable estimates of data quality that can be used to systematically measure the quality of pretraining data. We perform a rigorous comparison at scale of the simple data quality estimator of perplexity, as well as more sophisticated and computationally intensive estimates of the Error L2-Norm and memorization. These metrics are used to rank and prune pretraining corpora, and we subsequently compare LLMs trained on these pruned datasets. Surprisingly, we find that the simple technique of perplexity outperforms our more computationally expensive scoring methods. We improve over our no-pruning baseline while training on as little as 30% of the original training dataset. Our work sets the foundation for unexplored strategies in automatically curating high quality corpora and suggests the majority of pretraining data can be removed while retaining performance.
GenSelect: A Generative Approach to Best-of-N
Generative reward models with parallel sampling have enabled effective test-time scaling for reasoning tasks. Current approaches employ pointwise scoring of individual solutions or pairwise comparisons. However, pointwise methods underutilize LLMs' comparative abilities, while pairwise methods scale inefficiently with larger sampling budgets. We introduce GenSelect, where the LLM uses long reasoning to select the best solution among N candidates. This leverages LLMs' comparative strengths while scaling efficiently across parallel sampling budgets. For math reasoning, we demonstrate that reasoning models, such as QwQ and DeepSeek-R1-0528, excel at GenSelect, outperforming existing scoring approaches with simple prompting.
CrossViewDiff: A Cross-View Diffusion Model for Satellite-to-Street View Synthesis
Satellite-to-street view synthesis aims at generating a realistic street-view image from its corresponding satellite-view image. Although stable diffusion models have exhibit remarkable performance in a variety of image generation applications, their reliance on similar-view inputs to control the generated structure or texture restricts their application to the challenging cross-view synthesis task. In this work, we propose CrossViewDiff, a cross-view diffusion model for satellite-to-street view synthesis. To address the challenges posed by the large discrepancy across views, we design the satellite scene structure estimation and cross-view texture mapping modules to construct the structural and textural controls for street-view image synthesis. We further design a cross-view control guided denoising process that incorporates the above controls via an enhanced cross-view attention module. To achieve a more comprehensive evaluation of the synthesis results, we additionally design a GPT-based scoring method as a supplement to standard evaluation metrics. We also explore the effect of different data sources (e.g., text, maps, building heights, and multi-temporal satellite imagery) on this task. Results on three public cross-view datasets show that CrossViewDiff outperforms current state-of-the-art on both standard and GPT-based evaluation metrics, generating high-quality street-view panoramas with more realistic structures and textures across rural, suburban, and urban scenes. The code and models of this work will be released at https://opendatalab.github.io/CrossViewDiff/.
Neuron-Level Analysis of Cultural Understanding in Large Language Models
As large language models (LLMs) are increasingly deployed worldwide, ensuring their fair and comprehensive cultural understanding is important. However, LLMs exhibit cultural bias and limited awareness of underrepresented cultures, while the mechanisms underlying their cultural understanding remain underexplored. To fill this gap, we conduct a neuron-level analysis to identify neurons that drive cultural behavior, introducing a gradient-based scoring method with additional filtering for precise refinement. We identify both culture-general neurons contributing to cultural understanding regardless of cultures, and culture-specific neurons tied to an individual culture. These neurons account for less than 1% of all neurons and are concentrated in shallow to middle MLP layers. We validate their role by showing that suppressing them substantially degrades performance on cultural benchmarks (by up to 30%), while performance on general natural language understanding (NLU) benchmarks remains largely unaffected. Moreover, we show that culture-specific neurons support knowledge of not only the target culture, but also related cultures. Finally, we demonstrate that training on NLU benchmarks can diminish models' cultural understanding when we update modules containing many culture-general neurons. These findings provide insights into the internal mechanisms of LLMs and offer practical guidance for model training and engineering. Our code is available at https://github.com/ynklab/CULNIG
Pralekha: An Indic Document Alignment Evaluation Benchmark
Mining parallel document pairs poses a significant challenge because existing sentence embedding models often have limited context windows, preventing them from effectively capturing document-level information. Another overlooked issue is the lack of concrete evaluation benchmarks comprising high-quality parallel document pairs for assessing document-level mining approaches, particularly for Indic languages. In this study, we introduce Pralekha, a large-scale benchmark for document-level alignment evaluation. Pralekha includes over 2 million documents, with a 1:2 ratio of unaligned to aligned pairs, covering 11 Indic languages and English. Using Pralekha, we evaluate various document-level mining approaches across three dimensions: the embedding models, the granularity levels, and the alignment algorithm. To address the challenge of aligning documents using sentence and chunk-level alignments, we propose a novel scoring method, Document Alignment Coefficient (DAC). DAC demonstrates substantial improvements over baseline pooling approaches, particularly in noisy scenarios, achieving average gains of 20-30% in precision and 15-20% in F1 score. These results highlight DAC's effectiveness in parallel document mining for Indic languages.
ReCLIP: A Strong Zero-Shot Baseline for Referring Expression Comprehension
Training a referring expression comprehension (ReC) model for a new visual domain requires collecting referring expressions, and potentially corresponding bounding boxes, for images in the domain. While large-scale pre-trained models are useful for image classification across domains, it remains unclear if they can be applied in a zero-shot manner to more complex tasks like ReC. We present ReCLIP, a simple but strong zero-shot baseline that repurposes CLIP, a state-of-the-art large-scale model, for ReC. Motivated by the close connection between ReC and CLIP's contrastive pre-training objective, the first component of ReCLIP is a region-scoring method that isolates object proposals via cropping and blurring, and passes them to CLIP. However, through controlled experiments on a synthetic dataset, we find that CLIP is largely incapable of performing spatial reasoning off-the-shelf. Thus, the second component of ReCLIP is a spatial relation resolver that handles several types of spatial relations. We reduce the gap between zero-shot baselines from prior work and supervised models by as much as 29% on RefCOCOg, and on RefGTA (video game imagery), ReCLIP's relative improvement over supervised ReC models trained on real images is 8%.
PHYBench: Holistic Evaluation of Physical Perception and Reasoning in Large Language Models
We introduce PHYBench, a novel, high-quality benchmark designed for evaluating reasoning capabilities of large language models (LLMs) in physical contexts. PHYBench consists of 500 meticulously curated physics problems based on real-world physical scenarios, designed to assess the ability of models to understand and reason about realistic physical processes. Covering mechanics, electromagnetism, thermodynamics, optics, modern physics, and advanced physics, the benchmark spans difficulty levels from high school exercises to undergraduate problems and Physics Olympiad challenges. Additionally, we propose the Expression Edit Distance (EED) Score, a novel evaluation metric based on the edit distance between mathematical expressions, which effectively captures differences in model reasoning processes and results beyond traditional binary scoring methods. We evaluate various LLMs on PHYBench and compare their performance with human experts. Our results reveal that even state-of-the-art reasoning models significantly lag behind human experts, highlighting their limitations and the need for improvement in complex physical reasoning scenarios. Our benchmark results and dataset are publicly available at https://phybench-official.github.io/phybench-demo/.
Which of These Best Describes Multiple Choice Evaluation with LLMs? A) Forced B) Flawed C) Fixable D) All of the Above
Multiple choice question answering (MCQA) is popular for LLM evaluation due to its simplicity and human-like testing, but we argue for its reform. We first reveal flaws in MCQA's format, as it struggles to: 1) test generation/subjectivity; 2) match LLM use cases; and 3) fully test knowledge. We instead advocate for generative formats based on human testing-where LLMs construct and explain answers-better capturing user needs and knowledge while remaining easy to score. We then show even when MCQA is a useful format, its datasets suffer from: leakage; unanswerability; shortcuts; and saturation. In each issue, we give fixes from education, like rubrics to guide MCQ writing; scoring methods to bridle guessing; and Item Response Theory to build harder MCQs. Lastly, we discuss LLM errors in MCQA-robustness, biases, and unfaithful explanations-showing how our prior solutions better measure or address these issues. While we do not need to desert MCQA, we encourage more efforts in refining the task based on educational testing, advancing evaluations.
QualiSpeech: A Speech Quality Assessment Dataset with Natural Language Reasoning and Descriptions
This paper explores a novel perspective to speech quality assessment by leveraging natural language descriptions, offering richer, more nuanced insights than traditional numerical scoring methods. Natural language feedback provides instructive recommendations and detailed evaluations, yet existing datasets lack the comprehensive annotations needed for this approach. To bridge this gap, we introduce QualiSpeech, a comprehensive low-level speech quality assessment dataset encompassing 11 key aspects and detailed natural language comments that include reasoning and contextual insights. Additionally, we propose the QualiSpeech Benchmark to evaluate the low-level speech understanding capabilities of auditory large language models (LLMs). Experimental results demonstrate that finetuned auditory LLMs can reliably generate detailed descriptions of noise and distortion, effectively identifying their types and temporal characteristics. The results further highlight the potential for incorporating reasoning to enhance the accuracy and reliability of quality assessments. The dataset will be released at https://huggingface.co/datasets/tsinghua-ee/QualiSpeech.
Test-Time Reasoning Through Visual Human Preferences with VLMs and Soft Rewards
Can Visual Language Models (VLMs) effectively capture human visual preferences? This work addresses this question by training VLMs to think about preferences at test time, employing reinforcement learning methods inspired by DeepSeek R1 and OpenAI O1. Using datasets such as ImageReward and Human Preference Score v2 (HPSv2), our models achieve accuracies of 64.9% on the ImageReward test set (trained on ImageReward official split) and 65.4% on HPSv2 (trained on approximately 25% of its data). These results match traditional encoder-based models while providing transparent reasoning and enhanced generalization. This approach allows to use not only rich VLM world knowledge, but also its potential to think, yielding interpretable outcomes that help decision-making processes. By demonstrating that human visual preferences reasonable by current VLMs, we introduce efficient soft-reward strategies for image ranking, outperforming simplistic selection or scoring methods. This reasoning capability enables VLMs to rank arbitrary images-regardless of aspect ratio or complexity-thereby potentially amplifying the effectiveness of visual Preference Optimization. By reducing the need for extensive markup while improving reward generalization and explainability, our findings can be a strong mile-stone that will enhance text-to-vision models even further.
