new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 1

Benchmarking LLMs for Political Science: A United Nations Perspective

Large Language Models (LLMs) have achieved significant advances in natural language processing, yet their potential for high-stake political decision-making remains largely unexplored. This paper addresses the gap by focusing on the application of LLMs to the United Nations (UN) decision-making process, where the stakes are particularly high and political decisions can have far-reaching consequences. We introduce a novel dataset comprising publicly available UN Security Council (UNSC) records from 1994 to 2024, including draft resolutions, voting records, and diplomatic speeches. Using this dataset, we propose the United Nations Benchmark (UNBench), the first comprehensive benchmark designed to evaluate LLMs across four interconnected political science tasks: co-penholder judgment, representative voting simulation, draft adoption prediction, and representative statement generation. These tasks span the three stages of the UN decision-making process--drafting, voting, and discussing--and aim to assess LLMs' ability to understand and simulate political dynamics. Our experimental analysis demonstrates the potential and challenges of applying LLMs in this domain, providing insights into their strengths and limitations in political science. This work contributes to the growing intersection of AI and political science, opening new avenues for research and practical applications in global governance. The UNBench Repository can be accessed at: https://github.com/yueqingliang1/UNBench.

  • 9 authors
·
Feb 19, 2025 2

Evaluating LLMs on Sequential API Call Through Automated Test Generation

By integrating tools from external APIs, Large Language Models (LLMs) have expanded their promising capabilities in a diverse spectrum of complex real-world tasks. However, testing, evaluation, and analysis of LLM tool use remain in their early stages. Most existing benchmarks rely on manually collected test cases, many of which cannot be automatically checked for semantic correctness and instead depend on static methods such as string matching. Additionally, these benchmarks often overlook the complex interactions that occur between sequential API calls, which are common in real-world applications. To fill the gap, in this paper, we introduce StateGen, an automated framework designed to generate diverse coding tasks involving sequential API interactions. StateGen combines state-machine-based API constraint solving and validation, energy-based sampling, and control-flow injection to generate executable programs. These programs are then translated into human-like natural language task descriptions through a collaboration of two LLM agents. Utilizing StateGen, we construct StateEval, a benchmark encompassing 120 verified test cases spanning across three representative scenarios: Session Service, Tensor Operation, and ElevenLabs MCP. Experimental results confirm that StateGen can effectively generate challenging and realistic API-oriented tasks, highlighting areas for improvement in current LLMs incorporating APIs.We make our framework and benchmark publicly available to support future research.

  • 7 authors
·
Jul 12, 2025 1