MergeIT: From Selection to Merging for Efficient Instruction Tuning
Instruction tuning is crucial for optimizing Large Language Models (LLMs), yet mainstream data selection methods heavily rely on LLMs as instruction quality scorers, leading to high computational costs and reduced data diversity. To address these limitations, we propose MergeIT, a novel LLM-based Merging strategy for better Instruction Tuning that shifts the focus from selection to synthesis. MergeIT operates in two stages: first, topic-aware filtering clusters and refines the dataset, preserving diversity while eliminating redundancy without relying on LLM-based scoring. Second, LLM-based merging synthesizes semantically similar instructions into more informative and compact training data, enhancing data richness while further reducing dataset size. Experimental results demonstrate that MergeIT enables efficient, diverse, and scalable instruction selection and synthesis, establishing LLM-based merging as a promising alternative to conventional scoring-based selection methods for instruction tuning. Our source code and datasets are now available at https://github.com/XcloudFance/MergeIT
You Truly Understand What I Need: Intellectual and Friendly Dialogue Agents grounding Knowledge and Persona
To build a conversational agent that interacts fluently with humans, previous studies blend knowledge or personal profile into the pre-trained language model. However, the model that considers knowledge and persona at the same time is still limited, leading to hallucination and a passive way of using personas. We propose an effective dialogue agent that grounds external knowledge and persona simultaneously. The agent selects the proper knowledge and persona to use for generating the answers with our candidate scoring implemented with a poly-encoder. Then, our model generates the utterance with lesser hallucination and more engagingness utilizing retrieval augmented generation with knowledge-persona enhanced query. We conduct experiments on the persona-knowledge chat and achieve state-of-the-art performance in grounding and generation tasks on the automatic metrics. Moreover, we validate the answers from the models regarding hallucination and engagingness through human evaluation and qualitative results. We show our retriever's effectiveness in extracting relevant documents compared to the other previous retrievers, along with the comparison of multiple candidate scoring methods. Code is available at https://github.com/dlawjddn803/INFO
Towards Responsible Evaluation for Text-to-Speech
Recent advances in text-to-speech (TTS) technology have enabled systems to produce human-indistinguishable speech, bringing benefits across accessibility, content creation, and human-computer interaction. However, current evaluation practices are increasingly inadequate for capturing the full range of capabilities, limitations, and societal implications. This position paper introduces the concept of Responsible Evaluation and argues that it is essential and urgent for the next phase of TTS development, structured through three progressive levels: (1) ensuring the faithful and accurate reflection of a model's true capabilities, with more robust, discriminative, and comprehensive objective and subjective scoring methodologies; (2) enabling comparability, standardization, and transferability through standardized benchmarks, transparent reporting, and transferable evaluation metrics; and (3) assessing and mitigating ethical risks associated with forgery, misuse, privacy violations, and security vulnerabilities. Through this concept, we critically examine current evaluation practices, identify systemic shortcomings, and propose actionable recommendations. We hope this concept of Responsible Evaluation will foster more trustworthy and reliable TTS technology and guide its development toward ethically sound and societally beneficial applications.
Multi-modal Generation via Cross-Modal In-Context Learning
In this work, we study the problem of generating novel images from complex multimodal prompt sequences. While existing methods achieve promising results for text-to-image generation, they often struggle to capture fine-grained details from lengthy prompts and maintain contextual coherence within prompt sequences. Moreover, they often result in misaligned image generation for prompt sequences featuring multiple objects. To address this, we propose a Multi-modal Generation via Cross-Modal In-Context Learning (MGCC) method that generates novel images from complex multimodal prompt sequences by leveraging the combined capabilities of large language models (LLMs) and diffusion models. Our MGCC comprises a novel Cross-Modal Refinement module to explicitly learn cross-modal dependencies between the text and image in the LLM embedding space, and a contextual object grounding module to generate object bounding boxes specifically targeting scenes with multiple objects. Our MGCC demonstrates a diverse range of multimodal capabilities, like novel image generation, the facilitation of multimodal dialogue, and generation of texts. Experimental evaluations on two benchmark datasets, demonstrate the effectiveness of our method. On Visual Story Generation (VIST) dataset with multimodal inputs, our MGCC achieves a CLIP Similarity score of 0.652 compared to SOTA GILL 0.641. Similarly, on Visual Dialogue Context (VisDial) having lengthy dialogue sequences, our MGCC achieves an impressive CLIP score of 0.660, largely outperforming existing SOTA method scoring 0.645. Code: https://github.com/VIROBO-15/MGCC
Scoring Time Intervals using Non-Hierarchical Transformer For Automatic Piano Transcription
The neural semi-Markov Conditional Random Field (semi-CRF) framework has demonstrated promise for event-based piano transcription. In this framework, all events (notes or pedals) are represented as closed time intervals tied to specific event types. The neural semi-CRF approach requires an interval scoring matrix that assigns a score for every candidate interval. However, designing an efficient and expressive architecture for scoring intervals is not trivial. This paper introduces a simple method for scoring intervals using scaled inner product operations that resemble how attention scoring is done in transformers. We show theoretically that, due to the special structure from encoding the non-overlapping intervals, under a mild condition, the inner product operations are expressive enough to represent an ideal scoring matrix that can yield the correct transcription result. We then demonstrate that an encoder-only structured non-hierarchical transformer backbone, operating only on a low-time-resolution feature map, is capable of transcribing piano notes and pedals with high accuracy and time precision. The experiment shows that our approach achieves the new state-of-the-art performance across all subtasks in terms of the F1 measure on the Maestro dataset.
When To Solve, When To Verify: Compute-Optimal Problem Solving and Generative Verification for LLM Reasoning
Scaling test-time compute has emerged as a key strategy for enhancing the reasoning capabilities of large language models (LLMs), particularly in tasks like mathematical problem-solving. A traditional approach, Self-Consistency (SC), generates multiple solutions to a problem and selects the most common answer via majority voting. Another common method involves scoring each solution with a reward model (verifier) and choosing the best one. Recent advancements in Generative Reward Models (GenRM) reframe verification as a next-token prediction task, enabling inference-time scaling along a new axis. Specifically, GenRM generates multiple verification chains-of-thought to score each solution. Under a limited inference budget, this introduces a fundamental trade-off: should you spend the budget on scaling solutions via SC or generate fewer solutions and allocate compute to verification via GenRM? To address this, we evaluate GenRM against SC under a fixed inference budget. Interestingly, we find that SC is more compute-efficient than GenRM for most practical inference budgets across diverse models and datasets. For instance, GenRM first matches SC after consuming up to 8x the inference compute and requires significantly more compute to outperform it. Furthermore, we derive inference scaling laws for the GenRM paradigm, revealing that compute-optimal inference favors scaling solution generation more aggressively than scaling the number of verifications. Our work provides practical guidance on optimizing test-time scaling by balancing solution generation and verification. The code is available at https://github.com/nishadsinghi/sc-genrm-scaling.
Autoregressive Search Engines: Generating Substrings as Document Identifiers
Knowledge-intensive language tasks require NLP systems to both provide the correct answer and retrieve supporting evidence for it in a given corpus. Autoregressive language models are emerging as the de-facto standard for generating answers, with newer and more powerful systems emerging at an astonishing pace. In this paper we argue that all this (and future) progress can be directly applied to the retrieval problem with minimal intervention to the models' architecture. Previous work has explored ways to partition the search space into hierarchical structures and retrieve documents by autoregressively generating their unique identifier. In this work we propose an alternative that doesn't force any structure in the search space: using all ngrams in a passage as its possible identifiers. This setup allows us to use an autoregressive model to generate and score distinctive ngrams, that are then mapped to full passages through an efficient data structure. Empirically, we show this not only outperforms prior autoregressive approaches but also leads to an average improvement of at least 10 points over more established retrieval solutions for passage-level retrieval on the KILT benchmark, establishing new state-of-the-art downstream performance on some datasets, while using a considerably lighter memory footprint than competing systems. Code and pre-trained models at https://github.com/facebookresearch/SEAL.
TEDRA: Text-based Editing of Dynamic and Photoreal Actors
Over the past years, significant progress has been made in creating photorealistic and drivable 3D avatars solely from videos of real humans. However, a core remaining challenge is the fine-grained and user-friendly editing of clothing styles by means of textual descriptions. To this end, we present TEDRA, the first method allowing text-based edits of an avatar, which maintains the avatar's high fidelity, space-time coherency, as well as dynamics, and enables skeletal pose and view control. We begin by training a model to create a controllable and high-fidelity digital replica of the real actor. Next, we personalize a pretrained generative diffusion model by fine-tuning it on various frames of the real character captured from different camera angles, ensuring the digital representation faithfully captures the dynamics and movements of the real person. This two-stage process lays the foundation for our approach to dynamic human avatar editing. Utilizing this personalized diffusion model, we modify the dynamic avatar based on a provided text prompt using our Personalized Normal Aligned Score Distillation Sampling (PNA-SDS) within a model-based guidance framework. Additionally, we propose a time step annealing strategy to ensure high-quality edits. Our results demonstrate a clear improvement over prior work in functionality and visual quality.
T2Ranking: A large-scale Chinese Benchmark for Passage Ranking
Passage ranking involves two stages: passage retrieval and passage re-ranking, which are important and challenging topics for both academics and industries in the area of Information Retrieval (IR). However, the commonly-used datasets for passage ranking usually focus on the English language. For non-English scenarios, such as Chinese, the existing datasets are limited in terms of data scale, fine-grained relevance annotation and false negative issues. To address this problem, we introduce T2Ranking, a large-scale Chinese benchmark for passage ranking. T2Ranking comprises more than 300K queries and over 2M unique passages from real-world search engines. Expert annotators are recruited to provide 4-level graded relevance scores (fine-grained) for query-passage pairs instead of binary relevance judgments (coarse-grained). To ease the false negative issues, more passages with higher diversities are considered when performing relevance annotations, especially in the test set, to ensure a more accurate evaluation. Apart from the textual query and passage data, other auxiliary resources are also provided, such as query types and XML files of documents which passages are generated from, to facilitate further studies. To evaluate the dataset, commonly used ranking models are implemented and tested on T2Ranking as baselines. The experimental results show that T2Ranking is challenging and there is still scope for improvement. The full data and all codes are available at https://github.com/THUIR/T2Ranking/
Comparative Study and Framework for Automated Summariser Evaluation: LangChain and Hybrid Algorithms
Automated Essay Score (AES) is proven to be one of the cutting-edge technologies. Scoring techniques are used for various purposes. Reliable scores are calculated based on influential variables. Such variables can be computed by different methods based on the domain. The research is concentrated on the user's understanding of a given topic. The analysis is based on a scoring index by using Large Language Models. The user can then compare and contrast the understanding of a topic that they recently learned. The results are then contributed towards learning analytics and progression is made for enhancing the learning ability. In this research, the focus is on summarizing a PDF document and gauging a user's understanding of its content. The process involves utilizing a Langchain tool to summarize the PDF and extract the essential information. By employing this technique, the research aims to determine how well the user comprehends the summarized content.
Overview of the TREC 2023 deep learning track
This is the fifth year of the TREC Deep Learning track. As in previous years, we leverage the MS MARCO datasets that made hundreds of thousands of human-annotated training labels available for both passage and document ranking tasks. We mostly repeated last year's design, to get another matching test set, based on the larger, cleaner, less-biased v2 passage and document set, with passage ranking as primary and document ranking as a secondary task (using labels inferred from passage). As we did last year, we sample from MS MARCO queries that were completely held out, unused in corpus construction, unlike the test queries in the first three years. This approach yields a more difficult test with more headroom for improvement. Alongside the usual MS MARCO (human) queries from MS MARCO, this year we generated synthetic queries using a fine-tuned T5 model and using a GPT-4 prompt. The new headline result this year is that runs using Large Language Model (LLM) prompting in some way outperformed runs that use the "nnlm" approach, which was the best approach in the previous four years. Since this is the last year of the track, future iterations of prompt-based ranking can happen in other tracks. Human relevance assessments were applied to all query types, not just human MS MARCO queries. Evaluation using synthetic queries gave similar results to human queries, with system ordering agreement of τ=0.8487. However, human effort was needed to select a subset of the synthetic queries that were usable. We did not see clear evidence of bias, where runs using GPT-4 were favored when evaluated using synthetic GPT-4 queries, or where runs using T5 were favored when evaluated on synthetic T5 queries.
Augmented SBERT: Data Augmentation Method for Improving Bi-Encoders for Pairwise Sentence Scoring Tasks
There are two approaches for pairwise sentence scoring: Cross-encoders, which perform full-attention over the input pair, and Bi-encoders, which map each input independently to a dense vector space. While cross-encoders often achieve higher performance, they are too slow for many practical use cases. Bi-encoders, on the other hand, require substantial training data and fine-tuning over the target task to achieve competitive performance. We present a simple yet efficient data augmentation strategy called Augmented SBERT, where we use the cross-encoder to label a larger set of input pairs to augment the training data for the bi-encoder. We show that, in this process, selecting the sentence pairs is non-trivial and crucial for the success of the method. We evaluate our approach on multiple tasks (in-domain) as well as on a domain adaptation task. Augmented SBERT achieves an improvement of up to 6 points for in-domain and of up to 37 points for domain adaptation tasks compared to the original bi-encoder performance.
Neural Passage Quality Estimation for Static Pruning
Neural networks -- especially those that use large, pre-trained language models -- have improved search engines in various ways. Most prominently, they can estimate the relevance of a passage or document to a user's query. In this work, we depart from this direction by exploring whether neural networks can effectively predict which of a document's passages are unlikely to be relevant to any query submitted to the search engine. We refer to this query-agnostic estimation of passage relevance as a passage's quality. We find that our novel methods for estimating passage quality allow passage corpora to be pruned considerably while maintaining statistically equivalent effectiveness; our best methods can consistently prune >25% of passages in a corpora, across various retrieval pipelines. Such substantial pruning reduces the operating costs of neural search engines in terms of computing resources, power usage, and carbon footprint -- both when processing queries (thanks to a smaller index size) and when indexing (lightweight models can prune low-quality passages prior to the costly dense or learned sparse encoding step). This work sets the stage for developing more advanced neural "learning-what-to-index" methods.
Dense X Retrieval: What Retrieval Granularity Should We Use?
Dense retrieval has become a prominent method to obtain relevant context or world knowledge in open-domain NLP tasks. When we use a learned dense retriever on a retrieval corpus at inference time, an often-overlooked design choice is the retrieval unit in which the corpus is indexed, e.g. document, passage, or sentence. We discover that the retrieval unit choice significantly impacts the performance of both retrieval and downstream tasks. Distinct from the typical approach of using passages or sentences, we introduce a novel retrieval unit, proposition, for dense retrieval. Propositions are defined as atomic expressions within text, each encapsulating a distinct factoid and presented in a concise, self-contained natural language format. We conduct an empirical comparison of different retrieval granularity. Our results reveal that proposition-based retrieval significantly outperforms traditional passage or sentence-based methods in dense retrieval. Moreover, retrieval by proposition also enhances the performance of downstream QA tasks, since the retrieved texts are more condensed with question-relevant information, reducing the need for lengthy input tokens and minimizing the inclusion of extraneous, irrelevant information.
DAPR: A Benchmark on Document-Aware Passage Retrieval
Recent neural retrieval mainly focuses on ranking short texts and is challenged with long documents. Existing work mainly evaluates either ranking passages or whole documents. However, there are many cases where the users want to find a relevant passage within a long document from a huge corpus, e.g. legal cases, research papers, etc. In this scenario, the passage often provides little document context and thus challenges the current approaches to finding the correct document and returning accurate results. To fill this gap, we propose and name this task Document-Aware Passage Retrieval (DAPR) and build a benchmark including multiple datasets from various domains, covering both DAPR and whole-document retrieval. In experiments, we extend the state-of-the-art neural passage retrievers with document-level context via different approaches including prepending document summary, pooling over passage representations, and hybrid retrieval with BM25. The hybrid-retrieval systems, the overall best, can only improve on the DAPR tasks marginally while significantly improving on the document-retrieval tasks. This motivates further research in developing better retrieval systems for the new task. The code and the data are available at https://github.com/kwang2049/dapr
Hybrid and Collaborative Passage Reranking
In passage retrieval system, the initial passage retrieval results may be unsatisfactory, which can be refined by a reranking scheme. Existing solutions to passage reranking focus on enriching the interaction between query and each passage separately, neglecting the context among the top-ranked passages in the initial retrieval list. To tackle this problem, we propose a Hybrid and Collaborative Passage Reranking (HybRank) method, which leverages the substantial similarity measurements of upstream retrievers for passage collaboration and incorporates the lexical and semantic properties of sparse and dense retrievers for reranking. Besides, built on off-the-shelf retriever features, HybRank is a plug-in reranker capable of enhancing arbitrary passage lists including previously reranked ones. Extensive experiments demonstrate the stable improvements of performance over prevalent retrieval and reranking methods, and verify the effectiveness of the core components of HybRank.
InstUPR : Instruction-based Unsupervised Passage Reranking with Large Language Models
This paper introduces InstUPR, an unsupervised passage reranking method based on large language models (LLMs). Different from existing approaches that rely on extensive training with query-document pairs or retrieval-specific instructions, our method leverages the instruction-following capabilities of instruction-tuned LLMs for passage reranking without any additional fine-tuning. To achieve this, we introduce a soft score aggregation technique and employ pairwise reranking for unsupervised passage reranking. Experiments on the BEIR benchmark demonstrate that InstUPR outperforms unsupervised baselines as well as an instruction-tuned reranker, highlighting its effectiveness and superiority. Source code to reproduce all experiments is open-sourced at https://github.com/MiuLab/InstUPR
Prompt-Based Document Modifications In Ranking Competitions
We study prompting-based approaches with Large Language Models (LLMs) for modifying documents so as to promote their ranking in a competitive search setting. Our methods are inspired by prior work on leveraging LLMs as rankers. We evaluate our approach by deploying it as a bot in previous ranking competitions and in competitions we organized. Our findings demonstrate that our approach effectively improves document ranking while preserving high levels of faithfulness to the original content and maintaining overall document quality.
PaRaDe: Passage Ranking using Demonstrations with Large Language Models
Recent studies show that large language models (LLMs) can be instructed to effectively perform zero-shot passage re-ranking, in which the results of a first stage retrieval method, such as BM25, are rated and reordered to improve relevance. In this work, we improve LLM-based re-ranking by algorithmically selecting few-shot demonstrations to include in the prompt. Our analysis investigates the conditions where demonstrations are most helpful, and shows that adding even one demonstration is significantly beneficial. We propose a novel demonstration selection strategy based on difficulty rather than the commonly used semantic similarity. Furthermore, we find that demonstrations helpful for ranking are also effective at question generation. We hope our work will spur more principled research into question generation and passage ranking.
Pre-training Tasks for Embedding-based Large-scale Retrieval
We consider the large-scale query-document retrieval problem: given a query (e.g., a question), return the set of relevant documents (e.g., paragraphs containing the answer) from a large document corpus. This problem is often solved in two steps. The retrieval phase first reduces the solution space, returning a subset of candidate documents. The scoring phase then re-ranks the documents. Critically, the retrieval algorithm not only desires high recall but also requires to be highly efficient, returning candidates in time sublinear to the number of documents. Unlike the scoring phase witnessing significant advances recently due to the BERT-style pre-training tasks on cross-attention models, the retrieval phase remains less well studied. Most previous works rely on classic Information Retrieval (IR) methods such as BM-25 (token matching + TF-IDF weights). These models only accept sparse handcrafted features and can not be optimized for different downstream tasks of interest. In this paper, we conduct a comprehensive study on the embedding-based retrieval models. We show that the key ingredient of learning a strong embedding-based Transformer model is the set of pre-training tasks. With adequately designed paragraph-level pre-training tasks, the Transformer models can remarkably improve over the widely-used BM-25 as well as embedding models without Transformers. The paragraph-level pre-training tasks we studied are Inverse Cloze Task (ICT), Body First Selection (BFS), Wiki Link Prediction (WLP), and the combination of all three.
Dealing with Typos for BERT-based Passage Retrieval and Ranking
Passage retrieval and ranking is a key task in open-domain question answering and information retrieval. Current effective approaches mostly rely on pre-trained deep language model-based retrievers and rankers. These methods have been shown to effectively model the semantic matching between queries and passages, also in presence of keyword mismatch, i.e. passages that are relevant to a query but do not contain important query keywords. In this paper we consider the Dense Retriever (DR), a passage retrieval method, and the BERT re-ranker, a popular passage re-ranking method. In this context, we formally investigate how these models respond and adapt to a specific type of keyword mismatch -- that caused by keyword typos occurring in queries. Through empirical investigation, we find that typos can lead to a significant drop in retrieval and ranking effectiveness. We then propose a simple typos-aware training framework for DR and BERT re-ranker to address this issue. Our experimental results on the MS MARCO passage ranking dataset show that, with our proposed typos-aware training, DR and BERT re-ranker can become robust to typos in queries, resulting in significantly improved effectiveness compared to models trained without appropriately accounting for typos.
Answering Unseen Questions With Smaller Language Models Using Rationale Generation and Dense Retrieval
When provided with sufficient explanatory context, smaller Language Models have been shown to exhibit strong reasoning ability on challenging short-answer question-answering tasks where the questions are unseen in training. We evaluate two methods for further improvement in this setting. Both methods focus on combining rationales generated by a larger Language Model with longer contexts created from a multi-hop dense retrieval system. The first method (RR) involves training a Rationale Ranking model to score both generated rationales and retrieved contexts with respect to relevance and truthfulness. We then use the scores to derive combined contexts from both knowledge sources using a number of combinatory strategies. For the second method (RATD) we utilise retrieval-augmented training datasets developed by Hartill et al. 2023 to train a smaller Reasoning model such that it becomes proficient at utilising relevant information from longer text sequences that may be only partially evidential and frequently contain many irrelevant sentences. We find that both methods significantly improve results. Our single best Reasoning model materially improves upon strong comparable prior baselines for unseen evaluation datasets (StrategyQA 58.9 rightarrow 61.7 acc., CommonsenseQA 63.6 rightarrow 72.7 acc., ARC-DA 31.6 rightarrow 52.1 F1, IIRC 25.5 rightarrow 27.3 F1) and a version utilising our prior knowledge of each type of question in selecting a context combination strategy does even better. Our proposed models also generally outperform direct prompts against much larger models (BLOOM 175B and StableVicuna 13B) in both few-shot chain-of-thought and standard few-shot settings.
RepBERT: Contextualized Text Embeddings for First-Stage Retrieval
Although exact term match between queries and documents is the dominant method to perform first-stage retrieval, we propose a different approach, called RepBERT, to represent documents and queries with fixed-length contextualized embeddings. The inner products of query and document embeddings are regarded as relevance scores. On MS MARCO Passage Ranking task, RepBERT achieves state-of-the-art results among all initial retrieval techniques. And its efficiency is comparable to bag-of-words methods.
Simple Applications of BERT for Ad Hoc Document Retrieval
Following recent successes in applying BERT to question answering, we explore simple applications to ad hoc document retrieval. This required confronting the challenge posed by documents that are typically longer than the length of input BERT was designed to handle. We address this issue by applying inference on sentences individually, and then aggregating sentence scores to produce document scores. Experiments on TREC microblog and newswire test collections show that our approach is simple yet effective, as we report the highest average precision on these datasets by neural approaches that we are aware of.
Benchmarking Clinical Decision Support Search
Finding relevant literature underpins the practice of evidence-based medicine. From 2014 to 2016, TREC conducted a clinical decision support track, wherein participants were tasked with finding articles relevant to clinical questions posed by physicians. In total, 87 teams have participated over the past three years, generating 395 runs. During this period, each team has trialled a variety of methods. While there was significant overlap in the methods employed by different teams, the results were varied. Due to the diversity of the platforms used, the results arising from the different techniques are not directly comparable, reducing the ability to build on previous work. By using a stable platform, we have been able to compare different document and query processing techniques, allowing us to experiment with different search parameters. We have used our system to reproduce leading teams runs, and compare the results obtained. By benchmarking our indexing and search techniques, we can statistically test a variety of hypotheses, paving the way for further research.
RELIC: Retrieving Evidence for Literary Claims
Humanities scholars commonly provide evidence for claims that they make about a work of literature (e.g., a novel) in the form of quotations from the work. We collect a large-scale dataset (RELiC) of 78K literary quotations and surrounding critical analysis and use it to formulate the novel task of literary evidence retrieval, in which models are given an excerpt of literary analysis surrounding a masked quotation and asked to retrieve the quoted passage from the set of all passages in the work. Solving this retrieval task requires a deep understanding of complex literary and linguistic phenomena, which proves challenging to methods that overwhelmingly rely on lexical and semantic similarity matching. We implement a RoBERTa-based dense passage retriever for this task that outperforms existing pretrained information retrieval baselines; however, experiments and analysis by human domain experts indicate that there is substantial room for improvement over our dense retriever.
SuRe: Summarizing Retrievals using Answer Candidates for Open-domain QA of LLMs
Large language models (LLMs) have made significant advancements in various natural language processing tasks, including question answering (QA) tasks. While incorporating new information with the retrieval of relevant passages is a promising way to improve QA with LLMs, the existing methods often require additional fine-tuning which becomes infeasible with recent LLMs. Augmenting retrieved passages via prompting has the potential to address this limitation, but this direction has been limitedly explored. To this end, we design a simple yet effective framework to enhance open-domain QA (ODQA) with LLMs, based on the summarized retrieval (SuRe). SuRe helps LLMs predict more accurate answers for a given question, which are well-supported by the summarized retrieval that could be viewed as an explicit rationale extracted from the retrieved passages. Specifically, SuRe first constructs summaries of the retrieved passages for each of the multiple answer candidates. Then, SuRe confirms the most plausible answer from the candidate set by evaluating the validity and ranking of the generated summaries. Experimental results on diverse ODQA benchmarks demonstrate the superiority of SuRe, with improvements of up to 4.6% in exact match (EM) and 4.0% in F1 score over standard prompting approaches. SuRe also can be integrated with a broad range of retrieval methods and LLMs. Finally, the generated summaries from SuRe show additional advantages to measure the importance of retrieved passages and serve as more preferred rationales by models and humans.
A comprehensive review of automatic text summarization techniques: method, data, evaluation and coding
We provide a literature review about Automatic Text Summarization (ATS) systems. We consider a citation-based approach. We start with some popular and well-known papers that we have in hand about each topic we want to cover and we have tracked the "backward citations" (papers that are cited by the set of papers we knew beforehand) and the "forward citations" (newer papers that cite the set of papers we knew beforehand). In order to organize the different methods, we present the diverse approaches to ATS guided by the mechanisms they use to generate a summary. Besides presenting the methods, we also present an extensive review of the datasets available for summarization tasks and the methods used to evaluate the quality of the summaries. Finally, we present an empirical exploration of these methods using the CNN Corpus dataset that provides golden summaries for extractive and abstractive methods.
NV-Retriever: Improving text embedding models with effective hard-negative mining
Text embedding models have been popular for information retrieval applications such as semantic search and Question-Answering systems based on Retrieval-Augmented Generation (RAG). Those models are typically Transformer models that are fine-tuned with contrastive learning objectives. Many papers introduced new embedding model architectures and training approaches, however, one of the key ingredients, the process of mining negative passages, remains poorly explored or described. One of the challenging aspects of fine-tuning embedding models is the selection of high quality hard-negative passages for contrastive learning. In this paper we propose a family of positive-aware mining methods that leverage the positive relevance score for more effective false negatives removal. We also provide a comprehensive ablation study on hard-negative mining methods over their configurations, exploring different teacher and base models. We demonstrate the efficacy of our proposed methods by introducing the NV-Retriever-v1 model, which scores 60.9 on MTEB Retrieval (BEIR) benchmark and 0.65 points higher than previous methods. The model placed 1st when it was published to MTEB Retrieval on July 07, 2024.
LitLLMs, LLMs for Literature Review: Are we there yet?
Literature reviews are an essential component of scientific research, but they remain time-intensive and challenging to write, especially due to the recent influx of research papers. This paper explores the zero-shot abilities of recent Large Language Models (LLMs) in assisting with the writing of literature reviews based on an abstract. We decompose the task into two components: 1. Retrieving related works given a query abstract, and 2. Writing a literature review based on the retrieved results. We analyze how effective LLMs are for both components. For retrieval, we introduce a novel two-step search strategy that first uses an LLM to extract meaningful keywords from the abstract of a paper and then retrieves potentially relevant papers by querying an external knowledge base. Additionally, we study a prompting-based re-ranking mechanism with attribution and show that re-ranking doubles the normalized recall compared to naive search methods, while providing insights into the LLM's decision-making process. In the generation phase, we propose a two-step approach that first outlines a plan for the review and then executes steps in the plan to generate the actual review. To evaluate different LLM-based literature review methods, we create test sets from arXiv papers using a protocol designed for rolling use with newly released LLMs to avoid test set contamination in zero-shot evaluations. We release this evaluation protocol to promote additional research and development in this regard. Our empirical results suggest that LLMs show promising potential for writing literature reviews when the task is decomposed into smaller components of retrieval and planning. Our project page including a demonstration system and toolkit can be accessed here: https://litllm.github.io.
Multi-CPR: A Multi Domain Chinese Dataset for Passage Retrieval
Passage retrieval is a fundamental task in information retrieval (IR) research, which has drawn much attention recently. In the English field, the availability of large-scale annotated dataset (e.g, MS MARCO) and the emergence of deep pre-trained language models (e.g, BERT) has resulted in a substantial improvement of existing passage retrieval systems. However, in the Chinese field, especially for specific domains, passage retrieval systems are still immature due to quality-annotated dataset being limited by scale. Therefore, in this paper, we present a novel multi-domain Chinese dataset for passage retrieval (Multi-CPR). The dataset is collected from three different domains, including E-commerce, Entertainment video and Medical. Each dataset contains millions of passages and a certain amount of human annotated query-passage related pairs. We implement various representative passage retrieval methods as baselines. We find that the performance of retrieval models trained on dataset from general domain will inevitably decrease on specific domain. Nevertheless, a passage retrieval system built on in-domain annotated dataset can achieve significant improvement, which indeed demonstrates the necessity of domain labeled data for further optimization. We hope the release of the Multi-CPR dataset could benchmark Chinese passage retrieval task in specific domain and also make advances for future studies.
PARADE: Passage Representation Aggregation for Document Reranking
Pretrained transformer models, such as BERT and T5, have shown to be highly effective at ad-hoc passage and document ranking. Due to inherent sequence length limits of these models, they need to be run over a document's passages, rather than processing the entire document sequence at once. Although several approaches for aggregating passage-level signals have been proposed, there has yet to be an extensive comparison of these techniques. In this work, we explore strategies for aggregating relevance signals from a document's passages into a final ranking score. We find that passage representation aggregation techniques can significantly improve over techniques proposed in prior work, such as taking the maximum passage score. We call this new approach PARADE. In particular, PARADE can significantly improve results on collections with broad information needs where relevance signals can be spread throughout the document (such as TREC Robust04 and GOV2). Meanwhile, less complex aggregation techniques may work better on collections with an information need that can often be pinpointed to a single passage (such as TREC DL and TREC Genomics). We also conduct efficiency analyses, and highlight several strategies for improving transformer-based aggregation.
Passage Re-ranking with BERT
Recently, neural models pretrained on a language modeling task, such as ELMo (Peters et al., 2017), OpenAI GPT (Radford et al., 2018), and BERT (Devlin et al., 2018), have achieved impressive results on various natural language processing tasks such as question-answering and natural language inference. In this paper, we describe a simple re-implementation of BERT for query-based passage re-ranking. Our system is the state of the art on the TREC-CAR dataset and the top entry in the leaderboard of the MS MARCO passage retrieval task, outperforming the previous state of the art by 27% (relative) in MRR@10. The code to reproduce our results is available at https://github.com/nyu-dl/dl4marco-bert
Evaluating D-MERIT of Partial-annotation on Information Retrieval
Retrieval models are often evaluated on partially-annotated datasets. Each query is mapped to a few relevant texts and the remaining corpus is assumed to be irrelevant. As a result, models that successfully retrieve false negatives are punished in evaluation. Unfortunately, completely annotating all texts for every query is not resource efficient. In this work, we show that using partially-annotated datasets in evaluation can paint a distorted picture. We curate D-MERIT, a passage retrieval evaluation set from Wikipedia, aspiring to contain all relevant passages for each query. Queries describe a group (e.g., ``journals about linguistics'') and relevant passages are evidence that entities belong to the group (e.g., a passage indicating that Language is a journal about linguistics). We show that evaluating on a dataset containing annotations for only a subset of the relevant passages might result in misleading ranking of the retrieval systems and that as more relevant texts are included in the evaluation set, the rankings converge. We propose our dataset as a resource for evaluation and our study as a recommendation for balance between resource-efficiency and reliable evaluation when annotating evaluation sets for text retrieval.
A Deep Look into Neural Ranking Models for Information Retrieval
Ranking models lie at the heart of research on information retrieval (IR). During the past decades, different techniques have been proposed for constructing ranking models, from traditional heuristic methods, probabilistic methods, to modern machine learning methods. Recently, with the advance of deep learning technology, we have witnessed a growing body of work in applying shallow or deep neural networks to the ranking problem in IR, referred to as neural ranking models in this paper. The power of neural ranking models lies in the ability to learn from the raw text inputs for the ranking problem to avoid many limitations of hand-crafted features. Neural networks have sufficient capacity to model complicated tasks, which is needed to handle the complexity of relevance estimation in ranking. Since there have been a large variety of neural ranking models proposed, we believe it is the right time to summarize the current status, learn from existing methodologies, and gain some insights for future development. In contrast to existing reviews, in this survey, we will take a deep look into the neural ranking models from different dimensions to analyze their underlying assumptions, major design principles, and learning strategies. We compare these models through benchmark tasks to obtain a comprehensive empirical understanding of the existing techniques. We will also discuss what is missing in the current literature and what are the promising and desired future directions.
TREC CAsT 2019: The Conversational Assistance Track Overview
The Conversational Assistance Track (CAsT) is a new track for TREC 2019 to facilitate Conversational Information Seeking (CIS) research and to create a large-scale reusable test collection for conversational search systems. The document corpus is 38,426,252 passages from the TREC Complex Answer Retrieval (CAR) and Microsoft MAchine Reading COmprehension (MARCO) datasets. Eighty information seeking dialogues (30 train, 50 test) are an average of 9 to 10 questions long. Relevance assessments are provided for 30 training topics and 20 test topics. This year 21 groups submitted a total of 65 runs using varying methods for conversational query understanding and ranking. Methods include traditional retrieval based methods, feature based learning-to-rank, neural models, and knowledge enhanced methods. A common theme through the runs is the use of BERT-based neural reranking methods. Leading methods also employed document expansion, conversational query expansion, and generative language models for conversational query rewriting (GPT-2). The results show a gap between automatic systems and those using the manually resolved utterances, with a 35% relative improvement of manual rewrites over the best automatic system.
A Simple Approach to Jointly Rank Passages and Select Relevant Sentences in the OBQA Context
In the open book question answering (OBQA) task, selecting the relevant passages and sentences from distracting information is crucial to reason the answer to a question. HotpotQA dataset is designed to teach and evaluate systems to do both passage ranking and sentence selection. Many existing frameworks use separate models to select relevant passages and sentences respectively. Such systems not only have high complexity in terms of the parameters of models but also fail to take the advantage of training these two tasks together since one task can be beneficial for the other one. In this work, we present a simple yet effective framework to address these limitations by jointly ranking passages and selecting sentences. Furthermore, we propose consistency and similarity constraints to promote the correlation and interaction between passage ranking and sentence selection.The experiments demonstrate that our framework can achieve competitive results with previous systems and outperform the baseline by 28\% in terms of exact matching of relevant sentences on the HotpotQA dataset.
Neural Rankers for Effective Screening Prioritisation in Medical Systematic Review Literature Search
Medical systematic reviews typically require assessing all the documents retrieved by a search. The reason is two-fold: the task aims for ``total recall''; and documents retrieved using Boolean search are an unordered set, and thus it is unclear how an assessor could examine only a subset. Screening prioritisation is the process of ranking the (unordered) set of retrieved documents, allowing assessors to begin the downstream processes of the systematic review creation earlier, leading to earlier completion of the review, or even avoiding screening documents ranked least relevant. Screening prioritisation requires highly effective ranking methods. Pre-trained language models are state-of-the-art on many IR tasks but have yet to be applied to systematic review screening prioritisation. In this paper, we apply several pre-trained language models to the systematic review document ranking task, both directly and fine-tuned. An empirical analysis compares how effective neural methods compare to traditional methods for this task. We also investigate different types of document representations for neural methods and their impact on ranking performance. Our results show that BERT-based rankers outperform the current state-of-the-art screening prioritisation methods. However, BERT rankers and existing methods can actually be complementary, and thus, further improvements may be achieved if used in conjunction.
Retro*: Optimizing LLMs for Reasoning-Intensive Document Retrieval
With the growing popularity of LLM agents and RAG, it has become increasingly important to retrieve documents that are essential for solving a task, even when their connection to the task is indirect or implicit. Addressing this problem requires fine-grained reasoning to accurately assess the relevance between the task and each candidate document. This capability, however, poses a significant challenge for existing IR techniques. Despite recent progress in reasoning-enhanced IR, existing approaches still face significant challenges in applicability, scalability, and efficiency. In this work, we propose Retro*, a novel approach for reasoning-intensive document retrieval. Our method introduces a rubric-based relevance scoring mechanism, enabling the model to reason about the relationship between a task and a document based on explicitly defined criteria, whereby producing a fine-grained, interpretable relevance score. Retro* also supports test-time scaling by combining multiple reasoning trajectories via score integration, which produces more reliable relevance estimates. To optimize Retro*'s reasoning capabilities, we introduce a novel reinforcement learning algorithm tailored for its relevance scoring mechanism, which employs two composite rewards to fully exploit the trajectories of each training sample. Our experiments show that Retro* outperforms existing document retrieval methods with notable advantages, leading to state-of-the-art performance on the BRIGHT benchmark.
PODTILE: Facilitating Podcast Episode Browsing with Auto-generated Chapters
Listeners of long-form talk-audio content, such as podcast episodes, often find it challenging to understand the overall structure and locate relevant sections. A practical solution is to divide episodes into chapters--semantically coherent segments labeled with titles and timestamps. Since most episodes on our platform at Spotify currently lack creator-provided chapters, automating the creation of chapters is essential. Scaling the chapterization of podcast episodes presents unique challenges. First, episodes tend to be less structured than written texts, featuring spontaneous discussions with nuanced transitions. Second, the transcripts are usually lengthy, averaging about 16,000 tokens, which necessitates efficient processing that can preserve context. To address these challenges, we introduce PODTILE, a fine-tuned encoder-decoder transformer to segment conversational data. The model simultaneously generates chapter transitions and titles for the input transcript. To preserve context, each input text is augmented with global context, including the episode's title, description, and previous chapter titles. In our intrinsic evaluation, PODTILE achieved an 11% improvement in ROUGE score over the strongest baseline. Additionally, we provide insights into the practical benefits of auto-generated chapters for listeners navigating episode content. Our findings indicate that auto-generated chapters serve as a useful tool for engaging with less popular podcasts. Finally, we present empirical evidence that using chapter titles can enhance effectiveness of sparse retrieval in search tasks.
Blending Learning to Rank and Dense Representations for Efficient and Effective Cascades
We investigate the exploitation of both lexical and neural relevance signals for ad-hoc passage retrieval. Our exploration involves a large-scale training dataset in which dense neural representations of MS-MARCO queries and passages are complemented and integrated with 253 hand-crafted lexical features extracted from the same corpus. Blending of the relevance signals from the two different groups of features is learned by a classical Learning-to-Rank (LTR) model based on a forest of decision trees. To evaluate our solution, we employ a pipelined architecture where a dense neural retriever serves as the first stage and performs a nearest-neighbor search over the neural representations of the documents. Our LTR model acts instead as the second stage that re-ranks the set of candidates retrieved by the first stage to enhance effectiveness. The results of reproducible experiments conducted with state-of-the-art dense retrievers on publicly available resources show that the proposed solution significantly enhances the end-to-end ranking performance while relatively minimally impacting efficiency. Specifically, we achieve a boost in nDCG@10 of up to 11% with an increase in average query latency of only 4.3%. This confirms the advantage of seamlessly combining two distinct families of signals that mutually contribute to retrieval effectiveness.
Criteria-Based LLM Relevance Judgments
Relevance judgments are crucial for evaluating information retrieval systems, but traditional human-annotated labels are time-consuming and expensive. As a result, many researchers turn to automatic alternatives to accelerate method development. Among these, Large Language Models (LLMs) provide a scalable solution by generating relevance labels directly through prompting. However, prompting an LLM for a relevance label without constraints often results in not only incorrect predictions but also outputs that are difficult for humans to interpret. We propose the Multi-Criteria framework for LLM-based relevance judgments, decomposing the notion of relevance into multiple criteria--such as exactness, coverage, topicality, and contextual fit--to improve the robustness and interpretability of retrieval evaluations compared to direct grading methods. We validate this approach on three datasets: the TREC Deep Learning tracks from 2019 and 2020, as well as LLMJudge (based on TREC DL 2023). Our results demonstrate that Multi-Criteria judgments enhance the system ranking/leaderboard performance. Moreover, we highlight the strengths and limitations of this approach relative to direct grading approaches, offering insights that can guide the development of future automatic evaluation frameworks in information retrieval.
Predicting performance difficulty from piano sheet music images
Estimating the performance difficulty of a musical score is crucial in music education for adequately designing the learning curriculum of the students. Although the Music Information Retrieval community has recently shown interest in this task, existing approaches mainly use machine-readable scores, leaving the broader case of sheet music images unaddressed. Based on previous works involving sheet music images, we use a mid-level representation, bootleg score, describing notehead positions relative to staff lines coupled with a transformer model. This architecture is adapted to our task by introducing an encoding scheme that reduces the encoded sequence length to one-eighth of the original size. In terms of evaluation, we consider five datasets -- more than 7500 scores with up to 9 difficulty levels -- , two of them particularly compiled for this work. The results obtained when pretraining the scheme on the IMSLP corpus and fine-tuning it on the considered datasets prove the proposal's validity, achieving the best-performing model with a balanced accuracy of 40.34\% and a mean square error of 1.33. Finally, we provide access to our code, data, and models for transparency and reproducibility.
BM25S: Orders of magnitude faster lexical search via eager sparse scoring
We introduce BM25S, an efficient Python-based implementation of BM25 that only depends on Numpy and Scipy. BM25S achieves up to a 500x speedup compared to the most popular Python-based framework by eagerly computing BM25 scores during indexing and storing them into sparse matrices. It also achieves considerable speedups compared to highly optimized Java-based implementations, which are used by popular commercial products. Finally, BM25S reproduces the exact implementation of five BM25 variants based on Kamphuis et al. (2020) by extending eager scoring to non-sparse variants using a novel score shifting method. The code can be found at https://github.com/xhluca/bm25s
CoRT: Complementary Rankings from Transformers
Many recent approaches towards neural information retrieval mitigate their computational costs by using a multi-stage ranking pipeline. In the first stage, a number of potentially relevant candidates are retrieved using an efficient retrieval model such as BM25. Although BM25 has proven decent performance as a first-stage ranker, it tends to miss relevant passages. In this context we propose CoRT, a simple neural first-stage ranking model that leverages contextual representations from pretrained language models such as BERT to complement term-based ranking functions while causing no significant delay at query time. Using the MS MARCO dataset, we show that CoRT significantly increases the candidate recall by complementing BM25 with missing candidates. Consequently, we find subsequent re-rankers achieve superior results with less candidates. We further demonstrate that passage retrieval using CoRT can be realized with surprisingly low latencies.
Using clarification questions to improve software developers' Web search
Context: Recent research indicates that Web queries written by software developers are not very successful in retrieving relevant results, performing measurably worse compared to general purpose Web queries. Most approaches up to this point have addressed this problem with software engineering-specific automated query reformulation techniques, which work without developer involvement but are limited by the content of the original query. In other words, these techniques automatically improve the existing query but can not contribute new, previously unmentioned, concepts. Objective: In this paper, we propose a technique to guide software developers in manually improving their own Web search queries. We examine a conversational approach that follows unsuccessful queries with a clarification question aimed at eliciting additional query terms, thus providing to the developer a clear dimension along which the query could be improved. Methods: We describe a set of clarification questions derived from a corpus of software developer queries and a neural approach to recommending them for a newly issued query. Results: Our evaluation indicates that the recommendation technique is accurate, predicting a valid clarification question 80% of the time and outperforms simple baselines, as well as, state-of-the-art Learning To Rank (LTR) baselines. Conclusion: As shown in the experimental results, the described approach is capable at recommending appropriate clarification questions to software developers and considered useful by a sample of developers ranging from novices to experienced professionals.
Training Curricula for Open Domain Answer Re-Ranking
In precision-oriented tasks like answer ranking, it is more important to rank many relevant answers highly than to retrieve all relevant answers. It follows that a good ranking strategy would be to learn how to identify the easiest correct answers first (i.e., assign a high ranking score to answers that have characteristics that usually indicate relevance, and a low ranking score to those with characteristics that do not), before incorporating more complex logic to handle difficult cases (e.g., semantic matching or reasoning). In this work, we apply this idea to the training of neural answer rankers using curriculum learning. We propose several heuristics to estimate the difficulty of a given training sample. We show that the proposed heuristics can be used to build a training curriculum that down-weights difficult samples early in the training process. As the training process progresses, our approach gradually shifts to weighting all samples equally, regardless of difficulty. We present a comprehensive evaluation of our proposed idea on three answer ranking datasets. Results show that our approach leads to superior performance of two leading neural ranking architectures, namely BERT and ConvKNRM, using both pointwise and pairwise losses. When applied to a BERT-based ranker, our method yields up to a 4% improvement in MRR and a 9% improvement in P@1 (compared to the model trained without a curriculum). This results in models that can achieve comparable performance to more expensive state-of-the-art techniques.
SemRe-Rank: Improving Automatic Term Extraction By Incorporating Semantic Relatedness With Personalised PageRank
Automatic Term Extraction deals with the extraction of terminology from a domain specific corpus, and has long been an established research area in data and knowledge acquisition. ATE remains a challenging task as it is known that there is no existing ATE methods that can consistently outperform others in any domain. This work adopts a refreshed perspective to this problem: instead of searching for such a 'one-size-fit-all' solution that may never exist, we propose to develop generic methods to 'enhance' existing ATE methods. We introduce SemRe-Rank, the first method based on this principle, to incorporate semantic relatedness - an often overlooked venue - into an existing ATE method to further improve its performance. SemRe-Rank incorporates word embeddings into a personalised PageRank process to compute 'semantic importance' scores for candidate terms from a graph of semantically related words (nodes), which are then used to revise the scores of candidate terms computed by a base ATE algorithm. Extensively evaluated with 13 state-of-the-art base ATE methods on four datasets of diverse nature, it is shown to have achieved widespread improvement over all base methods and across all datasets, with up to 15 percentage points when measured by the Precision in the top ranked K candidate terms (the average for a set of K's), or up to 28 percentage points in F1 measured at a K that equals to the expected real terms in the candidates (F1 in short). Compared to an alternative approach built on the well-known TextRank algorithm, SemRe-Rank can potentially outperform by up to 8 points in Precision at top K, or up to 17 points in F1.
FinCPRG: A Bidirectional Generation Pipeline for Hierarchical Queries and Rich Relevance in Financial Chinese Passage Retrieval
In recent years, large language models (LLMs) have demonstrated significant potential in constructing passage retrieval datasets. However, existing methods still face limitations in expressing cross-doc query needs and controlling annotation quality. To address these issues, this paper proposes a bidirectional generation pipeline, which aims to generate 3-level hierarchical queries for both intra-doc and cross-doc scenarios and mine additional relevance labels on top of direct mapping annotation. The pipeline introduces two query generation methods: bottom-up from single-doc text and top-down from multi-doc titles. The bottom-up method uses LLMs to disassemble and generate structured queries at both sentence-level and passage-level simultaneously from intra-doc passages. The top-down approach incorporates three key financial elements--industry, topic, and time--to divide report titles into clusters and prompts LLMs to generate topic-level queries from each cluster. For relevance annotation, our pipeline not only relies on direct mapping annotation from the generation relationship but also implements an indirect positives mining method to enrich the relevant query-passage pairs. Using this pipeline, we constructed a Financial Passage Retrieval Generated dataset (FinCPRG) from almost 1.3k Chinese financial research reports, which includes hierarchical queries and rich relevance labels. Through evaluations of mined relevance labels, benchmarking and training experiments, we assessed the quality of FinCPRG and validated its effectiveness as a passage retrieval dataset for both training and benchmarking.
QuALITY: Question Answering with Long Input Texts, Yes!
To enable building and testing models on long-document comprehension, we introduce QuALITY, a multiple-choice QA dataset with context passages in English that have an average length of about 5,000 tokens, much longer than typical current models can process. Unlike in prior work with passages, our questions are written and validated by contributors who have read the entire passage, rather than relying on summaries or excerpts. In addition, only half of the questions are answerable by annotators working under tight time constraints, indicating that skimming and simple search are not enough to consistently perform well. Our baseline models perform poorly on this task (55.4%) and significantly lag behind human performance (93.5%).
Multi-view-guided Passage Reranking with Large Language Models
Recent advances in large language models (LLMs) have shown impressive performance in passage reranking tasks. Despite their success, LLM-based methods still face challenges in efficiency and sensitivity to external biases. (1) Existing models rely mostly on autoregressive generation and sliding window strategies to rank passages, which incur heavy computational overhead as the number of passages increases. (2) External biases, such as position or selection bias, hinder the model's ability to accurately represent passages and increase input-order sensitivity. To address these limitations, we introduce a novel passage reranking model, called Multi-View-guided Passage Reranking (MVP). MVP is a non-generative LLM-based reranking method that encodes query-passage information into diverse view embeddings without being influenced by external biases. For each view, it combines query-aware passage embeddings to produce a distinct anchor vector, which is then used to directly compute relevance scores in a single decoding step. In addition, it employs an orthogonal loss to make the views more distinctive. Extensive experiments demonstrate that MVP, with just 220M parameters, matches the performance of much larger 7B-scale fine-tuned models while achieving a 100x reduction in inference latency. Notably, the 3B-parameter variant of MVP achieves state-of-the-art performance on both in-domain and out-of-domain benchmarks. The source code is available at: https://github.com/bulbna/MVP
How Discriminative Are Your Qrels? How To Study the Statistical Significance of Document Adjudication Methods
Creating test collections for offline retrieval evaluation requires human effort to judge documents' relevance. This expensive activity motivated much work in developing methods for constructing benchmarks with fewer assessment costs. In this respect, adjudication methods actively decide both which documents and the order in which experts review them, in order to better exploit the assessment budget or to lower it. Researchers evaluate the quality of those methods by measuring the correlation between the known gold ranking of systems under the full collection and the observed ranking of systems under the lower-cost one. This traditional analysis ignores whether and how the low-cost judgements impact on the statistically significant differences among systems with respect to the full collection. We fill this void by proposing a novel methodology to evaluate how the low-cost adjudication methods preserve the pairwise significant differences between systems as the full collection. In other terms, while traditional approaches look for stability in answering the question "is system A better than system B?", our proposed approach looks for stability in answering the question "is system A significantly better than system B?", which is the ultimate questions researchers need to answer to guarantee the generalisability of their results. Among other results, we found that the best methods in terms of ranking of systems correlation do not always match those preserving statistical significance.
TartuNLP at SemEval-2025 Task 5: Subject Tagging as Two-Stage Information Retrieval
We present our submission to the Task 5 of SemEval-2025 that aims to aid librarians in assigning subject tags to the library records by producing a list of likely relevant tags for a given document. We frame the task as an information retrieval problem, where the document content is used to retrieve subject tags from a large subject taxonomy. We leverage two types of encoder models to build a two-stage information retrieval system -- a bi-encoder for coarse-grained candidate extraction at the first stage, and a cross-encoder for fine-grained re-ranking at the second stage. This approach proved effective, demonstrating significant improvements in recall compared to single-stage methods and showing competitive results according to qualitative evaluation.
Exploring the Integration Strategies of Retriever and Large Language Models
The integration of retrieved passages and large language models (LLMs), such as ChatGPTs, has significantly contributed to improving open-domain question answering. However, there is still a lack of exploration regarding the optimal approach for incorporating retrieved passages into the answer generation process. This paper aims to fill this gap by investigating different methods of combining retrieved passages with LLMs to enhance answer generation. We begin by examining the limitations of a commonly-used concatenation approach. Surprisingly, this approach often results in generating "unknown" outputs, even when the correct document is among the top-k retrieved passages. To address this issue, we explore four alternative strategies for integrating the retrieved passages with the LLMs. These strategies include two single-round methods that utilize chain-of-thought reasoning and two multi-round strategies that incorporate feedback loops. Through comprehensive analyses and experiments, we provide insightful observations on how to effectively leverage retrieved passages to enhance the answer generation capability of LLMs.
Post-hoc Bias Scoring Is Optimal For Fair Classification
We consider a binary classification problem under group fairness constraints, which can be one of Demographic Parity (DP), Equalized Opportunity (EOp), or Equalized Odds (EO). We propose an explicit characterization of Bayes optimal classifier under the fairness constraints, which turns out to be a simple modification rule of the unconstrained classifier. Namely, we introduce a novel instance-level measure of bias, which we call bias score, and the modification rule is a simple linear rule on top of the finite amount of bias scores.Based on this characterization, we develop a post-hoc approach that allows us to adapt to fairness constraints while maintaining high accuracy. In the case of DP and EOp constraints, the modification rule is thresholding a single bias score, while in the case of EO constraints we are required to fit a linear modification rule with 2 parameters. The method can also be applied for composite group-fairness criteria, such as ones involving several sensitive attributes.
Scoring Verifiers: Evaluating Synthetic Verification in Code and Reasoning
Code verification has recently found great success as a critical component in training large scale reasoning models for coding. Synthetic techniques such as self-generated test cases and reward models provide a way to enhance code capabilities beyond predefined tests. Building on these advancements, we propose new benchmarks designed to systematically evaluate the impact of synthetic verification methods on assessing solution correctness. We introduce HE-R, HE-R+, MBPP-R, and MBPP-R+, which transform existing coding benchmarks into scoring and ranking datasets to evaluate the effectiveness of synthetic verifiers. Using these benchmarks, we analyze synthetic verification methods in standard, reasoning-based, and reward-based LLMs. Our results show that recent reasoning models significantly improve test case generation and that scaling test cases enhances verification accuracy.
Adaptive Correspondence Scoring for Unsupervised Medical Image Registration
We propose an adaptive training scheme for unsupervised medical image registration. Existing methods rely on image reconstruction as the primary supervision signal. However, nuisance variables (e.g. noise and covisibility), violation of the Lambertian assumption in physical waves (e.g. ultrasound), and inconsistent image acquisition can all cause a loss of correspondence between medical images. As the unsupervised learning scheme relies on intensity constancy between images to establish correspondence for reconstruction, this introduces spurious error residuals that are not modeled by the typical training objective. To mitigate this, we propose an adaptive framework that re-weights the error residuals with a correspondence scoring map during training, preventing the parametric displacement estimator from drifting away due to noisy gradients, which leads to performance degradation. To illustrate the versatility and effectiveness of our method, we tested our framework on three representative registration architectures across three medical image datasets along with other baselines. Our adaptive framework consistently outperforms other methods both quantitatively and qualitatively. Paired t-tests show that our improvements are statistically significant. Code available at: https://voldemort108x.github.io/AdaCS/.
Leveraging Passage Embeddings for Efficient Listwise Reranking with Large Language Models
Recent studies have demonstrated the effectiveness of using large language language models (LLMs) in passage ranking. The listwise approaches, such as RankGPT, have become new state-of-the-art in this task. However, the efficiency of RankGPT models is limited by the maximum context length and relatively high latency of LLM inference. To address these issues, in this paper, we propose PE-Rank, leveraging the single passage embedding as a good context compression for efficient listwise passage reranking. By treating each passage as a special token, we can directly input passage embeddings into LLMs, thereby reducing input length. Additionally, we introduce an inference method that dynamically constrains the decoding space to these special tokens, accelerating the decoding process. For adapting the model to reranking, we employ listwise learning to rank loss for training. Evaluation results on multiple benchmarks demonstrate that PE-Rank significantly improves efficiency in both prefilling and decoding, while maintaining competitive ranking effectiveness. {The Code is available at https://github.com/liuqi6777/pe_rank.}
Automatic Essay Multi-dimensional Scoring with Fine-tuning and Multiple Regression
Automated essay scoring (AES) involves predicting a score that reflects the writing quality of an essay. Most existing AES systems produce only a single overall score. However, users and L2 learners expect scores across different dimensions (e.g., vocabulary, grammar, coherence) for English essays in real-world applications. To address this need, we have developed two models that automatically score English essays across multiple dimensions by employing fine-tuning and other strategies on two large datasets. The results demonstrate that our systems achieve impressive performance in evaluation using three criteria: precision, F1 score, and Quadratic Weighted Kappa. Furthermore, our system outperforms existing methods in overall scoring.
Enhanced Arabic Text Retrieval with Attentive Relevance Scoring
Arabic poses a particular challenge for natural language processing (NLP) and information retrieval (IR) due to its complex morphology, optional diacritics and the coexistence of Modern Standard Arabic (MSA) and various dialects. Despite the growing global significance of Arabic, it is still underrepresented in NLP research and benchmark resources. In this paper, we present an enhanced Dense Passage Retrieval (DPR) framework developed specifically for Arabic. At the core of our approach is a novel Attentive Relevance Scoring (ARS) that replaces standard interaction mechanisms with an adaptive scoring function that more effectively models the semantic relevance between questions and passages. Our method integrates pre-trained Arabic language models and architectural refinements to improve retrieval performance and significantly increase ranking accuracy when answering Arabic questions. The code is made publicly available at https://github.com/Bekhouche/APR{GitHub}.
Perceived Confidence Scoring for Data Annotation with Zero-Shot LLMs
Zero-shot LLMs are now also used for textual classification tasks, e.g., sentiment/emotion detection of a given input as a sentence/article. However, their performance can be suboptimal in such data annotation tasks. We introduce a novel technique Perceived Confidence Scoring (PCS) that evaluates LLM's confidence for its classification of an input by leveraging Metamorphic Relations (MRs). The MRs generate semantically equivalent yet textually mutated versions of the input. Following the principles of Metamorphic Testing (MT), the mutated versions are expected to have annotation labels similar to the input. By analyzing the consistency of LLM responses across these variations, PCS computes a confidence score based on the frequency of predicted labels. PCS can be used both for single LLM and multiple LLM settings (e.g., majority voting). We introduce an algorithm Perceived Differential Evolution (PDE) that determines the optimal weights assigned to the MRs and the LLMs for a classification task. Empirical evaluation shows PCS significantly improves zero-shot accuracy for Llama-3-8B-Instruct (4.96%) and Mistral-7B-Instruct-v0.3 (10.52%), with Gemma-2-9b-it showing a 9.39% gain. When combining all three models, PCS significantly outperforms majority voting by 7.75%.
Improving Passage Retrieval with Zero-Shot Question Generation
We propose a simple and effective re-ranking method for improving passage retrieval in open question answering. The re-ranker re-scores retrieved passages with a zero-shot question generation model, which uses a pre-trained language model to compute the probability of the input question conditioned on a retrieved passage. This approach can be applied on top of any retrieval method (e.g. neural or keyword-based), does not require any domain- or task-specific training (and therefore is expected to generalize better to data distribution shifts), and provides rich cross-attention between query and passage (i.e. it must explain every token in the question). When evaluated on a number of open-domain retrieval datasets, our re-ranker improves strong unsupervised retrieval models by 6%-18% absolute and strong supervised models by up to 12% in terms of top-20 passage retrieval accuracy. We also obtain new state-of-the-art results on full open-domain question answering by simply adding the new re-ranker to existing models with no further changes.
Scoring Sentence Singletons and Pairs for Abstractive Summarization
When writing a summary, humans tend to choose content from one or two sentences and merge them into a single summary sentence. However, the mechanisms behind the selection of one or multiple source sentences remain poorly understood. Sentence fusion assumes multi-sentence input; yet sentence selection methods only work with single sentences and not combinations of them. There is thus a crucial gap between sentence selection and fusion to support summarizing by both compressing single sentences and fusing pairs. This paper attempts to bridge the gap by ranking sentence singletons and pairs together in a unified space. Our proposed framework attempts to model human methodology by selecting either a single sentence or a pair of sentences, then compressing or fusing the sentence(s) to produce a summary sentence. We conduct extensive experiments on both single- and multi-document summarization datasets and report findings on sentence selection and abstraction.
Retrieval Oriented Masking Pre-training Language Model for Dense Passage Retrieval
Pre-trained language model (PTM) has been shown to yield powerful text representations for dense passage retrieval task. The Masked Language Modeling (MLM) is a major sub-task of the pre-training process. However, we found that the conventional random masking strategy tend to select a large number of tokens that have limited effect on the passage retrieval task (e,g. stop-words and punctuation). By noticing the term importance weight can provide valuable information for passage retrieval, we hereby propose alternative retrieval oriented masking (dubbed as ROM) strategy where more important tokens will have a higher probability of being masked out, to capture this straightforward yet essential information to facilitate the language model pre-training process. Notably, the proposed new token masking method will not change the architecture and learning objective of original PTM. Our experiments verify that the proposed ROM enables term importance information to help language model pre-training thus achieving better performance on multiple passage retrieval benchmarks.
Document Ranking with a Pretrained Sequence-to-Sequence Model
This work proposes a novel adaptation of a pretrained sequence-to-sequence model to the task of document ranking. Our approach is fundamentally different from a commonly-adopted classification-based formulation of ranking, based on encoder-only pretrained transformer architectures such as BERT. We show how a sequence-to-sequence model can be trained to generate relevance labels as "target words", and how the underlying logits of these target words can be interpreted as relevance probabilities for ranking. On the popular MS MARCO passage ranking task, experimental results show that our approach is at least on par with previous classification-based models and can surpass them with larger, more-recent models. On the test collection from the TREC 2004 Robust Track, we demonstrate a zero-shot transfer-based approach that outperforms previous state-of-the-art models requiring in-dataset cross-validation. Furthermore, we find that our approach significantly outperforms an encoder-only model in a data-poor regime (i.e., with few training examples). We investigate this observation further by varying target words to probe the model's use of latent knowledge.
QUASAR: QUality and Aesthetics Scoring with Advanced Representations
This paper introduces a new data-driven, non-parametric method for image quality and aesthetics assessment, surpassing existing approaches and requiring no prompt engineering or fine-tuning. We eliminate the need for expressive textual embeddings by proposing efficient image anchors in the data. Through extensive evaluations of 7 state-of-the-art self-supervised models, our method demonstrates superior performance and robustness across various datasets and benchmarks. Notably, it achieves high agreement with human assessments even with limited data and shows high robustness to the nature of data and their pre-processing pipeline. Our contributions offer a streamlined solution for assessment of images while providing insights into the perception of visual information.
Automatic Scoring of Dream Reports' Emotional Content with Large Language Models
In the field of dream research, the study of dream content typically relies on the analysis of verbal reports provided by dreamers upon awakening from their sleep. This task is classically performed through manual scoring provided by trained annotators, at a great time expense. While a consistent body of work suggests that natural language processing (NLP) tools can support the automatic analysis of dream reports, proposed methods lacked the ability to reason over a report's full context and required extensive data pre-processing. Furthermore, in most cases, these methods were not validated against standard manual scoring approaches. In this work, we address these limitations by adopting large language models (LLMs) to study and replicate the manual annotation of dream reports, using a mixture of off-the-shelf and bespoke approaches, with a focus on references to reports' emotions. Our results show that the off-the-shelf method achieves a low performance probably in light of inherent linguistic differences between reports collected in different (groups of) individuals. On the other hand, the proposed bespoke text classification method achieves a high performance, which is robust against potential biases. Overall, these observations indicate that our approach could find application in the analysis of large dream datasets and may favour reproducibility and comparability of results across studies.
Hamiltonian Neural Networks for Robust Out-of-Time Credit Scoring
This paper introduces a novel Hamiltonian-inspired neural network approach to credit scoring, designed to address the challenges of class imbalance and out-of-time (OOT) prediction in financial risk management. Drawing from concepts in Hamiltonian mechanics, we develop a symplectic optimizer and a new loss function to capture the complex dynamics of credit risk evolution. Using the Freddie Mac Single-Family Loan-Level Dataset, we evaluate our model's performance against other machine learning approaches. Our method shows superior discriminative power in OOT scenarios, as measured by the Area Under the Curve (AUC), indicating better ranking ability and robustness to class imbalance. The Hamiltonian-inspired approach shows particular strength in maintaining consistent performance between in-sample and OOT test sets, suggesting improved generalization to future, unseen data. These findings suggest that physics-inspired techniques offer a promising direction for developing more robust and reliable credit scoring models, particularly in uncertain economic situations.
MatPlotAgent: Method and Evaluation for LLM-Based Agentic Scientific Data Visualization
Scientific data visualization plays a crucial role in research by enabling the direct display of complex information and assisting researchers in identifying implicit patterns. Despite its importance, the use of Large Language Models (LLMs) for scientific data visualization remains rather unexplored. In this study, we introduce MatPlotAgent, an efficient model-agnostic LLM agent framework designed to automate scientific data visualization tasks. Leveraging the capabilities of both code LLMs and multi-modal LLMs, MatPlotAgent consists of three core modules: query understanding, code generation with iterative debugging, and a visual feedback mechanism for error correction. To address the lack of benchmarks in this field, we present MatPlotBench, a high-quality benchmark consisting of 100 human-verified test cases. Additionally, we introduce a scoring approach that utilizes GPT-4V for automatic evaluation. Experimental results demonstrate that MatPlotAgent can improve the performance of various LLMs, including both commercial and open-source models. Furthermore, the proposed evaluation method shows a strong correlation with human-annotated scores.
Listening to the Wise Few: Select-and-Copy Attention Heads for Multiple-Choice QA
A standard way to evaluate the abilities of LLM involves presenting a multiple-choice question and selecting the option with the highest logit as the model's predicted answer. However, such a format for evaluating LLMs has limitations, since even if the model knows the correct answer, it may struggle to select the corresponding letter simply due to difficulties in following this rigid format. To address this, we introduce new scores that better capture and reveal model's underlying knowledge: the Query-Key Score (QK-score), derived from the interaction between query and key representations in attention heads, and the Attention Score, based on attention weights. These scores are extracted from specific select-and-copy heads, which show consistent performance across popular Multi-Choice Question Answering (MCQA) datasets. Based on these scores, our method improves knowledge extraction, yielding up to 16\% gain for LLaMA2-7B and up to 10\% for larger models on popular MCQA benchmarks. At the same time, the accuracy on a simple synthetic dataset, where the model explicitly knows the right answer, increases by almost 60\%, achieving nearly perfect accuracy, therefore demonstrating the method's efficiency in mitigating MCQA format limitations. To support our claims, we conduct experiments on models ranging from 7 billion to 70 billion parameters in both zero- and few-shot setups.
Reinforcement Learning in Credit Scoring and Underwriting
This paper proposes a novel reinforcement learning (RL) framework for credit underwriting that tackles ungeneralizable contextual challenges. We adapt RL principles for credit scoring, incorporating action space renewal and multi-choice actions. Our work demonstrates that the traditional underwriting approach aligns with the RL greedy strategy. We introduce two new RL-based credit underwriting algorithms to enable more informed decision-making. Simulations show these new approaches outperform the traditional method in scenarios where the data aligns with the model. However, complex situations highlight model limitations, emphasizing the importance of powerful machine learning models for optimal performance. Future research directions include exploring more sophisticated models alongside efficient exploration mechanisms.
Supersparse Linear Integer Models for Optimized Medical Scoring Systems
Scoring systems are linear classification models that only require users to add, subtract and multiply a few small numbers in order to make a prediction. These models are in widespread use by the medical community, but are difficult to learn from data because they need to be accurate and sparse, have coprime integer coefficients, and satisfy multiple operational constraints. We present a new method for creating data-driven scoring systems called a Supersparse Linear Integer Model (SLIM). SLIM scoring systems are built by solving an integer program that directly encodes measures of accuracy (the 0-1 loss) and sparsity (the ell_0-seminorm) while restricting coefficients to coprime integers. SLIM can seamlessly incorporate a wide range of operational constraints related to accuracy and sparsity, and can produce highly tailored models without parameter tuning. We provide bounds on the testing and training accuracy of SLIM scoring systems, and present a new data reduction technique that can improve scalability by eliminating a portion of the training data beforehand. Our paper includes results from a collaboration with the Massachusetts General Hospital Sleep Laboratory, where SLIM was used to create a highly tailored scoring system for sleep apnea screening
JADES: A Universal Framework for Jailbreak Assessment via Decompositional Scoring
Accurately determining whether a jailbreak attempt has succeeded is a fundamental yet unresolved challenge. Existing evaluation methods rely on misaligned proxy indicators or naive holistic judgments. They frequently misinterpret model responses, leading to inconsistent and subjective assessments that misalign with human perception. To address this gap, we introduce JADES (Jailbreak Assessment via Decompositional Scoring), a universal jailbreak evaluation framework. Its key mechanism is to automatically decompose an input harmful question into a set of weighted sub-questions, score each sub-answer, and weight-aggregate the sub-scores into a final decision. JADES also incorporates an optional fact-checking module to strengthen the detection of hallucinations in jailbreak responses. We validate JADES on JailbreakQR, a newly introduced benchmark proposed in this work, consisting of 400 pairs of jailbreak prompts and responses, each meticulously annotated by humans. In a binary setting (success/failure), JADES achieves 98.5% agreement with human evaluators, outperforming strong baselines by over 9%. Re-evaluating five popular attacks on four LLMs reveals substantial overestimation (e.g., LAA's attack success rate on GPT-3.5-Turbo drops from 93% to 69%). Our results show that JADES could deliver accurate, consistent, and interpretable evaluations, providing a reliable basis for measuring future jailbreak attacks.
ScoreRAG: A Retrieval-Augmented Generation Framework with Consistency-Relevance Scoring and Structured Summarization for News Generation
This research introduces ScoreRAG, an approach to enhance the quality of automated news generation. Despite advancements in Natural Language Processing and large language models, current news generation methods often struggle with hallucinations, factual inconsistencies, and lack of domain-specific expertise when producing news articles. ScoreRAG addresses these challenges through a multi-stage framework combining retrieval-augmented generation, consistency relevance evaluation, and structured summarization. The system first retrieves relevant news documents from a vector database, maps them to complete news items, and assigns consistency relevance scores based on large language model evaluations. These documents are then reranked according to relevance, with low-quality items filtered out. The framework proceeds to generate graded summaries based on relevance scores, which guide the large language model in producing complete news articles following professional journalistic standards. Through this methodical approach, ScoreRAG aims to significantly improve the accuracy, coherence, informativeness, and professionalism of generated news articles while maintaining stability and consistency throughout the generation process. The code and demo are available at: https://github.com/peiyun2260/ScoreRAG.
F-Eval: Asssessing Fundamental Abilities with Refined Evaluation Methods
Large language models (LLMs) garner significant attention for their unprecedented performance, leading to an increasing number of researches evaluating LLMs. However, these evaluation benchmarks are limited to assessing the instruction-following capabilities, overlooking the fundamental abilities that emerge during the pre-training stage. Previous subjective evaluation methods mainly reply on scoring by API models. However, in the absence of references, large models have shown limited ability to discern subtle differences. To bridge the gap, we propose F-Eval, a bilingual evaluation benchmark to evaluate the fundamental abilities, including expression, commonsense and logic. The tasks in F-Eval include multi-choice objective tasks, open-ended objective tasks, reference-based subjective tasks and reference-free subjective tasks. For reference-free subjective tasks, we devise new evaluation methods, serving as alternatives to scoring by API models. We conduct evaluations on 13 advanced LLMs. Results show that our evaluation methods show higher correlation coefficients and larger distinction than other evaluators. Additionally, we discuss the influence of different model sizes, dimensions, and normalization methods. We anticipate that F-Eval will facilitate the study of LLMs' fundamental abilities.
Dense Text Retrieval based on Pretrained Language Models: A Survey
Text retrieval is a long-standing research topic on information seeking, where a system is required to return relevant information resources to user's queries in natural language. From classic retrieval methods to learning-based ranking functions, the underlying retrieval models have been continually evolved with the ever-lasting technical innovation. To design effective retrieval models, a key point lies in how to learn the text representation and model the relevance matching. The recent success of pretrained language models (PLMs) sheds light on developing more capable text retrieval approaches by leveraging the excellent modeling capacity of PLMs. With powerful PLMs, we can effectively learn the representations of queries and texts in the latent representation space, and further construct the semantic matching function between the dense vectors for relevance modeling. Such a retrieval approach is referred to as dense retrieval, since it employs dense vectors (a.k.a., embeddings) to represent the texts. Considering the rapid progress on dense retrieval, in this survey, we systematically review the recent advances on PLM-based dense retrieval. Different from previous surveys on dense retrieval, we take a new perspective to organize the related work by four major aspects, including architecture, training, indexing and integration, and summarize the mainstream techniques for each aspect. We thoroughly survey the literature, and include 300+ related reference papers on dense retrieval. To support our survey, we create a website for providing useful resources, and release a code repertory and toolkit for implementing dense retrieval models. This survey aims to provide a comprehensive, practical reference focused on the major progress for dense text retrieval.
Towards a Universal Method for Meaningful Signal Detection
It is known that human speech and certain animal vocalizations can convey meaningful content because we can decipher the content that a given utterance does convey. This paper explores an alternative approach to determining whether a signal is meaningful, one that analyzes only the signal itself and is independent of what the conveyed meaning might be. We devise a method that takes a waveform as input and outputs a score indicating its degree of `meaningfulness`. We cluster contiguous portions of the input to minimize the total description length, and then take the length of the code of the assigned cluster labels as meaningfulness score. We evaluate our method empirically, against several baselines, and show that it is the only one to give a high score to human speech in various languages and with various speakers, a moderate score to animal vocalizations from birds and orcas, and a low score to ambient noise from various sources.
Ferret: Faster and Effective Automated Red Teaming with Reward-Based Scoring Technique
In today's era, where large language models (LLMs) are integrated into numerous real-world applications, ensuring their safety and robustness is crucial for responsible AI usage. Automated red-teaming methods play a key role in this process by generating adversarial attacks to identify and mitigate potential vulnerabilities in these models. However, existing methods often struggle with slow performance, limited categorical diversity, and high resource demands. While Rainbow Teaming, a recent approach, addresses the diversity challenge by framing adversarial prompt generation as a quality-diversity search, it remains slow and requires a large fine-tuned mutator for optimal performance. To overcome these limitations, we propose Ferret, a novel approach that builds upon Rainbow Teaming by generating multiple adversarial prompt mutations per iteration and using a scoring function to rank and select the most effective adversarial prompt. We explore various scoring functions, including reward models, Llama Guard, and LLM-as-a-judge, to rank adversarial mutations based on their potential harm to improve the efficiency of the search for harmful mutations. Our results demonstrate that Ferret, utilizing a reward model as a scoring function, improves the overall attack success rate (ASR) to 95%, which is 46% higher than Rainbow Teaming. Additionally, Ferret reduces the time needed to achieve a 90% ASR by 15.2% compared to the baseline and generates adversarial prompts that are transferable i.e. effective on other LLMs of larger size. Our codes are available at https://github.com/declare-lab/ferret.
TrustSQL: Benchmarking Text-to-SQL Reliability with Penalty-Based Scoring
Text-to-SQL enables users to interact with databases using natural language, simplifying the retrieval and synthesis of information. Despite the remarkable success of large language models (LLMs) in translating natural language questions into SQL queries, widespread deployment remains limited due to two primary challenges. First, the effective use of text-to-SQL models depends on users' understanding of the model's capabilities-the scope of questions the model can correctly answer. Second, the absence of abstention mechanisms can lead to incorrect SQL generation going unnoticed, thereby undermining trust in the model's output. To enable wider deployment, it is crucial to address these challenges in model design and enhance model evaluation to build trust in the model's output. To this end, we introduce TrustSQL, a novel comprehensive benchmark designed to evaluate text-to-SQL reliability-defined as a model's ability to correctly handle any type of input question by generating correct SQL queries for feasible questions and abstaining from generating infeasible ones (e.g., due to schema incompatibility or functionalities beyond SQL). We evaluate existing methods using a novel penalty-based scoring metric with two modeling approaches: (1) pipeline-based methods combining SQL generators with infeasible question detectors and SQL error detectors for abstention; and (2) unified methods using a single model for the entire task. Our experimental results reveal that achieving high scores under severe penalties requires significant effort and provide a new perspective on developing text-to-SQL models for safer deployment. TrustSQL is available at https://github.com/glee4810/TrustSQL.
Language models and Automated Essay Scoring
In this paper, we present a new comparative study on automatic essay scoring (AES). The current state-of-the-art natural language processing (NLP) neural network architectures are used in this work to achieve above human-level accuracy on the publicly available Kaggle AES dataset. We compare two powerful language models, BERT and XLNet, and describe all the layers and network architectures in these models. We elucidate the network architectures of BERT and XLNet using clear notation and diagrams and explain the advantages of transformer architectures over traditional recurrent neural network architectures. Linear algebra notation is used to clarify the functions of transformers and attention mechanisms. We compare the results with more traditional methods, such as bag of words (BOW) and long short term memory (LSTM) networks.
